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Abstract—The work present a complex-valued Gauss-Markov transform the data from cartesian to polar coordinateshaw s
Random Field (GMRF) model for modeling and analyzing in Fig. 1, because of the statistics of the speckle [5].
Synthetic Aperture Radar (SAR) data. . In the following, we describe briefly the concepts and the
The model is based on the extension of the classical GMRF . .
model [1] to complex domain. It is developed under the point b methodologies and the adopted Gauss-Markov Random F'?ld
view that radar signals are complex-valued signals. The madl (GMRF) model. Thus, we present the results and we end with
parameters are estimated in a Bayesian frame byMaximum some observations on the possible applications and perspec
A Posteriori estimate and are characterizing the image content tjyes.
on the pixel vicinity. The model order allows to characteriz

different scale structure by the neighborhood system of ajues. Il. COMPLEX-VALUED RANDOM VARIABLES
The conventional method are not using complex-valued data
for texture characterization but they are considering the cata We consider an-dimensional vector of complex-valued

transformation from Cartesian to polar coordinates. The results random variablez = x + jy of elementss; = x; + jy; with
are presented on TerraSAR-X data. ; ; ;
P 1=1,2,...,n and covariance matrix

I. INTRODUCTION 3, = E[(z )z — HZ)H} 1)

TerraSAR-X satellite is providing a huge amount of High
Resolution (HR) Synthetic Aperture Radar (SAR) data, whiskhereE[ - | is the expectation” is the Hermitian operator
have to be processed and interpreted. To work in the dirdte. transpose conjugate operator) gnd= u, + jpu, is the
tion of automatic interpretation is a difficult task invatg Vvector of the mean values.
many different scientific fields: information and communicadn general,z can be represented as2a-dimensional vector
tion theory, statistics, machine learning, etc. The autamaof real-valued random variables based on the isomorphism
interpretation spans through a signal-based analysisderorbetweenC™ and R?*". On the othar hand, th2n x 2n real-
to characterize the signal and, further, the image confénis. valued covariance matrix representation has not the sinonet
part of the work is pointed to an analysis of the TerraSAR-}0rm necessary for the isomorphism with the complex-valued
data and the validation of the model for feature extract®jn [ covariance matrix. A bloc®;; of the real-valued covariance
[3]. The method is in the field of spectral parameter analysi®atrix has the following form
We want to find a robust parameter representation of the lsigna
by estimating the autocorrelation sequence. The extractedMi.=
feature, i.e. primitive features, are representative efdignal
characteristics and, thus, descriptors of the scene corBgn where the indices and j; denote two elements of the vector
the primitive feature or, incidentally, by their combir@ats z. The global statistical information of @-dimensional zero-
we want to characterize the texture and more extensively ttiean complex-valued random variable vector p, is con-
objects and the structures contained in the image for furthtained in the2n x 2n real-valued covariance matrix, because
indexing. Including this functionalities in image infortian it is taking in consideration the set @h random variables.
mining systems will help the automatic interpretation of’SA Under certain conditions, that we are going to describe dodw
image which is a difficult task. We propose a novel GMRF faall the statistical information is contained 1,.
complex valued SAR image analysis and parameter estimatidhe SAR signal is the complex envelope of a zero-mean band-
The goal is to find robust parameters to model the data. Tlmited Gaussian process. In case of target the mean vatue ca
model is bidimensional and fits the data directly in the carpl be always subtracted in order to comply with this hypothesis
domain, where classical approaches [4] use to non-linasythout loose of generality.

E [(xi_ﬂxi)(xk_l"xk )} E
B[y Ga—px)] B

(Xi_l"xi)(}’k_l"yk )J :| (2)

(yi—ty; ) (Vi —Hyy,)



Thus, considerings, = 0, for any couplez; = x; + jy; and where p(z5|0) is the GMRF modelp(0) is the parameter

z; = x; + jy;, the following hypothesis are true: prior which is uniform andp(z;) is the model evidence and
9 9 9 it is constant at this level of inference. We want to find the
E[X} :E[y-] =03 3) ) L .
v v v values of the parameter vector which maximize the previous
E[Xiyi} =0 (4) expression, thus it takes the form of the Maximum a Posterior
E[Xixk] = E[yiyk] = I;L0;0% 1#£k (5) (MAP) estimate:
Elxiyk] = —E[yixi] = sioioy, i# k. (6)

0 = arg max{log p(z,|0) + log p(@ 13
The receiver extracts the components in phase and quagratur Mar 5% {logp(2:6) sp(0)} (13)

from the received signal, thus, the complex amplitude fer t .
) . s further measure we compute the evidence of the model
two channel is the same (3). The two components in quadratufre. | . o :
ich is a quantitative measure of how well the model is

anq pha}se are orthogonal _and, thus, uncorrelated (4). .T:‘?I%t?ng the data. It is computed as follow:

reciprocity and the properties of symmetry of the Fourier

transform ensure (5) and (6) for the band-limited signal:

the Wiener-Kintchine theorem states that the autocoroelat p(zs|H;) = / p(zs|0, H;)p(6|H;)d6 (14)
function is the inverse Fourier transform of the power sct ©

density, the Fourier transform of a real signal gives a cemplwhere the integration is all over the parameter spacand

signal with a even real part (5) and a odd imaginary part (&he integral can be computed analytically. The variancéef t
The above conditions, (3), (4), (5) and (6), ensure the isgrodel:

morphism between the complex-valued covariance matrix and
the real-valued representation, thus the blocks of the temp
valued covariance matrix become

o2 = E{(z - Gé)?} (15)

1 0 is the expectation of the difference between the data and the
M; = o} [ 0 1 } (7) best fit of the model over the daté&; is the matrix of cliques.
Mix = o0 { Vil Sik } i#k (8)

—Sik  Tik

The elements of the complex covariance matrixrare = 202
andm;, = 20,0k (rik — jsik) wherei # k.

