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Complexity Based Analysis of Earth 
Observation Imagery: an Assessment 

Daniele Cerra, Alexandre Mallet, Lionel Gueguen, and Mihai Datcu 

 
Abstract—this paper proposes complexity based analysis as a 

valid alternative to classic image analysis methodologies for 
Earth Observation imagery, which are heavily dependant on the 
assumed data models. We will show the power of this totally 
model-free, data-driven methods by presenting three very 
different applications relying on complexity based analysis: 
image classification, artifact detection, and database compression 
which enables queries directly on the compressed content.    
 

Index Terms— Data Compression, Data Mining, Kolmogorov 
Complexity, Image classification. 
 

I. INTRODUCTION 
OMPLEXITY based image analysis offer a valid 
alternative to classic Bayesian or maximum-likelihood 

methods, which are widely used in several domains like 
segmentation, classification or inference clustering. A major 
drawback of Bayesian methods is that they require strong a 
priori knowledge of the data, which is possible on well 
described kinds of objects, but may restrict the efficiency of 
these methodologies on Earth Observation images databases: 
in fact, the large and steadily growing volumes of data 
provided by satellites, together with the large variety, diversity 
and irregularity of the observed scenes, make hard to establish 
enough general statistical description models for the data. 

These limitations are overcome in the analysis methods 
described in this paper, which aim at extracting information 
and computing similarities on the sole basis of the data 
complexity, estimated with solutions based on classical 
information theory, or by means of typical dictionaries 
directly learned from the data. The main advantage of this 
approach is that it is totally data-driven, being independent of 
any statistical model. Thus, classical concepts of information 
theory may gain new meaning in various fields of Earth 
Observation imagery analysis, thanks to these recent concepts. 

The paper is structured as follows. Section II presents a 
reminder on classical and algorithmic information theory 
concepts, presented in parallel, while following sections 
present practical applications of these concepts within the 
field of image analysis. Section III will be related to 

classification of both optical and SAR Earth Observation data, 
performed by a hierarchical clustering obtained on the basis of 
a complexity based similarity measure. Section IV will present 
artifact detection in optical remotely sensed images: it is 
shown how the concepts of complexity enable one to highlight 
blemishes introduced during the image formation process. 
Section V presents how to build an index that can be queried 
related to a compressed Image Time Series database. Finally, 
section VI reports some conclusions and future perspectives.   
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II. INFORMATION THEORETICAL FRAME 
Complexity issues can be addressed from a probabilistic 

point of view (Shannon) [1] or from an algorithmic point of 
view (Kolmogorov) [2]. Their basic ideas are different, but 
Shannon’s classical approach can be linked to Kolmogorov’s 
concept of computational complexity [3]: this section will 
introduce this relation, presenting a summary of the main 
recent works on these topics.  

In all the following definitions and theorems, we will 
assume  to be a random variable with a set of possible 
outcomes 

X
x  and an associated probability distribution 

)()( xfxXP == . 

A. Shannon entropy and Kolmogorov complexity 
Both concepts of Shannon entropy and Kolmogorov 

complexity aim at measuring the quantity of information 
contained in a binary string.  

Definition 1: The entropy  of the random variable 
is given by: 

)(XH
X

 
(1) 

 
This definition can be interpreted as the length in bits 

needed to encode the outcomes of , which can be obtained, 
for example, through the Shannon-Fano code; nevertheless, 
such approach related to probabilistic assumptions does not 
provide the informational content of individual object and 
their possible regularity: that lacuna is filled by the 
Kolmogorov complexity that evaluates an intrinsic complexity 
for any isolated object, independently of any description 
formalism.  

X

Definition 2: The Kolmogorov complexity  of a 
string 

)(xK
x  is the length of the shortest program  that outputs q

x  and halts on an appropriate universal machine, such as an 
universal Turing Machine, being defined as: 
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with  being the set of programs generating Qx x  and q  the 

length of the program q . So, strings presenting recurring 
patterns have low complexity, while the complexity of random 
strings is high and almost equals their own length. Such 
coding interpretation of the Kolmogorov complexity is 
confirmed by the fact that  defines a universal 
distribution for a priori model of 

)(2)( xKxm −=
x  [4]. It is important to 

remark that is not a computable function of )(xK x . 

B. Mutual information in Shannon and Kolmogorov 
An important issue of the informational content analysis is 

to be able to estimate how much information an object 
contains about another one. From Shannon’s probabilistic 
point of view, the solution is brought through the mutual 
information. 

Definition 3: The mutual information  is defined 
in classical Shannon information theory as: 

),( YXI
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where X  and Y  are two random variables,   is 

the conditional entropy of 

)|( BAH
A  given B and  is the 

joint entropy of 

),( BAH
A  and B . 

