
Pruning Nested XQuery Queries

Bilel Gueni, Talel Abdessalem, Bogdan
Cautis

LTCI - TELECOM ParisTech
Paris – France

First.Last@Telecom-ParisTech.fr

Emmanuel Waller
LRI - Université de Paris-Sud

Orsay – France
First.Last@lri.fr

ABSTRACT

We present in this paper an approach for XQuery optimization that
exploits minimization opportunities raised in composition-style nest-
ing of queries. More precisely, we consider the simplification of
XQuery queries in which the intermediate result constructed by
a subexpression is queried by another subexpression. Based on a
large subset of XQuery, we describe a rule-based algorithm that re-
cursively prunes query expressions, eliminating useless intermedi-
ate results. Our algorithm takes as input an XQuery expression that
may have navigation within its subexpressions and outputs a sim-
plified, equivalent XQuery expression, and is thus readily usable
as an optimization module in any existing XQuery processor. We
demonstrate by experiments the impact of our rewriting approach
on query evaluation costs and we prove formally its correctness.

Categories and Subject Descriptors: H.2 [Information Systems]:
Database Management—Query Language

General Terms: Algorithms, Language, Performance

Keywords: XML, XQuery, query rewriting

1. INTRODUCTION
XML is by now the de facto standard format for data exchange

on the Web. It is also used as a data model for native XML databases
and as a common language in systems that integrate data coming
from heterogenous sources. It is thus essential to have effective
and efficient tools for querying and manipulating XML data. Con-
sequently, query languages such as XPath and XQuery have been
receiving a great deal of attention from the research community
lately. And, unsurprisingly, query optimization, one of the most im-
portant (and most studied) topics in relational databases, has seen a
revival in the semi-structured context.

The XQuery language plays a key role in XML data management
and has many powerful features such as nesting and composition of
for-let-where-return (FLWR) query blocks, the construction of hi-
erarchical XML results and the navigation in documents by means
of XPath expressions. Unfortunately, its expressive power and op-
erational semantics make the reasoning about query optimization
quite difficult and have been the main obstacles in establishing a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

comprehensive framework for query optimization, although signif-
icant progress has been made in this direction.

We study in this paper a novel aspect of XQuery optimization
that exploits minimization opportunities raised in a composition-
style nesting of XQuery queries. More precisely, we consider the
simplification of XQuery expressions in which the intermediate re-
sults constructed by a subexpression is queried by another subex-
pression. In other words, given an XQuery expression with navi-
gation over some documents, we consider a setting in which some
of these documents may in fact be intentional, defined as the result
of other XQuery subexpressions. Our approach is similar in spirit
to the one of Marian and Simeon [16], of projecting XML doc-
uments w.r.t. a given XQuery query. Instead of XML documents,
we project XQuery subexpressions with respect to other subexpres-
sions querying them.

This kind of composition is common in many scenarios of data
exchange, mediation or integration, or in view-based security. Be-
fore discussing in more detail these scenarios, and several others,
let us first illustrate the problem we study and the main challenges
by a data integration example. The example deals with the refor-
mulation of queries over heterogenous, interconnected sources.

EXAMPLE 1.1. Our example is based on the XMark benchmark

data [20]. Let us consider three interconnected XML sources S1,

S2 and S3, with S1 being somehow complemented by S2 and S3:

S1 integrates data coming from these two sources under a unified

schema that can be transparently queried by users. To this end,

mappings between the schema of S1 and the ones of S2 and S3 are

defined by means of transformation XQuery queries, Q2 and Q3, as

follows1:

Q2 :
<site>
{ f or $i in (docA@S2/site)
where $i/people/person/@id = “X”
return ($i/open_auctions/open_auction,

$i/closed_auctions/closed_auction,
$i/people/person)

}
</site>

Q3 :
<site>
{let $l := f or $i in docB@S3/site/closed_auctions/closed_auction

where ($i/itemre f/@item = “car” or

$i/buyer/@id = “X”) and $i/seller/@id = “Y”
return $i

return $l

}
</site>

The query Q2 returns all open_auction,closed_auction and person

data from the sites containing a person identified by “X”. The query

Q3 computes the sequence of the closed_auction elements having

1We use doc@Si as short notation for a document URL at Si.

either a buyer identified by “X” or an item car, and a seller identi-

fied by “Y ”. In both queries, the result is wrapped in a site element.

In this scenario, the role of Q2 and Q3 is to define the relation-

ship between S1, on one hand, and S2 and S3, on the other hand.

They formulate a transfer that is only virtual and the data remains

at the sources S2 and S3. Moreover, the source S1 may also have

its own data. Intuitively, S1 could be defined by a virtual document

“source1 := docC@S1 ∪Q2 ∪Q3” having an extensional compo-

nent (for S1’s own data) and two intentional ones (for the data re-

siding at S2 and S3).

Let us consider now the following user query Q1, specified over

source1, which returns the open_auction elements that have some

person data in common with another document, docD@S1:

Q1 :
f or $ j in source1

return

f or $k in docD@S1/site

where $ j/person = $k/people/person

return

<common-auction>{$ j/open_auction}</common-auction>

S1’s wrapper module would have no difficulty in executing Q1

over the extensional part of source1. For the intentional ones, there

are two possible approaches: (a) Q2 and Q3 are executed at S2 and

S3, their results are transferred to S1 and then Q1 is evaluated over

them, or (b) Q1 is “pushed” to both S2 and S3, which evaluate it

locally over their respective transformation queries and send back

to S1 the result. Unsurprisingly, the latter approach can have sig-

nificant advantages, especially when Q1 uses only a small portion

from the output of the transformation queries.

Now, by the second approach, S2’s wrapper module has to exe-

cute Q1 over Q2. This could be done by first evaluating Q2, then

evaluating Q1 over the intermediate result. But since XQuery is

compositional, it is more preferable to interpret this step as a sin-

gle XQuery expression Q1.2 = Q1 ◦Q2, by simply substituting the

virtual variable by its XQuery definition. In this way, the query op-

timizer module can chose the best execution strategy. For instance,

Q1.2 can be considered as the following XQuery expression:

Q1.2 :
f or $ j in (the de f inition o f Q2)
return

f or $k in docD@S1/site

where $ j/person = $k/people/person

return

<common-auction>{$ j/open_auction}</common-auction>

At this point, instead of the straightforward execution plan, an

efficient query optimizer module should detect that Q2 is only par-

tially useful in Q1.2, since only open_auction and person elements

are queried. Hence the following equivalent yet less expensive

query can be executed instead:

Q′
1.2 :

f or $ j in (<site>
{ f or $i in (doc2@S2/site)

where $i/people/person/@id = “X”
return

($i/open_auctions/open_auction,$i/people/person)
}</site>)

return

f or $k in doc1@S1/site

where $ j/person = $k/people/person

return

<common-auction>{$ j/open_auction}</common-auction>

In the case of S3, the efficient optimizer would have even greater

impact, since the equivalent yet simplified query should in fact re-

place the content of Q3’s site element by the empty sequence, be-

cause only closed_auction elements are outputted in the Q3’s site

element :

Q′
1.3 :

f or $ j in <site>{()}</site>
return

f or $k in doc1@S1/site

where $ j/person = $k/people/person

return

<common-auction>{$ j/open_auction}</common-auction>

Our contribution. We study in this paper the simplification of
queries that have a composition-style nesting as the one illustrated
in Example 1.1. We adopt a static-analysis approach, based on
detecting and projecting out the useless parts in subexpressions,
keeping only what is needed in order to compute the end result.
This task is made difficult by potentially complex relationships be-
tween the query blocks. We describe a set of rewrite rules that
apply such pruning steps recursively over the blocks of an XQuery
query, not only at the uppermost level but at any nesting level in
the query. Each rule application will output a strictly simpler (i.e.,
with less navigation steps) yet equivalent XQuery expression. Our
rule-based algorithm applies to a large subset of XQuery and we
formally prove its correctness. Importantly, the algorithm takes
as input an XQuery that may have navigation within subexpres-
sions and outputs a simplified, equivalent XQuery expression. It
can be thus easily plugged as an optimization module in any exist-
ing XQuery processor. We implemented and tested our rewriting
approach on top of the Galax engine and we demonstrate by exper-
iments its impact on query evaluation costs.