Thus, the expression of the-dimensional complex-valued
multivariate Gaussian can be derived from thedimensional
real-valued multivariate Gaussian and take the form

_ 1 1, H
p(z)—mexp{—z M 'z"} 9

wheredet(-) is the determinant operator. In the next section _ _ .
we are going briefly to present the classical Bayesian frani%%rji-natzamp'e of SAR image and transformation from Caafeso polar
and, thus, our proposed complex-valued GMRF model. '

Cartesian
to polar
transformation

Im{z]

I1l. GAUSS-MARKOV RANDOM FIELD MODEL

Considering the consideration of the previous section and
[6],the Gauss-Markov Random Field (GMRF) model for com-
plex valued pixels has the following form:

Xs | 2

(2]
1 exp _oaLYs ] 7 (10)
2mo? 202

p(2zs|2s4r,m €EN) =

gr —Tr Xr+s
n= EreN|: & ] | Vits :| (11)
wherez = x + jy is the complex valued pixeb = € + j7 is
the complex-valued parameter veciot,is the model variance
and the sum is over all the pixel belonging to the vicinity

neighbor\/. In the analysis we follow the Bayesian inference o . ettt and
: . Fig. 2. Spot Light HR SLC image of El Geeza, Egypt. Polar@atHH an
to respect the considered modd: incident angle~ 53. Azimuth resolution~ 1.10 m and slant range resolution
p(zs|60, Hi)p(6|H;) ~0.59m
POz, H;) = (12)
o p(zs|Hi)




TABLE | TABLE Il
ABSOLUTE VALUES OF THE COMPLEXVALUED ESTIMATED PARAMETERS FROM TOP LEFT CLOCKWISE VARIANCE OF THE MODEL, EVIDENCE OF
AND ORIGINAL IMAGE IN FIG. D). THE POSITIONS ARE REPRESENTATIVE THE MODEL, PHASE OF THE VERTICAL CLIQUE AND PHASE OF THE
OF THE CLIQUE IN THE NEIGHBORHOODI.E. THE DIRECTION TO WHICH HORIZONTAL CLIQUE. THE MODEL VARIANCE IS PROPORTIONAL TO THE
THE PARAMETER REFERSIN FIG. G) THE PLOT OF THE REAL PART OF THE RADAR BACKSCATTER. THE EVIDENCE IS HIGHER WHERE THE MODEL
PARAMETERS IS SHOWN TO BEGAUSSIAN. FITS BETTER THE DATA THE PHASE OF THE VERTICAL AND HORIZONTAL
ARE SHOWING THE CHARACTERISTICS OF A GRADIENT

Fig. 3. Maximum Likelihood (ML) feature based classificatia'he training
set is shown in [I: Fig. d). Red: bright; yellow: medium brigbteen: texture;
. . : dark.
We processed an image from a scene acquired over bp
Geeza, Fig. 2. The image is Single Look Complex (SLC)

acquired in High Resolution (HR) Spot Light (SL) modejn Tap. II, from top left clockwise, the variance of the madel
polarization HH and incident angte 53. Azimuth resolution the evidence of the model, the phase of the vertical clique an
~ 1.10 m and slant range resolution 0.59 m. the phase of the horizontal clique are shown. The model vari-
The absolute values of the complex-valued estimated parargice, Tab. II: Fig. a), is proportional to the radar backscat
ters are shown in Tab. |, together with the original image. Tabhe evidence, Tab. II: Fig. b) is higher where the model fits
I: Fig. d). The positions are representative of the cliquéh® petter the data. The phase of the vertical and horizontain T
neighborhood, i.e. the direction to which the parametesreef || Figs. ¢) and d) are showing the characteristics of a gradie
The histograms of the absolute value of the zero-mean Pifferent structures and image characteristics can beucagt
rameter are shown on the top right: they have all the sarpg ditferent model orders, i.e. a different number of param-

Gaussian shape. eters. On the other hand a greater model order increases the
The original image, Tab. I: Fig. d), shows the selected ingin computation time.

set for the Maximum Likelihood (ML) feature based classifi-

cation, shown in Fig. 3. The classes are choosen in order to V. CONCLUSIONS

corrispond to the visual appearence of the image: red: righ A complex GMRF model for texture and structure modeling
yellow: medium bright; green: texture; blue: dark areas. can be used for automatic detection and classification of
The textured areas are not well separated and there are mi@xyured and structured areas, man made or natural tatget. |
false alarms. can help analysts in the interpretation of complex SAR insage

IV. RESULTS



The model shows the limit given by an Analyzing Window
(AW) based estimation and analysis: to have a sufficient
number of pixels a large AW is needed, on the other hand
a small AW would adapt better the data heterogeneity. The
analysis and the model has to be refined by introducing edges
and strong scatterers detection. Further, the effectbseioé
data transformations or data pre-processing, e.g. to esduc
the dynamic of the signal or to reduce the noise, has to be
investigate in order to find the optimal data space. Study
and analysis of alternative data space or data transfaymati
e.g. complex multilooking for noise reduction. Study and
analysis of the parameter feature space. Further analysis i
the feature space, e.g. singular value decomposition taceed
space dimensions. Distortion-based validation of theregtd
parameters. Mutual information based analysis to meakere t
information hidden in the phase. Extension of the model on
multi-band polarimetric data. On the other hand, the next
research step is going to be the inclusion of the model in
a full Bayesian approach as data prior and considering the
SAR image formation model [7]. Further the comparison of
the model with non-linear Huber-Markov model, applied in
[8] for edge preserving.
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