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Abstract—With the launch of the German TerraSAR-X system
in June 2007, a new generation of high-resolution spaceborne
Synthetic Aperture Radar (SAR) data is available; which facil-
itates a spatially and thematically detailed SAR scene analysis.
In fact, the high resolution of TerraSAR-X enables scene on
land cover, such as urban areas, deserts, forests and fields, to
be accurately mapped. Among the several feature extraction
tools available in the literature, we choose in this paper to
use Principal Components Analysis (PCA). In fact, based on
covariance analysis, the PCA represents the input data in a linear
subspace with minimum information loss. Our first objective in
this article is to provide an optimal processing for finer PCA
based feature extraction from SAR images.

Then, since the presence of speckle in SAR images changes
the radiometric and textural aspects of the different structures
that may exist in the scene, our second objective is to study the
sensitivity of the PCA performance, with regards to the amount
of speckle that might be included in the SAR image. To control
more accurately this amount, a speckle reduction was carried
out by means of multi-looking.

Index Terms—TerraSAR-X data, PCA, Speckle reduction,
Multi-looking.

I. I NTRODUCTION

In the last few decades, the constantly intensive global
urbanization has made the urban and suburban areas among
the most dynamic sites on earth. Therefore, in order to provide
a better assessment and a finer description of these areas,
the demand on remote sensing techniques is getting heavier
and heavier. In particular, Synthetic Aperture Radar (SAR)
imagery, has become increasingly popular as some of its
properties are favorable to optical imagery. In fact, SAR is
a coherent imaging mode in the microwave domain ( [1]–[3])
that can operate regardless of weather conditions, and whose
resolution is independent of sensor height.

SAR imagery was proved to be able to improve significantly
the automatic monitoring of cities in a wide spectrum of
applications, e.g. road detection ( [4], [5]), 3-D reconstruction
of man-made objects ( [6], [7]). However, the performances of
such automatic monitoring tools are highly dependent on the
relevance of the extracted signatures. That’s why the feature
extraction problem was and is still a field of ongoing research.
Indeed, many approaches in the literature were developed
in order to propose solutions to this problem. Among them,
Principal Components Analysis (PCA) based algorithms were
widely used, for the analysis and the compression of different

kinds of signals and images ( [8], [9]). In general, these
algorithms assume that the target images are centered and
even sometimes the background is extracted as much as
possible. Thus, when dealing with images where the targets
are randomly occluded like the case of urban areas, these
algorithms would produce higher false alarm rates. The first
step of our work consists thus, in proposing an optimal pre-
processing for a better PCA based feature extraction, from a
four-class database including urban areas, deserts, forests and
fields.

Another important issue that might complicate the SAR
images interpretation and deteriorate the information extrac-
tion performance, is the presence of the speckle noise. This
introduces the second step of our work, which consists in
studying the sensitivity of the PCA to the amount of speckle,
that might be included in the SAR image. To carry out this
study, we have used a 15 multi-look/multi-resolution four-
class databases extracted from the 15 TerraSAR-X images over
Egypt obtained after, a speckle reduction by means of multi-
looking, with 15 different levels.

The organization of this paper is as follows: section II is
dedicated to the description of the optimal pre-processing for
PCA based feature extraction. Then, section III gives a short
overview on the multi-looking technique. Section IV describes
the databases that we have used. After that, we report some
preliminary results in section V, while section VI gives some
conclusions.

II. OPTIMAL PROCESSING FORPCA BASED FEATURE

EXTRACTION

PCA is one of the most popular statistical method for feature
extraction. It is based on the assumption that high information
corresponds to high variance. The PCA transform is defined
as follows:

Y = HT X, (1)

whereX is d×n dimensional vector samples,Y is transformed
m×n dimensional vector samples, andH is ad×m transform
matrix.

H is calculated as them largest eigenvectors of thed× d
covariance matrixCX of X. It is assumed, in this case,
that most of theX information content is stored in the
directions of the maximum data variance, under the constraint



of orthogonality. Since them largest eigenvalues equal the
maximal variances, them corresponding eigenvectors are
exactly the columns of the matrixH. These eigenvectors
are called Principal Components (PCs). It is also worth to
note that the transformation defined in (1), gives uncorrelated
components.

Thus, performing a PCA on a dimensional vector samples
X results, from a matrix computation point of view, in solving
the following eigenvalues equations:

CXV i = λiV i ; i = 1, 2, . . . , m, (2)

whereλi andV i denote respectively them largest eigenvalues
of the covariance matrixCX , and their corresponding eigen-
vectors.

To apply this technique on images (2-D signals) databases, a
simple matrix to vector conversion is done before performing
the PCA.

