
TerraSAR-X Data Feature Extraction:
a Complex-Valued Data Analysis

Matteo Soccorsi
Remote Sensing Technology Institute

German Aerospace Center
D-82234 Weling, Germany

Email: matteo.soccorsi@dlr.de

Mihai Datcu
Remote Sensing Technology Institute

German Aerospace Center
D-82234 Weling, Germany
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Abstract—The work present a complex-valued Gauss-Markov
Random Field (GMRF) model for modeling and analyzing
Synthetic Aperture Radar (SAR) data.
The model is based on the extension of the classical GMRF
model [1] to complex domain. It is developed under the point of
view that radar signals are complex-valued signals. The model
parameters are estimated in a Bayesian frame byMaximum
A Posteriori estimate and are characterizing the image content
on the pixel vicinity. The model order allows to characterize
different scale structure by the neighborhood system of cliques.
The conventional method are not using complex-valued data
for texture characterization but they are considering the data
transformation from Cartesian to polar coordinates. The results
are presented on TerraSAR-X data.

I. I NTRODUCTION

TerraSAR-X satellite is providing a huge amount of High
Resolution (HR) Synthetic Aperture Radar (SAR) data, which
have to be processed and interpreted. To work in the direc-
tion of automatic interpretation is a difficult task involving
many different scientific fields: information and communica-
tion theory, statistics, machine learning, etc. The automatic
interpretation spans through a signal-based analysis in order
to characterize the signal and, further, the image content.This
part of the work is pointed to an analysis of the TerraSAR-X
data and the validation of the model for feature extraction [2],
[3]. The method is in the field of spectral parameter analysis.
We want to find a robust parameter representation of the signal
by estimating the autocorrelation sequence. The extracted
feature, i.e. primitive features, are representative of the signal
characteristics and, thus, descriptors of the scene content. By
the primitive feature or, incidentally, by their combinations
we want to characterize the texture and more extensively the
objects and the structures contained in the image for further
indexing. Including this functionalities in image information
mining systems will help the automatic interpretation of SAR
image which is a difficult task. We propose a novel GMRF for
complex valued SAR image analysis and parameter estimation.
The goal is to find robust parameters to model the data. The
model is bidimensional and fits the data directly in the complex
domain, where classical approaches [4] use to non-linarly

transform the data from cartesian to polar coordinates, as show
in Fig. 1, because of the statistics of the speckle [5].
In the following, we describe briefly the concepts and the
methodologies and the adopted Gauss-Markov Random Field
(GMRF) model. Thus, we present the results and we end with
some observations on the possible applications and perspec-
tives.

II. COMPLEX-VALUED RANDOM VARIABLES

We consider an-dimensional vector of complex-valued
random variablez = x + jy of elementszi = xi + jyi with
i = 1, 2, . . . , n and covariance matrix

Σz = E
[

(z − µz)(z − µz)
H

]

(1)

whereE
[

·
]

is the expectation,·H is the Hermitian operator
(i.e. transpose conjugate operator) andµz = µx + jµy is the
vector of the mean values.
In general,z can be represented as a2n-dimensional vector
of real-valued random variables based on the isomorphism
betweenCn and R2n. On the othar hand, the2n × 2n real-
valued covariance matrix representation has not the simmetric
form necessary for the isomorphism with the complex-valued
covariance matrix. A blockMik of the real-valued covariance
matrix has the following form
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(xi−µxi
)(xk−µx

k
)
]
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k
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k
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k
)
]

]

(2)

where the indicesi and j denote two elements of the vector
z. The global statistical information of an-dimensional zero-
mean complex-valued random variable vectorz − µz is con-
tained in the2n × 2n real-valued covariance matrix, because
it is taking in consideration the set of2n random variables.
Under certain conditions, that we are going to describe forward
all the statistical information is contained inΣz.
The SAR signal is the complex envelope of a zero-mean band-
limited Gaussian process. In case of target the mean value can
be always subtracted in order to comply with this hypothesis
without loose of generality.



