Validating requirements at model-level

Olivier GILLES', Jérome HUGUES

GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

{olivier.gilles, jerome.hugues}@enst.fr

ABSTRACT. Designing an embedded real-time system is a complex process, which involves mod-
eling, verification, validation of system requirements. In this paper, we present how to integrate
a Domain Specific Language to the AADL — REAL — to perform requirements definition and
their validation of complete systems at model level. We also present how to use REAL to check
models in an efficient manner, and give some examples of requirements that should be enforced.
We conclude by presenting the process in which it can be used with a code generator in order
to get requirement-compliant source code for the targeted application.

RESUME. Concevoir un systeme embarqué temps-réel est un processus complexe, qui implique
des phases de modélisation, de vérification, et de validation des besoins d’une application.
Dans cet article nous présentons comment intégrer un “Domain Specific Language” a AADL,
pour définir des contraintes et les valider sur des systémes complets, au niveau du modéle. Nous
présentons également comment utiliser REAL pour vérifier les modeles de maniere efficace, et
donnons quelques exemples de contraintes qui devraient étre vérifiées dans un modele temps-
réel. Nous concluons en présentant la processus dans lequel il peut étre utilisé avec un généra-
teur de code pour obtenir un code source respectant les contraintes définies pour [’application
cible.

KEYWORDS: embedded systems, real-time, critical, verification, model, architectural languages

MOTS-CLES : systemes embarqués, temps-réel, systemes critiques, vérification, modélisation, ADL

1. This work is funded in part by the ANR Flex-eWare project.

¢ soumission a IDM’08, le June 18, 2008

2
¢ soumission a IDM’08

1. Introduction

Distributed Real-time and Embedded (DRE) systems must enforce constraints of
both the real-time and embedded domains. They need to comply with specific require-
ments: strict determinism, low resource consumption and reliability.

Designing DRE systems is a complex and thus expensive task, which requires
highly specialized manpower. Some methodologies have been developed in order to
reduce DRE development costs, amongst them, model-driven design (MDD) coupled
with code generation appear to be one of the most promising in reducing the develop-
ment cost and increasing reliability.

DRE systems must enforce a large set of non-functional requirements that come
from their versatile nature. A real-time application needs strong timing guarantees; a
distributed one must not break those guaranties. An embedded application also needs
to check resource usage.

Hence, enforcement of non-functional requirements is required to assess DRE sys-
tem consistency. Yet, the complexity of expression of these constraints is directly
proportional to the level of restrictiveness of the non-functional requirements.

Therefore, one need an efficient way to express these requirements on the model
prior to evaluating them. One need also to make sure there is no divergence between
the model and the requirements put on this model.

In this paper, we present a solution to these two problems for AADL-centric pro-
cesses, using a Domain Specific Language. This DSL checks non-functional con-
straints at model level, ensuring that the model is ready for further analysis (e.g.
schedulability) or code generation for constrained run-times.

2. Architecture Description Languages and non-functional requirements

In this section, we present the place of non-functional requirements definition
within the software development process and then the works related to non-functional
requirement definition and verification.

2.1. Software development process

The software development process maps requirements onto high-level, low-level
and code-source level descriptions. At each level, functional and non-functional re-
quirements must be refined, faithfully translated to the actual system description, and
also preserved. Some of them can be also checked at each stages.

Architecture Description Languages (ADLs) (Medvidovic et al., 1997) aim at de-
scribing the system architecture. An ADL-based development process consists of
modeling the application, analyzing it and then generating source code. ADL tool-

Validating requirements at model-level 3

suites can also provide support for describing system requirements for further valida-
tion and verification. Some examples of such approach are STOOD (Dissaux, 2004),
OSATE (team, 2004) and TOPCASED (Farail et al., 2005).

DRE systems have complex non-functional requirements. While some of them
are generic (and solved using well-known design patterns, e.g. concurrency (Dou-
glass, 2002)), most of them are highly application-dependent. Hence, it is necessary
to have a language which can express application requirements. ADLs can document
low-level architectures, but not constraints on them. Therefore, defining a language
as a Domain Specific extension of an ADL would enable one to describe both soft-
ware architecture and requirements in the same model. A checker for this language
would validate model conformance to these requirements. This would simplify code
generation from specific ADL patterns.

2.2. Related work

Non-functional requirements definition and enforcement can be performed
by adding constraints to the model. UML (OMG, 2003) and its derivatives
(MARTE (OMG, 2007)) are the de jure standards. Object Constraint Lan-
guage (Warmer et al., 1998) (OCL), is a standard to express constraints on UML
models. OCL constraints are described over the concepts of a meta-model and evalu-
ated over a model which is an instance of the meta-model. OCL requires a generic API
to express queries, leading to complex expressions for assessing details of a model.
This indirection to a higher level of abstraction increases the learning curve.

Approaches exist to map a model onto other formalisms for verification purposes,
e.g. using algebraic approaches like Z for modeling RT-POSIX (Freitas, 2006); or
model checking techniques for verifying RT-CORBA middleware using the Bogor
model checker (Deng et al., 2003). Yet, this introduces a new modeling space to
master, especially for domain engineers. One need to automate the mapping between
these two spaces. Besides, it could introduce inconsistencies in the process when
one model is updated, but not the other. This could lead to inadequate or incomplete
models. Therefore, one need to add requirements directly on the model to ensure
analysis techniques are still applicable, and that the requirements apply to an up-to-
date model.

Therefore, we propose a DSL mapped to the concept of meta-model, while being
simple enough to reduce risk of inconsistency and learning time. Using mathematical
notations from set theory would make this language easier to manipulate. In this paper,
we present a solution and its implementation on top of the AADL. AADL already has
supporting tool for schedulability analysis, code generation. Complementing it with
a DSL for specifying constraints would ensure AADL models are ready for being
processed by such tools in a transparent way.