In general, in the literature, the PCA based feature extraction
algorithms ( [8], [9]) assume that the target images are centered
and even sometimes the background is extracted as much
as possible. Nevertheless, these algorithms would produce
higher false alarm rates with images where the target parts
are randomly occluded. This is actually, the case of images
over urban areas. In fact, as shown in [10], the backscattering
behavior of man-made targets is much more complicated than
conventionally modeled. This results, in the matrix to vector
conversion step, into quite ill-structured vectors where the
different backscattering magnitudes are distributed in a varying
way even for images belonging to the same class, as could be
seen in Fig.1.

(1) (2)

Fig. 1. A 3× 3 ’+’ target can seem differently according to its position in
a 5× 5 sub-image: (1) or (2).

To overcome this problem, a descending sorting of the pixels
could be an intuitive optimal pre-processing. Indeed, following
this technique, two images containing the same target but in
different positions, will be converted into the same sample
vector.

When applied on a four-class database (urban area, desert,
forest and field), the optimal PCA algorithm flowchart could
be described by Fig.2.
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Fig. 2. Optimized PCA based feature extraction algorithm flowchart.

Mathematically speaking, applying pixels sorting on the
input dataset, is nothing else than multiplying thed × n
dimensional vector samplesX, by a permutation matrixP
to get the new vector samples:

Xnew = PX. (3)

The covariance matrix ofXnew is written as:

CXnew = XnewXT
new,

= PX(PX)T , (4)

= PCXPT .

The PCA requires that we solve the following new eigen-
values equations:

CXnewV i
new = λi

newV i
new ; i = 1, 2, . . . , m, (5)

where λi
new and V i

new denote respectively them largest
eigenvalues of the covariance matrixCXnew , and their cor-
responding eigenvectors.

By taking into account (4), the eigenvalues equations (5)
become:
∀i, i = 1, 2, . . . ,m:

PCXPT V i
new = λi

newV i
new, (6)

CX(PT V i
new) = λi

new(PT V i
new). (7)

Thus, using the eigenvalues equations (2), and sinceP is a
permutation matrix (PPT = I whereI is the identity matrix),
the eigenvectors and eigenvalues of the new covariance matrix
CXnew could be written as:

V i
new = PV i. (8)

λi
new = λi. (9)

The new transform matrixHnew could be computed as fol-
lows:

Hnew = PH. (10)

Therefore, from a feature extraction point of view, the pixels
sorting pre-processing step could be seen as a projection of
the data in a new more organized feature space.



III. M ULTI -LOOKING

The simplest approach to reduce the speckle in SAR images,
is to average the intensity over several pixels, within a window
centered on a specific pixel. The obtained separate images
are referred to as looks, so that this process of averaging in
intensity is known as multi-looking, and the resultant images is
known asL-look, whereL denotes the number of incoherently
summed looks or pixels. Such an approach reduces the speckle
variance by a factorL, i.e. reduces the uncertainty of the
measured data, and as a consequence, the noisy appearance
of the SAR image. However, this increase in the radiometric
resolution is gained at the expense of the spatial resolution,
which is degraded by the same factor resulting in the blurring
of small objects.

The L-look average intensity is:

I =
1
L

L∑

k=1

Ik, (11)

where theIk are independent variables each exponentially
distributed with meanσ, is known ( [11]) to obey a gamma
distribution with order parameterL andI0 ≥ 0 according to:

pI(I = I0) =
1

Γ(L)

(
L

σ

)L

IL−1
0 exp(−LI0/σ). (12)

The moments of the average intensity are:

〈Im〉 =
Γ(m + L)

Γ(L)

(σ

L

)m

, (13)

with special casesE{I} = σ andvar(I) = σ2/L. The latter
relations motivate the definition of the Equivalent Number of
Looks (ENL) as:

ENL =
(E{I})2
var(I)

, (14)

where the averages are carried out in intensity, over a uni-
formly distributed target. TheENL is equivalent to the
number of independent intensity values averaged per pixel.

If we make a change of the variables and setE{I} = σ =
µI , we obtain the conditional probability density function, also
known as the likelihood function ofI given its mean valueµI :

pI(I = I0|µI) =
1

Γ(L)

(
L

µI

)L

IL−1
0 exp(−LI0/µI). (15)

with a conditional meanE{I|µI} = µI and a conditional
variancevar(I|µI) = (µI)2/L.