Definition 4: In the Kolmogorov complexity frame, the 
algorithmic mutual information between x  and  is: y

 
,   (4) 

 
defined up to an additive constant, where the conditional 
Kolmogorov complexity  of )|( yxK x  related to  is the 
length of the shortest program to compute 

y
x  if the string  

is given as an auxiliary input to the computation, while the 
joint complexity  is the length of the shortest 
program which outputs 

y

),( yxK
x  followed by . y

C. Link between the two theories 
In spite of the fundamental differences between the two 

concepts of Shannon entropy and Kolmogorov complexity, a 
link between them has been established, stated in the 
following theorem [3]. 

Theorem 1: If is a probability mass function associated to 
a random source

f
X , then: 

 
.   (5) 

 
This means that the sum of the expected Kolmogorov 
complexities of all the outcomes x  of a random variable  
equals the Shannon entropy of , up to an additive constant. 

Likewise, it is established that the expected algorithmic 
mutual information equals the probabilistic mutual 
information up to an additive constant. The results presented 
above result in the following equality: 
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which enables one to assimilate the conditional complexity 

 to the uncertainty of the probabilistic distribution )|( fxK
)(log xf− . The importance of this result lies in the fact that 

it constitutes a simple estimation way of the conditional 
complexity under the a priori knowledge of a probabilistic 
distribution. 

D. Compression-based similarity measures 
The Normalized Information Distance (NID) between two 

objects x  and  is the length of the shortest program that 
computes 

y
x  knowing , as well as computing  knowingy y x , 

i.e. it is proportional to the quantity 
 [5]; the distance becomes, after 

normalization: 
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),( yxNID  is a metric, with  and 
 = 1 meaning maximum distance between 

yxiffyxNID ==0),(
),( yxNID x  

and . y
Since Kolmogorov complexity is non-computable, so it is 

the . To find a suitable approximation of , it can 
be stated to represent the length of the shortest lossless 
compressed file  obtained compressing 

NID )(xK

*x x :   
represents then a lower bound for what a real compressor can 
achieve. 

)(xK

This allows approximating  with , i.e. the 
length of the compressed version of 

)(xK )(xC
x  obtained with a 

standard lossless compressor C  such as Gzip. The equation 
(7) becomes then the Normalized Compression 
Distance , and can be explicitly computed as  ),( yxNCD

 
,          (9) 

 
 
with  representing the size of the file obtained by 

compressing the concatenation of 
),( yxC

x  and . It is proved that 
the conditions for NCD (defined as an admissible distance) to 
be a metric hold under certain assumptions [6]. 

y

It has to be remarked that this metric is very general and 
experiments have been carried out to compute distances 
within any kinds of data: among those simple text files, music 
samples [6], sample dictionaries from different languages, 
DNA samples [7]. 

Recently [8], a direct link has been found between this 
metric and other distance measures and classification 
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techniques based on pattern matching and dictionaries 
extraction, such as Pattern Recognition based on Data 
Compression (PRDC) [9]: this suggests that many research 
perspectives are still open within this field. 

III. EO IMAGES HIERARCHICAL CLUSTERING 
The compression-based similarity measures introduced in 

the previous section are a powerful tool to discover 
similarities within satellite data with a total data-driven, 
model-free approach; furthermore, NCD has been recently 
shown to be noise-resistant [10]. 

To test how well can NCD perform in recognizing similar 
objects, we have tested its power on two totally different 
satellite imagery datasets: the first contains 60 SPOT 5 image 
subsets, single band and equally divided in 6 classes, and 
another containing 44 Synthetic Aperture Radar (SAR) 
TerraSAR-X subsets taken over Egypt, with Equivalent 
Number of Looks (ENL) equal to 4, and divided in 4 classes. 

For each database, the NCD has been computed between 
each pair of objects in order to generate a distance matrix. To 
compare the overall distances the tool maketree, which is part 
of the tools provided by the open-source utilities suite 
Complearn [11], is then used to perform a hierarchical 
clustering, generating the best-fitting binary trees related to 
each distance matrix.  
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Fig.1. Visual description of the classes used (top) and hierarchical clustering 
of NCD values (bottom) applied to 60 SPOT 5 optical satellite images of size 
64x64. The only false alarm is circled in red. 
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Fig.2. Visual description of the classes used (top) and hierarchical clustering 
of NCD values (bottom) applied to 44 TerraSAR-X images of size 64x64 with 
Equivalent Number of Looks (ENL) equal to 4. 
 
Results in Figs. 1-2 show that all classes are well separated in 
both optical and SAR datasets, with only one “false alarm” in 
the first example. This confirms the discrimination power of 
NCD, which performs equally well on these two extremely 
different kinds of data: this is achieved without using any 
reference model or a priori knowledge of the data. 