In the remaining of this section we further motivate our work
and we discuss related research. Queries with this composition-
style of nesting are very useful in practice. Transformation XQuery
queries for mapping between heterogenous XML sources in inte-
gration and mediation scenarios are quite common [12, 22, 1]. The
Clio project [12] provides a graphical editor for defining schema
mapping definition, generating complex XSLT or XQuery transfor-
mations. In peer-to-peer settings, such as the Piazza PDMS [22], a
peer can refer to data hold by another peer by means of an XQuery
mapping. In this setting, it is crucial to minimize the amount of
actual data that is transferred between peers. The Active XML
system [1] introduces a flexible framework for peer-to-peer XML
integration, by combining in one active document materialized (ex-
tensional) XML parts with intentional parts defined by calls to Web
services. Importantly these services can be defined by XQuery ex-
pressions and evaluating a query over an active document amounts
essentially to query pushing and composition.

Another important use is in queries posed on security views. In
many applications that rely on sensitive data, like medical or ju-
ridic applications, access to XML documents may be granted only
by querying views over these documents. The views define what
data the user can access, and the system may accept only queries
formulated over these views. It can either evaluate the global query
(i.e., the composition of user query and the views) or can first ma-
terialize the views and then evaluate the user query. Obviously, in
the case of a large number of views, materializing and maintaining
these views can be too costly.

It is also common to cache and reuse the definitions of queries
but not necessarily their results. This can for instance guide inexpe-
rienced users, allowing them to query XQuery expressions that are
already available and well-understood. Finally, our simplification
technique can be used to optimize automatically generated queries,
e.g. for graphical editors in the style of query-by-example.

Related work. Several works on XQuery processing and opti-
mization adopt an approach based on rewrite rules. In [15, 18, 17,
10, 19, 21], the authors discuss various rules for XQuery normal-
ization or for transformation tasks such as XQuery-to-SQL trans-
lation, elimination of unnecessary ordering operations or introduc-

tion of a tree-pattern operator in query plans. These approaches are
orthogonal to the query simplification technique presented here. [3]
introduces rewrite rules for reducing the number of nesting levels in
XQuery expressions but does not consider the elimination of use-
less navigation and result construction. In [5], the authors introduce
a logical framework for optimization in the OptXQuery subset of
XQuery, the Nested XML Tableaux. They present a set of rewrite
rules for normalization and grouping of repeated navigation steps
within a query by means of a group-by operator.

More germane to this work is [16], which introduces XML doc-
ument projection for query optimization. It gives a set of rewrite
rules for the following task: starting from an XQuery expression Q

over a document D, identify and project out the parts of D that are
not useful for the evaluation of Q. This is very effective to reduce
in-memory computations such as node construction. The technique
was later refined and extended to take into account the schema of
the document in [2]. Although very close in spirit, our approach
subsumes the idea of [16] of projecting XML documents, as we
consider the projection-based simplification of arbitrary XQuery
blocks, and not only plain XML documents. In this context, spe-
cial attention has to be paid to preserving query equivalence.

In [22, 6], the authors consider the minimization of queries ob-
tained by following semantic paths (mappings) in the Piazza sys-
tem. To this end, they study the complexity of query containment
for a restricted XQuery flavor, that of conjunctive XML queries
(c-XQueries). The role of composition in XQuery evaluation was
considered in [13]. For an XQuery fragment strictly smaller than
the one we consider here, a formal study of the computational com-
plexity of XQuery without composition is provided. Moreover,
[13] shows that, under restrictions, composition can be eliminated
and describes a set of rewrite rules to this end.

A problem similar to ours was also studied in the context of pub-
lishing relation data in XML format, in projects such as XPeranto [4]
and SilkRoute [8]. In Silkroute, the composition of XQuery expres-
sions represented by so called view forests over relational sources
was considered, where a view forest is a mix of XML structure and
SQL expressions representing XQuery-to-SQL translations. These
techniques are specific to the XML-over-relational setting and do
not transfer to XQuery minimization.

The paper is organized as follows. In Section 2, we present pre-
liminary notions. Section 3 details our rule-based algorithm and
some extensions of the algorithm are presented in Section 4. In Sec-
tion 5 we describe the experimental analysis we have conducted.
We conclude in Section 6.

2. PRELIMINARIES
We describe in this section the data model and XQuery expres-

sions we consider, as well as additional assumptions.
Data model. For the sake of simplicity we present our tech-

niques using a slightly simplified version of the XQuery data model.
We consider an XML document as an unranked rooted tree t mod-
eled by a set of edges EDGES(t), a set of nodes NODES(t), a
distinguished root node ROOT(t), a labeling function over nodes
λt assigning to each node a label (or text value) from an infinite
alphabet Σ, and a typing function τt assigning to each node one of
the following kinds: {document, element, text}. The document type
can only be given to the root of the XML document and text nodes
can only appear as leaves. This simplified model can be extended
in straightforward manner to other components of the XQuery data
model such as attributes.

XQuery fragment. We focus our study on a significant subset
of XQuery, described by the grammar of Figure 1.

exp := ()
| literal

| exp,exp

| exp Op exp

| Path

| (f orClause | letClause)+
(where exp)? return exp

| (some | every) $QName in exp return exp

| i f (exp) then exp else exp

| <QName>{exp}</QName>
| element{QName}{exp}

f orClause := f or $QName in exp (,$QName in exp)∗
letClause := let $QName := exp (,$QName := exp)∗
Path := (doc(uri) | $QName)(/Step)∗ | exp/Step

Op := < | > | = | + | − | ∗ | << | >> | “is”
Step := NodeTest(/Step)? | text()
NodeTest := QName | ”∗ ”

Figure 1: The XQuery fragment

This grammar captures the main XQuery constructs used in prac-
tice, such as literal values, sequence construction, variables, FLWR
blocks, conditionals, quantifiers, comparisons operators, logical or
arithmetic operations, element constructions. For clarity and space
reasons, we consider in this paper XPath navigation only along the
child axis (/). Extensions to other navigation axis such as at-
tribute (/@) and descendant (//) are presented in an extended ver-
sion of this work [11]. We also ignore path qualifiers, which can
always be reformulated away using where clauses.