An interesting property of the probability density function
described by (15) around a given mean valueµI , is its
interpretation as a multiplicative noise. It can be seen that the
distribution ofI with meanµI , is identical to the one obtained
by multiplying, a fixed cross-sectionµI with a noise process
nI that is distributed according topI(I0|µI = 1):

I = µI × nI = µI × IµI=1. (16)

Due to this property, speckle is considered to be a multiplica-
tive noise with:

pnI
(I = I0) = pI(I0|µI = 1). (17)

IV. M ULTI -LOOK/MULTI -RESOLUTIONTERRASAR-X
DATABASES DESCRIPTION

For our experiments, we have used a TerraSAR-X High
Resolution Spotlight mode (HS), Multi Look Ground Range
Detected (MGD) image, over the Pyramids of Gizeh in Egypt,
which was multi-looked at 15 different levels. Then, to build
our databases, we have selected, from each multi-looked
image, four classes (50 samples per class) including urban
area, desert, forest and field. The samples were chosen so
that, at each multi-looking level, they frame almost the same
structures. Details about the different databases are listed in
Tab.I and samples from each class are shown in Fig.3.

TABLE I
ENL, AZIMUTH RESOLUTION AND SAMPLE SIZE FOR THE15

MULTI -LOOK/MULTI -RESOLUTIONTERRASAR-X DATABASES.

TerraSAR-X
Database ENL

Azimuth
Resolution

Sample
Size

1 1 1.2 161× 161
2 1.2 1.4 137× 137
3 1.6 1.6 119× 119
4 2 1.8 107× 107
5 2.5 2.0 97× 97
6 3 2.2 87× 87
7 3.5 2.4 81× 81
8 4.1 2.6 73× 73
9 4.8 2.8 69× 69
10 5.5 3.0 65× 65
11 6.1 3.2 59× 59
12 7 3.4 57× 57
13 7.8 3.6 53× 53
14 8.7 3.8 51× 51
15 9.6 4.0 49× 49

Desert ForestUrban
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2
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ENL
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Size
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Fig. 3. Samples from the multi-look/multi-resolution TerraSAR-X databases.

V. EXPERIMENTAL RESULTS

It is worth to note that all the PCA performances computed
in the following, are expressed as the average of 5 repetitions
with randomly selected train and test data. In each repetition,
50% of the data is used for training and the rest for testing.



A. How does the PCA perform after the pixels sorting?

Fig. 4 shows the PCA performances, as a function of the
used PCs sets, before and after the pixels sorting.
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Fig. 4. From left to right: PCA performances as a function of the used PCs,
before and after the pixels sorting.

According to Fig.4, the pixels sorting improves advanta-
geously the PCA performance, especially for urban areas,
where a gain of about40% was mostly achieved. In fact,
the electromagnetic scattering in these areas, is characterized
by a variety of single or multiple scattering mechanisms with
a wide range of scattering amplitudes, and a sorting of the
backscattering magnitudes is thus gainful. For forests, where
the backscattering response is very relevant ( [12]), an increase
of about20% was also gained. The steadiness of the deserts
recognitions could be explained by the uniformity of the
backscattering in this class.

B. How much is the optimized PCA based feature extraction
algorithm performance sensitive to speckle?

Fig. 5 summarizes the optimized PCA based feature ex-
traction algorithm performances, obtained for the 15 multi-
look/multi resolution databases, when only the first 5, 10, 15
and then 20 PCs, are used.
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Fig. 5. The optimized PCA based feature extraction algorithm performances
for the 15 multi-look/multi-resolution TerraSAR-X databases, when different
sets of PCs are considered.

Fig. 5 does not show a clear dependency between the PCA
performance and the amount of speckle included in principle,
in the images.
⇒ A POSSIBLE EXPLANATION: Since the multi-looking re-

sults simultaneously, in an increase of the ENL and a decrease
of the resolution. We carried out the same tests on simulated
databases first, with a decreasing resolution and an unchanging
ENL, and then with an increasing ENL and an unchanging
resolution. In fact, the non-dependency between the PCA and
the multi-looking might be a simple compensation between a
dependency between the PCA and a decrease of the resolution
from one side, and a dependency between the PCA and an
increase of the ENL from another side.

• Simulated SAR databases I: a decreasing resolution
and an unchanging ENL: To simulate a SAR image,
the propriety of the multiplicative noise should be main-
tained. Thus, to generate our first databases, we have
started by multiplying 6 Brodatz textures, with the same
speckle noise (ENL = 6). Then, the multi-resolution
databases are obtained by sub-sampling the speckled
textures with different factors, ranging from 1 to 6.
Samples from some of these databases are given by Fig.6.

(ENL,Resolution,Sample Size) = (6,1,201)

(ENL,Resolution,Sample Size) = (6,6,33)

Resolution

Fig. 6. Samples from some of thesimulated SAR databases I(a decreasing
resolution and an unchanging ENL).

