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Abstract—One of the basic components of image information 

mining (IIM) systems is feature extraction. Feature extraction 
delivers a low level “building block” decomposition of the input 
data. In principle, feature extraction results may depend on the 
characteristics of the images to be analyzed. In order to avoid a 
critical dependence on a specific concept, we advocate a general 
feature finder toolbox approach that handles typical remote sens-
ing images with diverse geometrical and texture characteristics. 
Our concept considers high resolution optical as well as synthetic 
aperture radar (SAR) images. 
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I. INTRODUCTION 
fundamental step of image information mining is feature  
selection. Feature selection provides us with decom-

posed “building blocks” of each image that are needed during 
subsequent data analysis steps [1]. 

Thus, the choice of a feature selection approach is a strate-
gic decision for any image information mining system. Mis-
conceptions may lead to sub-optimal performance of subse-
quent image classification and image segmentation. Typical 
feature extraction algorithms either exploit spatial textures or 
multispectral characteristics of single pixels. Model-based 
stochastic approaches often allow multi-variate modeling (e.g. 
for texture modeling). 

As there is a great variety of different instruments and user 
requirements (e.g., passive or active instruments, wavelength 
ranges, single or multi-channel designs, needs for the genera-
tion of calibrated product data), the feature selection perform-
ance may be influenced by the specific characteristics of the 
images to be handled. On the other hand, what we need is a 
robust and efficient “generic” implementation of feature ex-
traction in order to reach a good separation of object or target 
categories [2].  

II. BASIC DESIGN ASPECTS 
During the design phase of an IIM system, several potential 

concepts and performance metrics for a feature selection com-
ponent have to be compared. To this end, we need a stepwise 
approach.  

The first step is theoretical and based on information the-
ory. Information theory tells us about fundamental limits, i.e. 
what we can reach and what remains unattainable. As a result, 

we obtain fundamental limits of a selected concept. 
 The second step needs experimental image processing. Ex-

perience with typical image data of the envisaged application 
fields will lead to typical performance characteristics from a 
technically oriented perspective. This may result in solutions 
such as wavelet tools or stochastic modeling. 

The third step is driven by the practical needs of image in-
terpreters. Here, the practical needs of human interpreters may 
call for dedicated solutions. This includes confidence criteria 
and performance metrics based on validation tests. 

III. FEATURE EXTRACTION: PREREQUISITES 
When we look at typical remote sensing images, we are 

faced with widely different image characteristics: images of 
different sensors may deliver data with diverse features; on 
the other hand, even images of a single instrument may be of 
different data quality. When feature extraction from a single 
or from multiple images is used for subsequent classification, 
then classification results may depend on these instrumental 
characteristics. 

As a consequence, a comparative analysis of image data may 
call for initial image pre-processing adjusting calibration qual-
ity and processing levels, signal-to-noise ratios, brightness 
levels, variances, histogram shapes and probability density 
functions, image and object scale, and the removal of de-
graded sub-scenes (e.g., cloud covered sub-scenes).  

In the following, we tacitly assume that all necessary pre-
processing and matching steps have already been performed. 

IV. FEATURE FINDER: A TOOLBOX APPROACH 
In our case, we advocate a general feature finder toolbox 

approach with sufficient feature selection algorithms and 
parameterization capabilities to cope with the diverse geomet-
rical and texture characteristics of typical remote sensing im-
ages. These images may be optical images of selected spectral 
bands as well as SAR images being affected by speckle.  

In our concept all ingested images will undergo automated 
feature extraction by several competing algorithms run in par-
allel. Typical feature extraction algorithms are texture analy-
ses and color analyses. The analysis of texture features relies 
on pixel neighborhood relationships and can be performed on 
multiple scales; in contrast, a color analysis can be confined to 
single pixel combinations in multiple color bands. The results 
of each extraction algorithm will be feature vectors as shown 
in Fig. 1. The feature vectors derived from each pixel or win-
dow will be arranged in a way to support spatial backtrack to 

A 



 
 

2

the original image; the feature vectors will be used later in an 
interactive feature selection step to pick out those features that 
are best for a specific task or application (see below).  
 

 
                          Fig. 1.  Extraction of feature vectors. 

 
This automated feature extraction concept results in a new 

product type that shall be generated: the feature map. A fea-
ture map results from the application of the available toolbox 
routines and contains the image data together with its derived 
features arranged in so-called class files.  

The image data and class files can be accessed via a dedi-
cated viewer (i.e. a feature browser) permitting quantitative 
feature analyses by interactive selection of “best” features 
taken form the class files. This concept is illustrated in Fig. 2.  
 

 
 

                               Fig. 2.  Feature browser principle. 
 

The feature browser supports the interactive analysis of the 
total information content of the selected image.  