XQuery normalization. Before applying our technique for
query simplification, we assume that some of the standard normal-
ization steps, usually employed to reduce XQuery expressions to
equivalent expressions in the simpler language XQuery Core [7],
are first applied. This normalization phase will allow us to present
our inference algorithm based on a uniform syntactic formulation.
We give in Figure 2 the set of normalization rules we consider,
each of them being self-explanatory. In short, they either facilitate
the extraction of XPath expressions referencing a variable or refor-
mulate nested expressions in order to have one variable per clause.

e/step1/. . ./stepn ⇒ let $v := e return $v/step1/. . ./stepn

f or $v1 in e1, . . . ,$vn in en return e ⇒
f or $v1 in e1 return f or . . . f or $vn in en return e

let $v1 := e1, . . . ,$vn := en return e ⇒
let $v1 := e1 return let . . . let $vn := en return e

some $v1 in e1, . . . ,$vn in en satis f ies e ⇒
some $v1 in e1 satis f ies some . . . some $vn in en satis f ies e

every $v1 in e1, . . . ,$vn in en satis f ies e ⇒
every $v1 in e1 satis f ies every . . . every $vn in en satis f ies e

<QName>{e}</QName>⇒ element{QName}{e}

Figure 2: Normalization rules

Inference rules notation and environment. We present our al-
gorithm via a set of inference rules, and we adopt standard pro-
gramming languages notation similar to the one used in [16]. In-
ference rules are based on judgements, which denote statements of
the form: Env ⊢ f (p1, . . . , pn) ⇒ res.

Such a statement reads as follows: the judgement holds iff in

the environment Env, by calling the function f with parameters

p1, . . . , pn we obtain the result res.

Inference rules are represented as follows:

premise1 . . . premisen

Env ⊢ f (p1, . . . , pn) ⇒ res

where each premise is a judgement. Such a rule reads as follows:
the judgement Env⊢ f (p1, . . . , pn)⇒ res holds if the premises premise1 . . .
premisen hold. The functions we consider in our inference rules
will be defined in Section 3.

In XQuery, any variable $v is associated to a subexpression, by
either $v in exp or $v := exp, in this way being bound to the
intermediate XML values returned by the subexpression.

EXAMPLE 2.1. For instance, in the query Q2 of the running

example, variable $i is bound to elements produced by the XPath

docA@S2/site. Similarly, in the query Q3, variable $l is bound

to some elements produced by variable $i. This is because the

FLWR block to which $l is bound returns elements over which $i

iterates, those that satisfy certain conditions. In Q1,2, the variable

$ j is bound to a constructed site element wrapping some content

returned by Q2’s FLWR expression.

For a variable $v, by the bound expression associated with $v

(in short, expb($v)) we denote the expression exp appearing in
the statement declaring $v, be it f or $v in exp, let $v := exp or
some $v in exp. By the return expression of $v (in short, expr($v))
we denote the associated where, return or satis f ies parts.

In the presentation of our rule-based algorithm, we will rely on a
memory space (denoted environment) that records for each variable
the expressions that produce the intermediate results to which it is
bound. The environment will contain a set of mappings from vari-
ables to sets of objects. Formally, this is written $v ⇒{o1, . . . ,om}.
We distinguish three possible kinds of such objects: (i) results of
an XPath expression (represented in the environment by the XPath
expression itself), (ii) element constructors with some element con-
tent (can be any XQuery subexpression), (iii) text values (denoted
simply #text).

Going back to the example, we write $i⇒{docA@ S2/site} for Q2,
$i ⇒ {docB@S3/site/closed_auctions/closed _auction} and $l ⇒ {$i}

for Q3, or $ j ⇒{<site>. . .</site>} for Q1.2.
For the construction of the environment, we determine by a static

analysis for each variable the objects returned as intermediate XML
values by its bound expression. This is done using the function
varRes(), which infers the output kind of a subexpression by the
following exhaustive and straightforward case analysis:

varRes(f or $v in e1 (where e2)? return e3) ⇒ varRes(e3)
varRes(let $v := e1 (where e2)? return e3) ⇒ varRes(e3)
varRes(i f (e1) then e2 else e3) ⇒ varRes(e2)∪varRes(e3)
varRes(e1, . . . ,en) ⇒ varRes(e1)∪ . . .∪varRes(en)
varRes(step1/. . ./step2) ⇒ {step1/. . ./step2}
varRes(element{QName}{e}) ⇒ {element{QName}{e}}
varRes($v) ⇒{$v}
varRes(literal) ⇒ {#text}
varRes(some $v in e1 satis f ies e2) ⇒ {#text}
varRes(every $v in e1 satis f ies e2) ⇒ {#text}

Since an XPath expression can be relative to a named variable
(i.e., starting with a variable name), the environment will also al-
low us to keep track of the relationship between variables within
the query (for example, the fact that $l is bound to $i). For con-
venience, for the manipulation of the environment we also define
a function called saturate(), which refines the bindings by making
explicit all the XPath navigation.

EXAMPLE 2.2. After obtaining by varRes that $l ⇒ $i and $i ⇒

{docB@S3/site/closed_auctions/ closed_auction}, we can refine the

information on variable $l, using the saturate function, as $l ⇒{$i,

docB@S3/site/closed_auctions/closed_auction}.

Finally, for a variable $v and its bound expression expb($v), the
addition of $v to the environment is performed in the inference rules
by the following statement:

Env = +($v ⇒ (Env.saturate(varRes(expb($v)))).

For convenience, the following functions will also be used in the
algorithm to access the pre-computed environment:

• getBind($v): retrieves from the environment the set of ob-
jects associated to the input variable $v.

• getXPathBind($v): among the objects to which the variable
$v is bound, it retrieves those corresponding to XPath expres-
sions (if any exist).

3. THE REWRITING ALGORITHM
Overview. We start by giving an overview of our rule-based al-

gorithm, which takes as input an XQuery expression Q and outputs
an equivalent simplified XQuery expression Q′.

As the various bound expressions in Q compute intermediate re-
sults that may only be partially useful to Q’s end result, our algo-
rithm identifies and prunes their irrelevant parts. The output is an
equivalent query Q′ obtained from Q by substituting each subex-
pression expb($v) by a subexpression exp′b($v) that has the advan-
tage of computing only the needed intermediate results.

For a given variable $v, the algorithm retrieves from expr($v)
all the XPath expressions that access the result of expb($v). This
task is performed by the extractPaths function. The paths are then
used to retrieve and project out the useless parts in expb($v). This
is the role of the projectPaths function. A simpler subexpression
exp′b($v) is obtained in this way.

This process is applied recursively, in bottom-up manner, by the
Prune function over Q. More precisely, for a given variable $v in Q,
the pruning is first applied recursively within its bound and return
expressions, then for $v itself, as described above.

We continue the presentation of the algorithm, starting with the
rule-based functions for path analysis (extractPaths) and query pro-
jection (projectPaths) (in Section 3.1 and Section 3.2 respectively).
We wrap-up the presentation with the Prune function, that applies
in bottom-up manner the steps for path extraction and projection
(in Section 3.3). The section ends with the formal results on cor-
rectness (in Section 3.4).

3.1 Path analysis
The extractPaths function takes as input a variable $v and its re-

turn expression expr($v), analyses expr($v) and extracts the paths
that navigate through the variable $v. These paths start with $v (ei-
ther explicitly, or via other declared variables), and are denoted the
projection paths of $v.

Similar to [16], in our analysis we will distinguish between two
kinds of projection paths: (i) used paths and (ii) returned paths.
The former kind denotes paths for which the descendants of re-
turned nodes are not necessarily relevant for the end result and no
navigation in the subtrees of these nodes is required. These are the
paths that simply bind a variable $v, appearing only in its bound
expression expb($v).

The latter kind denotes paths for which descendants of the nodes
reached by the path may be relevant and must be kept in the end
result. Paths are by default considered of the returned kind, unless
some conditions for the used kind are verified.

We now present the inference rules for the extractPaths function.
The result of each rule application will be two sets of paths, P and
P

#, for the used and returned paths respectively.