Thus, consideringµz = 0, for any couplezi = xi + jyi and
zj = xj + jyj , the following hypothesis are true:

E
[

x2
i

]

= E
[

y2
i

]

= σ2
i (3)

E
[

xiyi

]

= 0 (4)

E
[

xixk

]

= E
[

yiyk

]

= rikσiσk i 6= k (5)

E
[

xiyk

]

= −E
[

yixk

]

= sikσiσk i 6= k. (6)

The receiver extracts the components in phase and quadrature
from the received signal, thus, the complex amplitude for the
two channel is the same (3). The two components in quadrature
and phase are orthogonal and, thus, uncorrelated (4). The
reciprocity and the properties of symmetry of the Fourier
transform ensure (5) and (6) for the band-limited signal:
the Wiener-Kintchine theorem states that the autocorrelation
function is the inverse Fourier transform of the power spectral
density, the Fourier transform of a real signal gives a complex
signal with a even real part (5) and a odd imaginary part (6).
The above conditions, (3), (4), (5) and (6), ensure the iso-
morphism between the complex-valued covariance matrix and
the real-valued representation, thus the blocks of the complex-
valued covariance matrix become

Mii = σ2
i

[

1 0
0 1

]

(7)

Mik = σiσk

[

rik sik

−sik rik

]

i 6= k (8)

The elements of the complex covariance matrix aremii = 2σ2

andmik = 2σiσk(rik − jsik) wherei 6= k.
Thus, the expression of then-dimensional complex-valued
multivariate Gaussian can be derived from the2n-dimensional
real-valued multivariate Gaussian and take the form

p(z) =
1

πn detΣ
exp

{

−z M−1zH
}

(9)

wheredet(·) is the determinant operator. In the next section
we are going briefly to present the classical Bayesian frame,
and, thus, our proposed complex-valued GMRF model.

III. G AUSS-MARKOV RANDOM FIELD MODEL

Considering the consideration of the previous section and
[6],the Gauss-Markov Random Field (GMRF) model for com-
plex valued pixels has the following form:

p(zs|zs+r, r ∈ N ) =
1

2πσ2
exp
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
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(10)

µ =
∑

r∈N

[

ξr −τr

τr ξr

] [

xr+s

yr+s

]

(11)

wherez = x + jy is the complex valued pixel,θ = ξ + jτ is
the complex-valued parameter vector,σ2 is the model variance
and the sum is over all the pixelr belonging to the vicinity
neighborN . In the analysis we follow the Bayesian inference
to respect the considered modelHi:

p(θ|zs, Hi) =
p(zs|θ, Hi)p(θ|Hi)

p(zs|Hi)
(12)

where p(zs|θ) is the GMRF model,p(θ) is the parameter
prior which is uniform andp(zs) is the model evidence and
it is constant at this level of inference. We want to find the
values of the parameter vector which maximize the previous
expression, thus it takes the form of the Maximum a Posteriori
(MAP) estimate:

θ̂MAP = arg max
θ

{log p(zs|θ) + log p(θ)} (13)

As further measure we compute the evidence of the model
which is a quantitative measure of how well the model is
fitting the data. It is computed as follow:

p(zs|Hi) =

∫

Θ

p(zs|θ, Hi)p(θ|Hi)dθ (14)

where the integration is all over the parameter spaceΩ and
the integral can be computed analytically. The variance of the
model:

σ2 = E
{

(z − Gθ̂)2
}

(15)

is the expectation of the difference between the data and the
best fit of the model over the data,G is the matrix of cliques.

Fig. 1. Example of SAR image and transformation from Cartesian to polar
coordinates.