When applied on the multi-resolutionsimulated SAR
databases I, the optimized PCA based feature extraction
algorithm shows the performances summarized in Fig.7.
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Fig. 7. The optimized PCA based feature extraction algorithm performances
as a function of the used PCs, for thesimulated SAR databases I(a
decreasing resolution and an unchanging ENL).



From Fig.7, it is clear that, when more than 2 PCs are
considered, our optimized PCA based feature extraction
algorithm is more sensitive to the size of the used PCs
sets, for the low-resolution databases (solid curves), than
it is for the high-resolution ones (dashed curves).
Fig.8 provides the classification results of our algorithm
as a function of the resolution, when only the first 5, 10,
15 and then 20 PCs, are considered.
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Fig. 8. The optimized PCA based feature extraction algorithm performances
as a function of the resolution, for different PCs sets, when the ENL is
unchanging.

Fig.8 demonstrates that, when the ENL does not change,
the larger is the used PCs set, the stronger is the de-
pendency of our algorithm with the resolution. In this
case, the algorithm performs better for the high-resolution
databases. It seems that, using only the first PCs, the
features extracted from all the resolutions, hold almost
the same information. However, when dealing with larger
feature subspaces gathering also the further PCs, this
information starts to be less relevant when the resolution
lowers (some details are lost during the sub-sampling).

• Simulated SAR databases II: an increasing ENL
and an unchanging resolution:To simulate our second
SAR databases, we have multiplied the same 6 different
Brodatz textures with speckle noises having an increasing
ENL (ENL = 1, 2, . . . , 9). Samples from some of these
multi-look databases are provided by Fig.9.

(ENL,Resolution,Sample Size) = (9,1,201)

(ENL,Resolution,Sample Size) = (1,1,201)

ENL

Fig. 9. Samples from some of thesimulated SAR databases II (an
increasing ENL and an unchanging resolution).

Fig.10 shows the performances of the optimized PCA
feature extraction algorithm, obtained for the multi-look
simulated SAR databases II.
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Fig. 10. The optimized PCA based feature extraction algorithm performances
as a function of the used PCs, for thesimulated SAR databases II(an
increasing ENL and an unchanging resolution).

We could notice from Fig.10 that the dependency of our
algorithm performance, with the size of the used PCs
sets is stronger, for the databases where the speckle level
is high (solid curves), than it is for the ones where the
speckle was well-reduced (dashed curves).
Fig.11 illustrates the sensitivity of our optimized PCA
based feature extraction algorithm, to a change only in
the ENL, when only the first 5, 10, 15 and then 20 PCs,
are used for classification.
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Fig. 11. The optimized PCA based feature extraction algorithm performances
as a function of the ENL, for different PCs sets, when the resolution is
unchanging.

From Fig.11, it is clear that, when keeping the same
resolution, the larger is the number of used PCs, the
more sensitive is our algorithm regarding the ENL. If
large sets of PCs (PC = 1, 2, . . . , N , with N ≥ 10) are
considered, the features extracted by the PCA get more
relevant and better discriminating, with an increasing
ENL (the reduction of the noisy appearance of the SAR
image results in a better information retrieval). The results



confirm also that, the information extracted from SAR
images at different ENL levels, starts to vary more when
the features subspaces get larger.

VI. CONCLUSIONS

In this paper, an optimal pre-processing, consisting in pixels
sorting, was proposed for a better PCA feature extraction
from a four-class TerraSAR-X database, made of urban areas,
deserts, forests and fields. In fact, this sorting generates a
more organized input data for the PCA. An advantageous
improvement was noticed in the PCA performance, more
particularly for the recognition of the urban areas and forests,
where a gain of more than40% and 20% was respectively
achieved.

Then, a study on the sensitivity of the PCA to the amount of
speckle, that might be included in the SAR image, was carried
out. We have used a 15 multi-look/multi-resolution TerraSAR-
X databases obtained after, a speckle reduction by means of
multi-looking with 15 different levels. It was demonstrated
that there is no clear dependency between the PCA and the
multi-looking. This non-dependency was explained:

• for the small feature subspaces, by the fact the PCA is
extracting almost the same information at the different
multi-looking levels.

• for the large feature subspaces, by a compensation be-
tween the PCA performance improvement regarding an
increase of the ENL from one side, and the PCA perfor-
mance deterioration regarding a decrease of the resolution
from another side. In fact, when taking into account the
further PCs, the PCA is no more extracting the same
information from the different multi-look/multi-resolution
databases.
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