Literal, empty sequence. When the input expression expr($v) is a
literal (rule ep1) or an empty sequence (rule ep2), no paths can be
extracted.

Env ⊢ extractPaths($v, literal) ⇒ /0, /0
(ep1)

Env ⊢ extractPaths($v,()) ⇒ /0, /0
(ep2)

Sequence, conditional, comparison, element construction. In
this case (rules ep3 to ep6), the analysis of the input expression

amounts to analyzing its subexpressions, and the output sets P and
P

are obtained from the union of the used and returned paths ex-
tracted from the subexpressions.

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env ⊢ extractPaths($v,(e1,e2)) ⇒ P1 ∪P2,P #
1 ∪P

#
2

(ep3)

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env ⊢ extractPaths($v,e3) ⇒ P3,P
#
3

Env ⊢ extractPaths($v, i f e1 then e2 else e3) ⇒
(ep4)

P1 ∪P2 ∪P3,P
#
1 ∪P

#
2 ∪P

#
3

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env ⊢ extractPaths($v,e1 Op e2) ⇒ P1 ∪P2,P #
1 ∪P

#
2

(ep5)

Env ⊢ extractPaths($v,exp) ⇒ P ,P #

Env ⊢ extractPaths($v,element{QName}{exp}) ⇒ P ,P #
(ep6)

Variable reference. When the input expression expr($v) is a vari-
able reference, we have two alternative cases. If expr($v) = $v

(rule ep7), the output result is a returned path $v (a one step path).
If expr($v) = $v′, with $v′ 6= $v, we extract from the XPath expres-
sions bound to $v′ those that are relative to $v (i.e., $v is their first
step). These paths constitute the output set of returned paths P

#

(rule ep8). The output set of used paths P is empty in both cases.

Env ⊢ extractPaths($v,$v) ⇒ /0,{$v}
(ep7)

$v′ 6= $v, Env.getXPathBind($v′) ⇒ B

P# = {p ∈ B, p = $v/. . .}

Env ⊢ extractPaths($v,$v′) ⇒ /0,P#
(ep8)

XPath expression. Here, due to the normalization process de-
scribed in Section 2, we have only three alternatives (rules ep9 to
ep11). If the input expression expr($v) is a path relative to $v, then
this path formes the output set of returned paths P

(rule ep9).
If expr($v) = $v′/. . ./sn, with $v′ 6= $v, then we extract from the
XPath expressions bound to $v′ those that are relative to $v (if any
exist). These are used to substitute $v′ and create the output set
of returned paths P

(rule ep10). Otherwise (rule ep11), no paths
relative de $v can be extracted from the input expression and the
output set of returned paths is empty. The output set of used paths

P is empty in the three cases.

Env ⊢ extractPaths($v,$v/. . ./sn) ⇒ /0,{$v/. . ./sn}
(ep9)

Env.getXPathBind($v′) ⇒ B

P# = {p′ = p/s1/. . ./sn, p ∈ B∧ p = $v/. . .}
(ep10)

Env ⊢ extractPaths($v,$v′/s1/. . ./sn) ⇒ /0,P#

Env ⊢ extractPaths($v,doc(uri)/. . . /sn) ⇒ /0, /0
(ep11)

FLWR expression, quantifier. Here, the input expression expr($v)
is a FLWR or quantifier expression: for instance, f or $v′ in e1

where e2 return e3.
The first three premises (or the first two, in the case of the quan-

tifier expression) in the inference rules ep12 to ep14 will simply
apply recursively the path analysis process to the subexpressions
e1, e2 and e3.

The role of the remaining premises is to transform some of the
returned paths P

#
1 from e1 into used paths for $v. This would ob-

viously allow for more drastic query simplifications in the later
stages. The transformation happens when certain conditions are
verified for the projection paths P

#
1 , more precisely when (1) the

paths are bound to variable $v′ (this can be checked by testing if

they appear in Env.getXPathBind($v′)), and (2) the paths are relative
to $v (i.e., $v is their first step). The paths verifying these two con-
ditions are moved from the set of returned paths to the one of used

paths.
Consider the following example:

EXAMPLE 3.1. Given the query:

f or $v in . . .

return f or $v′ in ($v/A/B, . . .)

return . . .

the path $v/A/B is bound to variable $v′. Although $v/A/B is

initially a returned path, the fact that it is relative to $v enables

us to safely consider it a used path. In this case, the descendants

of B elements are deemed not necessary to compute the end result

(unless some other path overwrites this fact).

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env ⊢ extractPaths($v,e3) ⇒ P3,P
#
3

Env.getXPathBind($v′) ⇒ P

P1.bis = {p ∈ P, p = $v/. . .}, P
#
1 −P1.bis ⇒ P

#
1.bis

Env ⊢ extractPaths($v, f or $v′ in e1 where e2 return e3)
(ep12)

⇒ P1 ∪P2 ∪P3 ∪P1.bis,P
#
1.bis ∪P

#
2 ∪P

#
3

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env ⊢ extractPaths($v,e3) ⇒ P3,P
#
3

Env.getXPathBind($v′) ⇒ P

P1.bis = {p ∈ P, p = $v/. . .}, P
#
1 −P1.bis ⇒ P

#
1.bis

Env ⊢ extractPaths($v, let $v′ := e1 where e2 return e3)
(ep13)

⇒ P1 ∪P2 ∪P3 ∪P1.bis,P
#
1.bis ∪P

#
2 ∪P

#
3

Env ⊢ extractPaths($v,e1) ⇒ P1,P
#
1

Env ⊢ extractPaths($v,e2) ⇒ P2,P
#
2

Env.getXPathBind($v′) ⇒ P

P1.bis = {p ∈ P, p = $v/. . .}, P
#
1 −P1.bis ⇒ P

#
1.bis

Env ⊢ extractPaths($v,some $v′ in e1 satis f ies e2)
(ep14)

⇒ P1 ∪P2 ∪P1.bis,P
#
1.bis ∪P

#
2

EXAMPLE 3.2. We give below the outcome of the extractPaths

function on the variable $ j and its return expression in Q1.2. The

prefix indicates the rules that were applied.

(ep11) Env ⊢ extractPaths($ j,docD@S1/site) ⇒ /0, /0

(ep5,ep9,ep10) Env ⊢ extractPaths($ j,$ j/person = $k . . .)

⇒ /0,{$ j/person}

(ep6,ep9) Env ⊢ extractPaths($ j,<common-auction>

{$ j/open_auction}</common-auction>)

⇒ /0,{$ j/open_auction}

(ep12) Env ⊢ extractPaths($ j, f or $k . . .)

⇒ /0,{$ j/open_auction,$ j/person}

3.2 Path projection
In this section, we present the function pro jectPaths. Recall that

for each variable $v, this function projects out the useless parts of
expb($v) (the bound expression for $v) based on the sets of paths
P and P

extracted from expr($v) (the return expression for $v).
pro jectPaths takes as input a set of used paths, a set of returned

paths and an XQuery expression, and returns a new, simplified
XQuery expression. The output expression is obtained by project-
ing out any subexpression producing an intermediary result that is
not in the scope of these paths. For each extracted path p and the
given expression e, pro jectPaths determines if a matching is pos-
sible between p and the expected result of e (i.e., if we can expect
a non empty result for the evaluation of p on the result of e).

Next, we detail the inference rules for pro jectPaths.

Literal, comparison, quantifier. When matching a set of paths
with a literal value, the only cases that yield a non empty result are
when there is at least one path p such that p = text() (a final step of
a projection path) or p = $v (rule pp1). Otherwise (rule pp2), the
output expression is empty.