IV. IMAGE ARTIFACTS DETECTION 
EO images may contain blemishes or artificial structures 

introduced in the processing step or coming directly from the 
sensors (ref. top line in Fig.4): these artifacts decrease the 
quality of the images and can lead to analysis and 
interpretation problems; in [12] some steps are taken for their 
automatic detection. A visual analysis of such artifacts 
suggests that they alter the local complexity within the images, 
resulting in areas with complexity either too low or too high: 
therefore, a complexity comparison method may be able to 
detect these defects, under the assumption that it is possible to 
identify some artifact-free elements within each image.  

 

 
Fig.3. Workflow for artefact detection: all image alements (size 4 × 4) are 
compared with artefact free elements (size 32 × 32) manually selected. A 
complexity comparison is carried out by applying the NCD to build a 
significant feature space. A decision is then taken over that feature space 
which provides the detection map, through a classification or a simple 
thresholding. 
 

The workflow is reported in Fig. X: the image elements are 
compared with NCD to the elements of the image without 
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artifacts, building a feature vector for each element. 
Classification can then be applied to the feature space to 
detect the artifacts.  
 

 
Fig.4. Results of artifact detection. On top, from left to right: SPOT image 
presenting the drop out artifact, infrared SPOT image presenting a degradation 
over the bottom left corner due to electronics failures in the sensor, and 
IKONOS saturated image. Bottom, from left to right: detections applied on 
images and manually thresholded. The inconsistent areas are highlighted. In 
the last case (bottom right) only the biggest saturated area is detected, because 
of the size of the windows employed in the algorithm. 
 

In the examples presented in Fig.4, the output of the 
complexity comparisons is then clustered with the k-means 
algorithm and manually thresholded to output the artifact 
detection. Results are promising and show the adaptability of 
this methodology in detecting different kinds of artifact, 
confirming any model of the various artifacts to be 
unnecessary using this approach. 

V.  MINING SATELLITE IMAGE TIME SERIES 
In [13] a method is proposed to build an index of the 

content of a compressed Satellite Image Time Series (SITS) 
database. To achieve this, both optimal lossy and lossless 
source coding of the database are used; the general concept of 
indexing by content is not totally rejected, but it is adapted to 
perform a source coding of the database aimed at extracting 
objectively the information content: as clustering is used for 
lossless coding, it is possible to control the information loss 
with objective criteria. Therefore, the index is contained in the 
resulting code and it is equivalent to a dictionary.  
 

 
Fig.5. The figure presents the concept for building a compressed indexed data-
base with additional compression. 
 

The approach is presented in Fig. 5. First, a dictionary is 
computed from the database; then, a coder using this 

dictionary is able to code efficiently each object of the 
database, using the informational similarity measure and thus 
taking into account the inter-objects correlations. The 
resulting database representation is composed of a dictionary 
and the coded objects: this idea comes from the two-part 
representation enunciated by Rissanen [ref] and Kolmogorov 
[ref]. This coding scheme is lossless; however, the dictionary 
itself, which includes and information content index, is a lossy 
representation of the database: it contains the minimal 
sufficient information, according to Kolmogorov, to 
discriminate the data-volume objects. When the database is 
queried, only the information related to the dictionary is taken 
into account. 
 

 
Table 1. Precision/Recall values for a set of 10 spatio-temporal patterns 
queries over a feature space of 4.500 clusters. 
 

Some experiments have been carried out on the ADAM 
dataset [14], provided by the French Space Agency. The 
images, constituting the SITS, have been acquired by the 
satellites SPOT 1, 2 and 4, and have a resolution of 20m; the 
SITS comprises 38 images of size 3000×2000, and each image 
contains 3 spectral bands. 

Table 1 shows Precision/Recall values [15] for the retrieval 
of a test set of 10 spatio-temporal patterns, queried on a 
database of about 25,000 spatio-temporal patterns extracted 
from an ITS, grouped in 4,500 clusters. As the data-base is not 
labeled, the false and missed detection are measured visually. 
Despite the high subjectivity of these results, the Recall and 
Precision averages of 0.67 are obtained.  

The compression of the SITS database with the proposed 
method achieves then two goals: it compresses in a lossless 
way the images with a ratio of approx 1:3, and at the same 
time it enables query on the compressed database content with 
an acceptable Precision-Recall score. 

VI. CONCLUSIONS 
This paper presented a recent approach to image analysis 

based on complexity estimations, and showed three different 
applications based on these concepts; complexity is estimated 
with dictionaries directly learned from the data and with data 
compression techniques and these methodologies rely heavily 
on classical and algorithmic information theory. In such 
approach there is no need of any a priori knowledge of the 
data, and satellite imagery varying greatly in content, 
resolution, and also sensor-type, may be analyzed with the 
same tools: this opens many doors into the field of image 
information mining. 
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Furthermore, in this field of research still many perspectives 
are open: the connections between algorithmic complexity, 
classical information theory and coding with dictionaries still 
are not completely clear and have to be precisely defined; this 
may lead to major changes in the standard analysis and 
processing chains of satellite imagery, since it could be 
possible to combine in a single step data compression and 
feature extraction. 
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