This general approach can be considered as a universal tool 
that opens the way towards flexible and upgradeable feature 
selection when additional or improved feature selection algo-
rithms become available, or when specific applications call for 
dedicated feature selection.  

In particular, this is an interesting approach for the detec-
tion and analysis so-called “small features” (i.e. infrequently 
occurring features that are normally lost during conventional 
clustering), or for time-dependent variations of image con-

tents.   
The following example shall give an idea of the capabilities 

of our toolbox approach. Fig. 3 shows a typical SAR image 
(TerraSAR-X sub-scene acquired near the Bois de Boulogne 
in Paris, France) with speckle. For instance, if a user is look-
ing for specific roof top structures of buildings, a conventional 
single method feature selection approach would probably fail. 
 

 
 

       Fig. 3.   Speckled TerraSAR-X scene of Paris / Bois de Boulogne. 

V. FEATURE MAP ASPECTS 
Our proposal of an explicit feature map as a new remote 

sensing product type of Earth observation images deserves to 
be explained in more detail. 

Features represent a decisive intermediate stage during in-
formation extraction form images. On the one hand, a feature 
map contains a compact representation of condensed informa-
tion that can serve as a generic image content survey; on the 
other hand, advanced information extraction methods such as 
clustering and classification need some common ground to 
start with.  

A feature map should be the common data set serving both 
worlds mentioned above. When combined with a generic fea-
ture viewer, human users can profit form this standard, too: a 
user can interpret feature maps like a conventional image and 
derive quantitative thematic information that would remain 
obscured otherwise. 

If the same feature map approach is applied to images of 
various instruments, then a quantitative inter-comparison of 
pre-processed feature data becomes a realistic scenario. This 
opens the way towards standardized feature level information 
extraction without the tedious work of comparing original 
image data available only in various incompatible formats. 

Of course, we must be aware of some basic feature extrac-
tion caveats. In practice, most feature extraction routines are 
not invariant to object scale, shift, rotation, or illumination. 
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This means that object features extracted from one selected 
image may differ from object features extracted from another 
image containing a physically similar object. This issue has to 
be assessed by representative test cases using alternative fea-
ture extraction routines and the selection of processing pa-
rameters.  

Depending on the application field, the corresponding re-
quirements may be more or less stringent. In practice, pre-
processing of the input data may offer a solution in many 
practical situations: Adaptation of the image brightness histo-
grams is a very pragmatic approach to obtain uniform condi-
tions for comparisons (see Section III). 

VI. MULTI-SCALE AND DESPECKLING ASPECTS 
If we want to characterize textures, a multi-scale approach 

is a good way to proceed; however, in the case of SAR im-
ages, we are faced with the peculiar signal-to-noise character-
istics of the multi-scale images. The final “visibility” and clas-
sification of objects may hinge on the available multi-scale 
levels and the applied despeckling. 

For many applications, the speckle noise contained in SAR 
images prevents a robust land cover or urban scene classifica-
tion. On the other hand, if we apply excessive despeckling, 
one will notice artifacts appearing in particular around small 
scale structures. This must be avoided by accurate determina-
tion of the speckle characteristics of the input data. 

When we apply appropriate despeckling [3], automated fea-
ture detection and subsequent classification of urban scenes 
can be performed (see Fig. 4). Hence, analysis tools for the 
determination of the characteristics of the input data and a 
state-of-the-art despeckling routine are important components 
of our toolbox. 

Besides speckle parameters, the basic multi-scale character-
istics of our remote sensing images have to be determined 
prior to their use during feature extraction, and for subsequent 
clustering and classification. Independent from the imaging 
characteristics of specific sensors and the processing steps, the 
results of feature selection, clustering, and classification shall 
not differ too much. This necessitates the prior selection of 
appropriate multi-scale levels and processing parameters lead-
ing to a stable information extraction [12]. 

VII. FEATURE BROWSING METHODS 
The performance provided by the feature browser hinges on 

the algorithms contained in it. These algorithms shall use 
compact and robust representations of the available feature 
vectors. 

  In the following, we will outline four typical methods that 
have shown promising results. Depending on the selected fea-
ture vector algorithms illustrated in Fig. 1, the feature brows-
ing methods described below are foreseen to be selectable, 
too.  

A. Cross-Validation 
The idea of cross-validation is to split all available data into 

a number of subsets and to compare the analysis results of 
each subset [4]. In the simplest case, when one uses two sub-

sets, one can use the first subset for training and the second 
one for validation. Thus, one can verify the performance of a 
selected algorithm, test its dependence on input data character-
istics, and make error estimates. 

 

 
 
                                  Fig. 4.   Despeckled version of Fig. 3. 