We use the same reasoning when the input query is a comparison
(e1 Op e2) or a quantifier expression (some $v in e1 satis f ies e2),
as the result of their evaluation is necessarily a numeric or boolean
value. The corresponding rules (pp3 to pp6) are similar to pp1 and
pp2. They are detailed in [11].

∃p ∈ (P ∪P
#), p = ($v | text())

Env ⊢ pro jectPaths(P ,P # , literal) ⇒ literal
(pp1)

∀p ∈ (P ∪P
#), p 6= ($v | text())

Env ⊢ pro jectPaths(P ,P # , literal) ⇒ ()
(pp2)

Sequence. Matching an input path p with a sequence (e1,e2)
amounts to matching p with the subexpressions (e2 and e3) com-
posing the sequence. Then, the output expression is a sequence
composed of the obtained elementary results (rule pp7).

Env ⊢ pro jectPaths(P ,P # ,e1) ⇒ e′1
Env ⊢ pro jectPaths(P ,P # ,e2) ⇒ e′2

Env ⊢ pro jectPaths(P ,P # ,(e1,e2)) ⇒ e′1,e
′
2

(pp7)

Variable reference. The evaluation of paths on a variable $v

amounts to their evaluation on the objects to which $v is bound.
Then, if a matching is possible between at least an input path p and
one of the objects bound to $v, the output expression is $v itself
(rule pp8). Otherwise (rule pp9), the output expression is empty.

(Env.getBind($v) ⇒{o1, . . . ,on})
∃i,1 ≤ i ≤ n, pro jectPaths(P ,P # ,oi) ⇒ o′i s.t. o′i 6= ()

(pp8)

Env ⊢ pro jectPaths(P ,P #,$v) ⇒ $v

(Env.getBind($v) ⇒{o1, . . . ,on})
∀i,1 ≤ i ≤ n, pro jectPaths(P ,P # ,oi) ⇒ ()

(pp9)

Env ⊢ pro jectPaths(P ,P # ,$v) ⇒ ()

XPath expression. Here, the input expression e is an XPath s1/
. . . /sn. Matching an input path p with e depends on the nature of
p and on the expected result of e. The necessary information on
this expected result can be deduced from the last step sn of e (rule
pp10).

More precisely, if sn = text(), the result of e will be composed
of literal values. So, the only case where a matching is possible is
when p = text() or p = $v.

If sn 6= text() and sn 6= ∗, hence the nodes returned by e = s1/. . .
/sn are element nodes, it is sufficient to have one input path in
P ∪P

that starts with $v , ∗ (which corresponds to any element
test) or sn (i.e., the first step of p matches with the elements returned
by e). Since we do not have enough information about the eventual
descendants of sn, we only check if a matching is possible between
e and the first step of p.

If sn = ∗, hence the label of the returned element nodes is un-
known, the only case where a matching is not possible is when
p = text().

Otherwise (rule pp11), no matching is possible and the output
expression is empty.

∃p ∈ (P ∪P
#),((sn = text())∧ (p = text()|$v)) ∨

((sn 6= text())∧ (sn 6= ∗)∧head2(p) = (∗|sn|$v)) ∨
((sn = ”∗ ”)∧ (p 6= text()))

Env ⊢ pro jectPaths(P ,P #,s1/. . ./sn) ⇒ s1/. . ./sn

(pp10)

otherwise (pp11)

Env ⊢ pro jectPaths(P ,P # ,s1/. . ./sn) ⇒ ()

2head(p) is a function that retrieves from a path p its first step.

FLWR expression. According to the XQuery semantics, the result
of a FLWR expression is computed by its return subexpression. So,
matching an input path p with a FLWR expression e amounts to
matching p with the return subexpression of e (e3 in pp12). If, for
at least one path p ∈ P ∪P

#, the result expression e′3 is not empty,
the composed output is a new FLWR expression obtained by sub-
stituting the initial return expression by e′3 (rule pp12). Otherwise
(rule pp13), the output expression is empty. For space reason, we
do not detail the rules for let expressions (pp14 and pp15). These
rules are similar to those given here, and can be found in [11].

Env ⊢ pro jectPaths(P ,P # ,e3) ⇒ e′3

Env ⊢ pro jectPaths(P ,P # , f or $v in e1 where e2 return
(pp12)

e3) ⇒ f or $v in e1 where e2 return e′3

Env ⊢ pro jectPaths(P ,P # ,e3) ⇒ ()

Env ⊢ pro jectPaths(P ,P # , f or $v in e1 where e2 return
(pp13)

e3) ⇒ ()

Conditional. Matching an input path p with a conditional expres-
sion (i f (e1) then e2 else e3) amounts to matching p with the subex-
pressions of the true and f alse branches. The output expression is
then a new conditional expression obtained by substituting in the
input expression the initial true and f alse branches by the two po-
tentially simplified subexpressions (see rule pp16).

Env ⊢ pro jectPaths(P ,P # ,e2) ⇒ e′2
Env ⊢ pro jectPaths(P ,P # ,e3) ⇒ e′3

Env ⊢ pro jectPaths(P ,P # , i f (e1) then e2 else e3) ⇒
(pp16)

i f (e1) then e′2 else e′3

Element construction. Here, the input expression is an element
construction expression expr = element{QName}{e}. Matching the
input path p with expr depends on the nature of p, as described in
the following case analysis. In order to simplify the presentation,
we assume that the application of the rules is attempted according
to the order in which they are presented below:

Rule pp17: if the input set P
contains a path p such as p = $v or

p = QName, then a matching is possible between expr and at least
one returned path. In this case, nothing can be projected out and
the returned expression is identical to the input one.

Rule pp18: if there is no input path p = s1/. . . with the first step
s1 = $v or s1 = QName, then no matching is possible between expr

and the input paths. In this case, the output expression is empty
(i.e., the input expression is projected out).

Rule pp19: if for all the input paths p = s1/s2/. . . with a first step
s1 = $v or s1 = QName, there is no matching possible between
their remaining suffixes s2/. . . and the subexpression e, then no
matching is possible between expr and the input paths as well. The
output expression is empty in this case.

Rule pp20: if there is at least one used path p such that p = $v or
p = QName, and no other input path has a first step equal to $v or
QName, then we deduce that the descendent nodes of the expected
element QName are useless. In this case, the subexpression e is
projected out and the output expression is a new element construc-
tion QName with an empty content.

Rule pp21: if there is at least one input path p = s1/s2/. . . with
a first step s1 = $v or s1 = QName, and a matching is possible
between the remaining part s2/. . . of p and the subexpression e,
then we deduce that a matching is possible with expr. In this case
the output is a new element construction expression for QName

with a new subexpression e′ obtained by the recursive application
of pro jectPaths for these s2/. . . path suffixes over e.

∃p ∈ P
#, p = (QName | $v)

Env ⊢ pro jectPaths(P ,P # ,element{QName}{e})⇒
(pp17)

element{QName}{e}

∀p ∈ P ∪P
#,head(p) 6= (QName | $v)

Env ⊢ pro jectPaths(P ,P # ,element{QName}{e})⇒ ()
(pp18)

6 ∃p ∈ P , p = (QName | $v)
P

′ = {p′, [QName | $v]/p′ ∈ P}

P
′# = {p′, [QName | $v]/p′ ∈ P

#}

Env ⊢ pro jectPaths(P ′ ,P ′#,e) ⇒ ()

Env ⊢ pro jectPaths(P ,P # ,element{QName}{e})⇒ ()
(pp19)

(∃p ∈ P , p = (QName | $v))∧
(∀p ∈ (P ∪P

#)−{p},head(p) 6= (QName | $v))

Env ⊢ pro jectPaths(P ,P # ,element{QName}{e})⇒
(pp20)

element{QName}{}

∃p ∈ P ∪P
#,head(p) = (QName | $v)

P
′ = {p′, [QName | $v]/p′ ∈ P}

P
′# = {p′, [QName | $v]/p′ ∈ P

#}

Env ⊢ pro jectPaths(P ′ ,P ′#,e) ⇒ e′

Env ⊢ pro jectPaths(P ,P # ,element{QName}{e})⇒
(pp21)

element{QName}{e′}

Empty sequence. If the input expression is empty, then the output
expression is also empty.