Fig. 2. Spot Light HR SLC image of El Geeza, Egypt. Polarization HH and
incident angle∼ 53. Azimuth resolution∼ 1.10 m and slant range resolution
∼ 0.59 m



TABLE I
ABSOLUTE VALUES OF THE COMPLEX-VALUED ESTIMATED PARAMETERS

AND ORIGINAL IMAGE IN FIG. D). THE POSITIONS ARE REPRESENTATIVE

OF THE CLIQUE IN THE NEIGHBORHOOD, I .E. THE DIRECTION TO WHICH
THE PARAMETER REFERS. IN FIG. G) THE PLOT OF THE REAL PART OF THE

PARAMETERS IS SHOWN TO BEGAUSSIAN.

a)

b) c) d)

e) f)

g) h)

IV. RESULTS

We processed an image from a scene acquired over El
Geeza, Fig. 2. The image is Single Look Complex (SLC)
acquired in High Resolution (HR) Spot Light (SL) mode,
polarization HH and incident angle∼ 53. Azimuth resolution
∼ 1.10 m and slant range resolution∼ 0.59 m.
The absolute values of the complex-valued estimated parame-
ters are shown in Tab. I, together with the original image Tab.
I: Fig. d). The positions are representative of the clique inthe
neighborhood, i.e. the direction to which the parameter refers.
The histograms of the absolute value of the zero-mean pa-
rameter are shown on the top right: they have all the same
Gaussian shape.
The original image, Tab. I: Fig. d), shows the selected training
set for the Maximum Likelihood (ML) feature based classifi-
cation, shown in Fig. 3. The classes are choosen in order to
corrispond to the visual appearence of the image: red: bright;
yellow: medium bright; green: texture; blue: dark areas.
The textured areas are not well separated and there are many
false alarms.

TABLE II
FROM TOP LEFT CLOCKWISE: VARIANCE OF THE MODEL, EVIDENCE OF

THE MODEL, PHASE OF THE VERTICAL CLIQUE AND PHASE OF THE

HORIZONTAL CLIQUE. THE MODEL VARIANCE IS PROPORTIONAL TO THE
RADAR BACKSCATTER. THE EVIDENCE IS HIGHER WHERE THE MODEL

FITS BETTER THE DATA. THE PHASE OF THE VERTICAL AND HORIZONTAL

ARE SHOWING THE CHARACTERISTICS OF A GRADIENT.

a) b)

c) d)

Fig. 3. Maximum Likelihood (ML) feature based classification. The training
set is shown in I: Fig. d). Red: bright; yellow: medium bright; green: texture;
blue: dark.

In Tab. II, from top left clockwise, the variance of the model,
the evidence of the model, the phase of the vertical clique and
the phase of the horizontal clique are shown. The model vari-
ance, Tab. II: Fig. a), is proportional to the radar backscatter.
The evidence, Tab. II: Fig. b) is higher where the model fits
better the data. The phase of the vertical and horizontal in Tab.
II Figs. c) and d) are showing the characteristics of a gradient.
Different structures and image characteristics can be captured
by different model orders, i.e. a different number of param-
eters. On the other hand a greater model order increases the
computation time.

V. CONCLUSIONS

A complex GMRF model for texture and structure modeling
can be used for automatic detection and classification of
textured and structured areas, man made or natural target. It
can help analysts in the interpretation of complex SAR images.



The model shows the limit given by an Analyzing Window
(AW) based estimation and analysis: to have a sufficient
number of pixels a large AW is needed, on the other hand
a small AW would adapt better the data heterogeneity. The
analysis and the model has to be refined by introducing edges
and strong scatterers detection. Further, the effectiveness of
data transformations or data pre-processing, e.g. to reduce
the dynamic of the signal or to reduce the noise, has to be
investigate in order to find the optimal data space. Study
and analysis of alternative data space or data transformation,
e.g. complex multilooking for noise reduction. Study and
analysis of the parameter feature space. Further analysis in
the feature space, e.g. singular value decomposition to reduce
space dimensions. Distortion-based validation of the estimated
parameters. Mutual information based analysis to measure the
information hidden in the phase. Extension of the model on
multi-band polarimetric data. On the other hand, the next
research step is going to be the inclusion of the model in
a full Bayesian approach as data prior and considering the
SAR image formation model [7]. Further the comparison of
the model with non-linear Huber-Markov model, applied in
[8] for edge preserving.
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