  
Cross-validation is a straightforward and robust approach 

for accuracy estimation and model selection [5]. In our case, 
the cross validation can be used to optimize the results of the 
available feature extraction algorithms, their discrimination 
capability, their sensitivity to the characteristics of the input 
data, and their overall stability.  

The critical point in cross-validation is the selection of rep-
resentative data for each subset. As a rule, larger number of 
samples will be less critical than too few samples per subset.  

B. Mutual Information 
The mutual information measures the mutual dependence of 

two random variables. In the continuous case, we can define it 
as [6]:  
 

 
 
where p(x,y) is the joint probability density function of X and 
Y, and p1(x) and p2(x) represent their marginal probability den-
sity functions. For discrete random variables the integrals are 
substituted by summations. 

The mutual information tells us about the information that X 
and Y share and represents a measure of dependence. When 
applied to feature vectors of images, one can derive compact 
sets of relevant compound descriptors. Thus, we avoid ineffi-
cient (redundant) feature combinations. If the selection is done 
at low computational cost and if the finally selected features 
allow accurate object classification for the images at hand [7], 
mutual information can become an attractive selection tool.  
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One of the advantages of mutual information is its capability 
to handle correlations as well as anti-correlations (i.e. negative 
correlation coefficients). The only pre-requisite is that the 
probability density functions contain sufficient information. 
Therefore, the probability density functions must be derived 
from a sufficient number of samples in order to suppress the 
effects of noisy data and of irregular outliers. Here again, 
cross-validation can be used as a validation technique.  

C. Fisher Information 
The Fisher information allows us to measure the amount of 

information that a random variable contains about an un-
known parameter with a likelihood function. Under regular 
conditions, the Fisher information can be considered as a 
measure of the sensitivity of a likelihood function near its 
maximum. 

 Thus, we can use the Fisher information to compare various 
observation methods of a random process (i.e. we can use it 
for a comparison of the sensitivity of feature vectors). 

The Fisher information can be written as follows [8]: 
 

 
where 
  E is the expected value 
  ∂/∂.. is the partial derivative 
  ln f(..) is the natural logarithm of the function f 
  f(X;θ) is the likelihood function 
  X is the random variable considered 
  θ is the unknown parameter  

 
If we can obtain the derivative of the logarithm of the likeli-

hood function with respect to θ in a numerically stable way as 
a smooth function (no jagged profiles), then the Fisher infor-
mation becomes a useful inter-comparison tool. Otherwise, 
numerical problems may occur.  

Thus, the usefulness of the Fisher information depends on 
the numerical accuracy of the logarithm of the derivative of 
the likelihood function. As we work with discrete functions, 
we need sufficient and reliable training data to derive  the 
required likelihood functions.  

The Fisher information can be used as a measure of system 
disorder (large I: low disorder; small I: high disorder); it can 
be compared with Shannon’s form of entropy and is related to 
Kullback-Leibler entropy. For more details, see [9]. 

D. Support Vector Machines 
During recent years, the concept of support vector machines 

(SVMs) has gained much attraction for general classification 
tasks. One of the reasons for its popularity is the availability 
of easily portable open source code coming with sufficient 
documentation [10]. 

A support vector machine is a software package for classifi-
cation tasks that is trained with user-selected examples; the 
trained examples are used to define multi-dimensional planes 
that separate the classes.  

In the field of remote sensing, a number of typical applica-
tion studies have been published (e.g., [11]); however, sys-
tematic studies of machine learning and classification accu-
racy are to be found elsewhere. Thus, an IIM system contain-
ing images decomposed into feature vectors is an attractive 
field for information theoretic studies: the goal is to produce 
efficient models predicting classes based on feature combina-
tions.  

The SVM capability to run classification tasks based on 
small training datasets is of particular interest, too; a compari-
son with neural networks is a mandatory step that needs more 
detailed analysis than simple application studies.  

In addition, the handling of high-dimensional data is another 
promising characteristic of SVMs. Many SVM packages offer 
selectable kernel functions. One can hope that some of them 
support a user-oriented classification of targets. If these ker-
nels result in distance functions beyond simple least squares, 
machine learning could rival human interpretation. 

VIII. OUTLOOK 
The optimum use of high resolution images should not be 

impaired by sub-optimal feature extraction tools. New remote 
sensing instruments and upcoming application fields for the 
acquired data will necessitate a number of additional feature 
extraction and selection methods. Therefore, our concept with 
upgradeable feature extraction and interactive analysis of class 
files should be a promising candidate for future image analysis 
systems. The actual performance of the available algorithms 
has to be verified by validation tests. A consolidated list of 
algorithms for the generation of efficient compound features is 
given in Section VII. In addition, the specific characteristics 
of an instrument can call for adaptive pre-processing of image 
data [12].  
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