Env ⊢ pro jectPaths(P ,P # ,()) ⇒ ()
(pp22)

3.3 The pruning process
The pruning process is applied recursively by the Prune func-

tion, using extractPaths and pro jectPaths in bottom-up manner.
This function takes as input a query Q and returns a new, simplified
query Q′. It is defined by the following inference rules.

Literal, variable reference, XPath expression and empty se-
quence. When the input expression Q is a literal, a variable ref-
erence, an XPath expression or an empty sequence, the pruning has
no effect and the output expression is the same as the input one.

Env ⊢ Prune(literal) ⇒ Literal
(p1)

Env ⊢ Prune($v) ⇒ $v
(p2)

Env ⊢ Prune(s1/. . ./sn) ⇒ s1/. . ./sn

(p3)

Env ⊢ Prune(()) ⇒ ()
(p4)

Sequence, comparison, element construction. The pruning of
a sequence of subexpressions returns as a result the sequence of
the pruned subexpressions (rule p5). We use the same approach
to prune comparison expressions and element construction expres-
sions (rules p6 and p7).

Env ⊢ Prune(e1) ⇒ e′1 Env ⊢ Prune(e2) ⇒ e′2 (p5)

Env ⊢ Prune(e1,e2) ⇒ e′1,e
′
2

Env ⊢ Prune(e1) ⇒ e′1 Env ⊢ Prune(e2) ⇒ e′2 (p6)

Env ⊢ Prune(e1 Op e2) ⇒ e′1 Op e′2

Env ⊢ Prune(e) ⇒ e′

Env ⊢ Prune(element{QName}{e})⇒
(p7)

element{QName}{e′}

Conditional. In this case, the pruning operation is propagated to
the condition subexpression, and to the true and f alse branches.
The output expression is obtained by substituting the subexpres-
sions by their corresponding pruned results.

Env ⊢ Prune(e1) ⇒ e′1
Env ⊢ Prune(e2) ⇒ e′2 Env ⊢ Prune(e3) ⇒ e′3

Env ⊢ Prune(i f (e1) then e2 else e3) ⇒ i f (e′1) then e′2 else e′3
(p8)

FLWR expressions, quantifier. When the input Q is a FLWR ex-
pression (f or $v in e1 return e2), the pruning operation is first ap-
plied on the bound expression e1 (with result e′1). Then, the variable
$v is added to the environment Env with its bound objects com-
puted by varRes. The saturate function refines the bindings stored
in the environment (as described in Section 2).

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ extractPaths($v,e′2) ⇒ P ,P #

Env ⊢ pro jectPaths(P ∪{$v},P #,e′1) ⇒ e′′1 (p9)

Env ⊢ Prune(f or $v in e1 return e2) ⇒ f or $v in e′′1 return e′2

Then, the pruning step is applied on the return subexpression e2.
The result is a pruned expression e′2, from which the extractPaths

function extracts the paths relative to $v. Finally, the extracted
paths (P ∪ {$v}, P

#) are applied on e′1 in order to eliminate its
useless parts. Here, $v is added as a used path to ensure that the
number of iterations remains the same. The resulting expressions
e′′1 and e′2 replace e1 and e2 in the FLWR expression.

The pruning of a f or expression can lead to the following inter-
esting special cases (p10 and p11):

Env ⊢ Prune(e1) ⇒ ()

Env ⊢ Prune(f or $v in e1 return e2) ⇒ ()
(p10)

Here, the pruning of the bound expression generates an empty re-
sult, which means that the number of iterations is equal to 0. So,
the pruning result of the entire FLWR expression is empty.

Env ⊢ Prune(e1) ⇒ e′1
RootPath(e′1) ⇒ PathB1

Env = Env+($v ⇒ PathB1) Env = Env.saturate($v)
Env ⊢ Prune(e2) ⇒ ()

Env ⊢ Prune(f or $v in e1 return e2) ⇒ ()
(p11)

This case corresponds to the situation in which the pruning of the
return expression e2 leads to the empty result. This means that
whatever the number of iterations is, the result is always empty. In
such a case, the pruning of the entire f or expression gives an empty
result.

When the input f or expression contains a where clause, we fol-
low the same reasoning and handle the where clause in the same
way we handled the return subexpression (rules p12 to p14).

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ Prune(e3) ⇒ e′3

Env ⊢ extractPaths($v,e′2) ⇒ P2,P
#

2

Env ⊢ extractPaths($v,e′3) ⇒ P3,P
#

3

Env ⊢ pro jectPaths(P2 ∪P3 ∪{$v},P #
2 ∪P

#
3 ,e′1) ⇒ e′′1 (p12)

Env ⊢ Prune(f or $v in e1 where e2 return e3) ⇒
f or $v in e′′1 where e′2 return e′3

Env ⊢ Prune(e1) ⇒ ()

Env ⊢ Prune(f or $v in e1 where e2 return e3) ⇒ ()
(p13)

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ Prune(e3) ⇒ ()

Env ⊢ Prune(f or $v in e1 where e2 return e3) ⇒ ()
(p14)

When the f or expression contains a where clause, an additional
rule is used each time the pruning of the where gives an empty re-
sult (rule p15). In this case, the condition is obviously f alse (empty
sequence) and the pruning of the whole f or expression yields an
empty result.

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ ()

Env ⊢ Prune(f or $v in e1 where e2 return e3) ⇒ ()
(p15)

The pruning process of let expressions is similar to the pruning
of f or expressions (see rules p16 to p20). The only notable dif-
ference is that we do not have to add the path $v to the set of used
paths P .

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ extractPaths($v,e′2) ⇒ P ,P #

Env ⊢ pro jectPaths(P ,P # ,e′1) ⇒ e′′1

Env ⊢ Prune(let $v := e1 return e2) ⇒ let $v := e′′1 return e′2
(p16)

Env ⊢ Prune(e1) ⇒ e′1
RootPath(e′1) ⇒ PathB1

Env = Env+($v ⇒ PathB1) Env = Env.saturate($v)
Env ⊢ Prune(e2) ⇒ ()

Env ⊢ Prune(let $v := e1 return e2) ⇒ ()
(p17)

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ Prune(e3) ⇒ e′3

Env ⊢ extractPaths($v,e′2) ⇒ P2,P
#

2

Env ⊢ extractPaths($v,e′3) ⇒ P3,P
#

3

Env ⊢ pro jectPaths(P2 ∪P3,P
#
2 ∪P

#
3 ,e′1) ⇒ e′′1 (p18)

Env ⊢ Prune(let $v := e1 where e2 return e3) ⇒
let $v := e′′1 where e′2 return e′3

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ Prune(e3) ⇒ ()

Env ⊢ Prune(let $v := e1 where e2 return e3) ⇒ ()
(p19)

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ ()

Env ⊢ Prune(let $v := e1 where e2 return e3) ⇒ ()
(p20)

For quantifier expressions, we use the same reasoning, with the
notable difference that, in the special cases, instead of returning an
empty result, we return f alse() (since a quantifier returns a boolean
value).

Env ⊢ Prune(e1) ⇒ e′1
Env = +($v ⇒ (Env.saturate(varRes(e′1)))

Env ⊢ Prune(e2) ⇒ e′2
Env ⊢ extractPaths($v,e′2) ⇒ P ,P #

Env ⊢ pro jectPaths(P ∪{$v},P #,e′1) ⇒ e′′1 (p21)

Env ⊢ Prune(some $v in e1 satis f ies e2) ⇒
some $v in e′′1 satis f ies e′2

Env ⊢ Prune(e1) ⇒ ()

Env ⊢ Prune(some $v in e1 satis f ies e2) ⇒ f alse()
(p22)

Env ⊢ Prune(e1) ⇒ e′1
RootPath(e′1) ⇒ PathB1

Env = Env+($v ⇒ PathB1) Env = Env.saturate($v)
Env ⊢ Prune(e2) ⇒ ()

Env ⊢ Prune(some $v in e1 satis f ies e2) ⇒ f alse()
(p23)

3.4 Correctness
We prove that the rule-based algorithm is correct, showing that

its input and output queries are equivalent (i.e., the evaluation of
the output query yields the same result as the evaluation of the ini-
tial query). More precisely, we prove that the algorithm Prune de-
scribed in Section 3.3 verifies the following.

THEOREM 3.1. [Equivalence] Let q be an XQuery query, let

I = {d1, . . . , dk} be the set of XML documents used in q, let Env be

the environment, and let q′ be the XQuery query obtained from the

pruning of q in Env (i.e., Env ⊢ Prune(q) ⇒ q′). Then, the results

of q and q′ over I are equal: q(I) = q′(I), where "=" denotes the

deep equality defined for XML values in [14].

PROOF SKETCH. A proof for this theorem can be constructed
by induction on the inference rule for each expression. Due to space
limitations, we were not able to include all the details of the proof
in this paper. The detailed proof (including the proof of the two
lemmas presented below), can be found in the extended version of
this work [11].

As it was shown in Section 3.3, when the input query q is a literal
value, a variable name, an XPath expression or an empty sequence
(rules p1 to p4), the pruning process will produce an output query
q′ identical to its input q.

When the input query q is a conditional expression, a non empty
sequence, a comparison expression, an arithmetic or a logical ex-
pression (pruning rules p5 to p8), the pruning process is simply
applied recursively to the subexpressions of q, replacing them by
the obtained pruned expressions.

Assuming that the pruned subexpressions are equivalent to the
initial ones, then according to the semantics of XQuery[7] the out-
put query q′ is equivalent to q.

For instance, considering a conditional expression

q = i f (e1) then e2 else e3

the pruning process yields

q′ = i f (e′1) then e′2 else e′3

where Env ⊢ Prune(e1) ⇒ e′1,Env ⊢ Prune(e2) ⇒ e′2, and Env ⊢
Prune(e3) ⇒ e′3. Assuming that e1 is equivalent to e′1, e2 is equiv-
alent to e′2 and e3 is equivalent to e′3, it is easy to check that expres-
sions q and q′ are equivalent as well.

FLWR expressions. When the input query q is a FLWR expres-
sion (pruning rules p9 to p20 in Section 3.3), the pruning process
can be summarized in three main steps : (1) the pruning is applied
recursively to the subexpressions of q, substituting them by the ob-
tained pruned expressions (e′1, e′2 and e′3), (2) extractPaths is called
to extract from the return and where subexpressions (e′2 and e′3) the

used and return paths (P and P#), and (3) pro jectPaths is called to
apply the extracted paths on the bound subexpression (e′1) in order
to simplify it.

We argue that the first step preserves the equivalence: assuming
that e1 is equivalent to e′1, e2 is equivalent to e′2 and e3 is equiva-
lent to e′3, then f or $v in e1 [where e2] return e3 is equivalent to
f or $v in e′1 [where e′2] return e′3 (similar for the let expressions
let $v := e1 [where e2] return e3 and let $v := e′1 [where e′2]
return e′3).

To prove equivalence between the input query q and the output
one q′, we need the following result: the projected subexpression
e′′1 , obtained by applying the used and return paths on the bound
subexpression e′1, generates all the nodes necessary in the evalua-
tion of e′2 and e′3 (this is similar to the Return Paths Lemma of [16]).
More precisely, we need to prove the following two properties.

LEMMA 3.1. [Paths Extraction] Let e be an XQuery expression

and $v be a variable. The sets of paths P and P
extracted from e

(Env ⊢ extractPaths($v,e) ⇒ P ,P
#) satisfy the following:

• P , P
contain all the paths in e referencing $v, and nothing else.

• only used paths are contained in P .

LEMMA 3.2. [Paths Projection] Let e1 be an XQuery expres-

sion, let P be a set of used paths and P
a set of return paths.

The XQuery expression e2, obtained by the application of P and

P
paths on e1 (Env ⊢ Pro jectPaths(P ,P

#,e1) ⇒ e2), satisfies the

following properties:

• ∀p ∈ P : root(eval(p,e2)) = root(eval(p,e1))

• ∀p ∈ P
: eval(p,e2) = eval(p,e1)

where the root function retrieves the root nodes of its input XML
data, and the eval function is defined as follows:

DEFINITION 3.1 (EVAL). For an XQuery expression q and an

XPath expression p, eval(p,q) denotes the following XQuery ex-

pression:

• q/p1 , if p = $var/p1 (i.e., p starts with a variable reference);

• q/sel f :: p, otherwise.

Lemmas 3.1 and 3.2 presented above can be proven by induction
over each expression. The details can be found in [11].

4. OPTIMIZED PRUNING
We discuss in this section extensions on the algorithm presented

previously, which may further simplify an XQuery expression.
Path refinements. Let us illustrate a first improvement by an

example. Let q be the following XQuery expression :

f or $ j in (f or $i in <A><C/> return $i)

return $ j/B

By applying the pruning rule on q, no simplifications would apply
and the query remains unchanged. However, one can easily notice
that the C elements constructed by the inner f or are not necessary
for the end result and can thus be projected out.

This kind of pruning is not possible using the bottom-up infer-
ence rules of Section 3.3. This is mainly due to the fact that when
we prune some inner subexpression, we have no information about
the outer subexpressions, potentially missing such further refine-
ments. For instance, in the query q, when we prune the inner f or

subexpression, the projection path $i suggests to keep all the bound
expression of $i (by rule pp1). Then, when we apply the path $ j/B

on the inner f or, we apply it in fact only on the variable $i (by rule
pp12), and we conclude that we must keep the variable $i (by rule
pp8). In this way, we fail to refine the path $i to $i/b and to detect
that only B elements, children of As, are needed from $i’s content.

In order to detect this kind of pruning opportunity, we have to
use information of the entire query during the pruning process.

We are currently extending our algorithm to take into account
such simplification opportunities, using a two-step pruning. In the
first step, we apply the pruning as described previously, starting
with empty sets of used and returned paths for each variable. In
addition, when we have situations in which we apply a path p on a
variable reference $v or on a path p′ starting by a variable name $v,
we keep in a separate structure a mapping from the variable to the
projection path that is applied, i.e. ($v ⇒ p) or ($v ⇒ p′/p), along
with its kind (used or returned). Then, these mappings are used to
initialize the sets P and P

for a second pruning pass.

Going back to the example, in the first step, q remains unchanged
but we extract a mapping $i ⇒ {$i/B} (as returned path). In the
second step, when pruning the inner f or, having this path enables
us to prune the C elements as well.

Elimination of useless XPath expressions. Notice that the query
Q′

1.3 presented in Section 1 contains a path, $ j/open_auction, whose
evaluation is not necessary for the end result. This is because it
always returns the empty sequence (). Our second improvement
addresses this issue, eliminating irrelevant navigation by directly
substituting such paths by the empty sequence ().

The simplified query Q′′
1.3 would now be the following:

f or $ j in <site>{()}</site>

return

f or $k in doc1@S1/site

where $ j/person = $k/people/person

return

<common-auction>{()}</common-auction>

Intuitively, we can find these paths during the pro jectPaths pro-
cess, when applying paths over expressions. In the same way we
retrieve the expressions parts that do match some path, we can also
retrieve the paths that do not match anything in these expressions.
For space reasons, the modified pro jectPaths rules that take into
account such cases are presented in the extended version of this
paper. Further details are omitted.

5. EXPERIMENTS
We implemented our algorithm for XQuery projection as a sepa-

rate module on top of the Galax query processor [9] (version 0.7.2).
Our choice was motivated by the robustness of this processor and
its conformance with the W3C XQuery specifications.

We describe in this section the impact of our approach, measur-
ing the gain in evaluation time obtained by eliminating the compu-
tation of irrelevant intermediate results. In our experiments, we var-
ied the nature and complexity of the pruned subexpressions. More
precisely, we considered three kinds of subexpressions widely used
in practice : FLWR blocks, XPath expressions relative to a given
document or XPath expressions relative to a variable. For each kind
of subexpression, we varied the amount of intermediate results pro-
duced by the pruned subexpression: 25%, 50%, 75% or 100% of
the total intermediate results. We used in our experiments the fol-
lowing template for test queries:

let $q := <personIn f>
{ f or $i in doc(”xmark.xml”)/site/people/person

return

(< name > {test_exp} < /name >,
< age > {test_exp} < /age >,
< gender > {test_exp} < /gender >,
< email > {test_exp} < /email >)}

</personIn f>
f or $ j in $q

return($ j/names?,$ j/age?,$ j/gender?,$ j/email?)

where the question mark indicates optional parts that could be miss-
ing from one test query to another. By the first let clause in the
template we create a set of intermediate results. The let binds the
variable $q to a personIn f element that contains four child ele-
ments name, age, gender and email. The four elements have the
same content, produced by a test_exp expression (to be defined for
each test query).

The number of children nodes of personIn f depends on the size
of the sequence to which the variable $i is bound (person elements)
and varies with the size of the document on which the test is per-
formed. The percentage of useless intermediate results is simply
tuned by deciding which XPath expressions appear in the query,
among the four expressions given in the return of the outer f or

clause. For example, when testing the gain for 100% of irrelevant
intermediate results, we can use the path $ j/names, because it does
not follow any child element of the personIn f element. When test-
ing the gain for 50% of irrelevant intermediate results, we can use
two paths, such as $ j/age and $ j/gender.

Finally, the kind of expression that is pruned along with its wrap-
ping element was also varied (test_exp).

We show in Figures 3, 4, and 5 the improvements when test_exp

is a FLWR block, an XPath expression relative to a variable or an
XPath expressions relative to a document. The measures were con-
ducted on a Pentium 3.2 GHz Linux PC with 2Gb of RAM.

Results & Discussion. The experiments show that our approach
ensures a gain of time whatever is the nature of the pruned subex-
pressions. The gain varies according to the amount of pruned inter-
mediate results and the complexity of the irrelevant subexpression.

In Figure 3, where the pruned subexpressions correspond to FL-
WR blocks, the savings in evaluation time are determined by the
amount of pruned intermediate results. These savings increase sligh-
tly when the document size increases. They increase significantly
when the pruned subexpressions correspond to XPath expressions
relative to a document (Figure 4). We believe that this is mainly due
to the specificity of the XQuery processor we used. In Figure 5, the
pruned subexpressions correspond to XPath expressions relative to
a variable. In this case, we measured savings of time less important
than in the two previous cases. It seems that in this kind of scenar-
ios we save only the time needed to retrieve the element returned
by the path, which is normally done in main memory.

Figure 3: Test results for queries pruning FLWR blocks

Figure 4: Test results for queries pruning variable XPaths

6. CONCLUSION
We present in this paper a rewriting algorithm for XQuery queries

which detects and prunes the computations that are irrelevant for

Figure 5: Test results for queries pruning document XPaths

the overall result. For each input query, our algorithm outputs an
equivalent, simplified query. We show by extensive experiments
important savings in evaluation time, and we prove formally the
correctness of our algorithm. An important direction for future re-
search is to extend the algorithm by taking into account schema
information.

7. REFERENCES
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda.

Lazy query evaluation for Active XML. In SIGMOD Conf, 2004.

[2] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-based XML
projection. In VLDB Conf, 2006.

[3] M. Brantner, C-C. Kanne, and G. Moerkotte. Let a Single FLWOR Bloom (to
improve XQuery plan generation). In XSym Workshop, 2007.

[4] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N.
Subramanian. Xperanto: Middleware for publishing object-relational data as
XML documents. In VLDB Conf, 2000.

[5] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical Framework
for XQuery. In VLDB Conf, 2004.

[6] X. Dong, A. Y. Halevy, and I. Tatarinov. Containment of nested XML queries.
In VLDB Conf, 2004.

[7] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C

Recommendation, 2007.

[8] M. F. Fernández, Y. Kadiyska, D. Suciu, A. Morishima, and W. C. Tan.
Silkroute: A framework for publishing relational data in XML. ACM Trans.

Database Syst., 27(4), 2002.

[9] M. F. Fernández and J. Siméon. The Galax System "The XQuery

Implementation for Discriminating Hackers" Version 0.7.2, 2007.

[10] M. Grinev. XQuery Optimizing Based on Rewriting. In ADBIS, 2004.

[11] B. Gueni, T. Abdessalem, B.Cautis, and E.Waller. Pruning Nested XQuery
Queries. Technical report, Telecom ParisTech,
http://www.tsi.enst.fr/publications/enst/techreport-2008-8307.pdf, 2008.

[12] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up:
from research prototype to industrial tool. In SIGMOD Conf, 2005.

[13] C. Koch. On the role of Composition in XQuery. In WebDB Workshop, 2005.

[14] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions

and Operators. W3C Recommendation, 2007.

[15] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on
heterogeneous data sources. In VLDB Conf, 2001.

[16] A. Marian and J. Siméon. Projecting XML Documents. In VLDB Conf, 2003.

[17] P. Michiels. XQuery Optimization. In VLDB PhD Workshop, 2003.

[18] P. Michiels, G. A. Mihaila, and J. Siméon. Put a tree pattern in your algebra. In
ICDE Conf, 2007.

[19] P. Ramanan. Efficient Algorithms for Minimizing Tree Pattern Queries. In
SIGMOD Conf, 2002.

[20] A. Schmidt, F. Waas, M. Kirsten, M. J.Carey, I. Manolescu, and R. Busse.
XMark: A Benchmark for XML Data Management. In VLDB Conf, 2002.

[21] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. Funderburk.
Querying XML Views of Relational Data. In VLDB Conf, 2001.

[22] I. Tatarinov and A. Y. Halevy. Efficient Query Reformulation in Peer-Data
Management Systems. In SIGMOD Conf, 2004.