4
¢ soumission a IDM’08

3. Short overview of AADL and OCARINA

AADL (Architecture Analysis and Description Language) (SAE, 2004) aims at
describing DRE systems by assembling components. AADL allows for the descrip-
tion of both software and hardware parts of a system. It focuses on the definition of
interfaces, and separates the implementations from these interfaces.

An AADL description is made of components. The AADL standard defines soft-
ware components (data, thread, thread group, subprogram, process) and exe-
cution platform components (memory, bus, processor, device) and hybrid compo-
nents (system). Components describe well identified elements of the actual architec-
ture. Subprograms model procedures as in C or Ada. Threads model the active part
of an application (such as POSIX threads). AADL threads may have multiple opera-
tional modes. Each mode may describe a different behaviour and property values for
the thread. Processes are memory spaces that contain the threads. Processors model
micro-processors and a minimal operating system (mainly a scheduler). Memories
model hard disks, RAMs, buses model all kinds of networks, wires, devices model
Sensors, etc.

An AADL model also describe non-functional facets: embedded or real-time
characteristics of the components (execution time, memory footprint. ..), behavioral
descriptions, etc. Description can be extended either through new property sets, or
through annexes. Annexes are extensions to the core language. A complete introduc-
tion to the AADL can be found in (Feiler et al., 2006).

Node

Figure 1. Sample AADL model

Figure 1 is a sample AADL model. It models two threads: one periodic and
one aperiodic that interact to read and update a shared variable. Both threads are
subcomponent of a process, bound to a processor and memory.

Validating requirements at model-level 5

We have developed the OCARINA (Vergnaud et al., 2006) toolsuite to manipulate
AADL models. OCARINA proposes AADL model manipulation based on a compiler-
like API. “Back-end” modules can generate formal models, perform scheduling anal-
ysis and generate distributed high-integrity applications in Ada.

Generated code relies on the PolyORB-HI (Hugues et al., 2007) middleware to
ensure communications and task allocation. PolyORB-HI ensures that a minimal and
reliable middleware is generated for a given distributed application.

AADL is a complete ADL that describes in -depth the architecture of a system. It
allows for layered design through component refinement. Besides, the designer can
express all is non-functional requirements. We now detail how we enriched AADL
with a DSL to check non-functional properties at model level.

4. REAL

REAL! (Requirement Enforcement Analysis Language) aims at checking ade-
quacy between different parts of architectural descriptions, with emphasis on concise-
ness and simplicity. In this section, we describe the main features of this language.

4.1. Basic constructs

REAL is based on set theory. It allows one to build sets whose elements are
AADL entities (connections, components or subprogram calls). Verification can then
be performed on either a set or its elements by stating Boolean expressions. The basic
unit of REAL is a theorem. A theorem is made of 3 parts: range definition, destination
set building and the verification expressions. We now review each of them.

4.1.1. Range definition

The range definition selects the class of component instances on which the veri-
fication must be done. All following declarations (either set building or verification
expressions) are performed for each element of the range set. An element of the range
set is a range variable.

thread Receiver

features
mem : requires data access shared_data.i;
properties

Dispatch_Protocol => Sporadic;

ARAO:: Priority => 2;

RTOS_Properties :: Criticity => 3;
end Receiver;

thread Watcher
features
mem : requires data access shared_data.i;

1. REAL sources and documentation can be accessed from http://aadl.enst.fr/ocarina/real.html

6
¢ soumission a IDM’08

properties
Dispatch_Protocol => Periodic;
Period => 500 Ms;

ARAO:: Priority => 4;
RTOS_Properties:: Criticity => 3;
end Watcher;

process node end node;

process implementation node. i
subcomponents

th1 : thread Receiver;

th2 : thread Watcher;

sh_mem : data shared_data.i;
connections

data access sh_mem — th1.mem;

data access sh_mem — th2.mem;
end node.i;

Listing 1: AADL threads

Listing 1 is an excerpt of the AADL model in figure 1. In this example, let us
assume that a range set is declared as being formed of the predefined thread set.

theorem Thread_Range_Set

foreach e in Thread_Set do
— Here is theorem code
end Thread_Range_Set;

Listing 2: Thread periodicity

In this case (listing 2), the range variable e would be successively valued as the first
thread (Receiver) in the first evaluation iteration, then to the second one (Watcher).

4.1.2. Destination set building

Destination set building defines sets that can refer to previously-defined ones. Ad-
ditionally, they can refer to predefined sets (canonical one, e.g. all processors in a
model). Their elements can be declared to be compliant to certain properties. These
definitions (or relations) are defined this way: S := x in E | £ (x), where the
character ’ |’ is an abbreviation for such as. In REAL, it means that the destination
set will be formed by all elements of the set E which verify the expression £ (x) (which
is an application from the set E to the boolean).

This means that S holds all the elements of the set E that comply with the relation
- Hence, set building is done by giving its first-order logic definition.

data shared_data

properties
Concurrency_Control_Protocol => Protected_Access;
ARAO:: Priority => 5;

end shared_data;

data implementation shared_data. i
end shared_data.i;

Listing 3: AADL protected data

Validating requirements at model-level 7

Let us suppose we want to build the set of concurrency-safe data (i.e. for which
the AADL property Concurrency_Control_Protocol is set (listing 3)). The set of
concurrency-safe data components is :

Protected_Data_Set :=
{x in Data_Set |
Compare_Property_Value
(x, "Concurrency_Control_Protocol", "Protected_Access")}

Listing 4: access-protected set building

4.1.3. Verification expression

Verification expressions check properties on sets, according to the range variable.
If it refers to the range variable, or if it refers to any set that refers to the the range
variable, it will be evaluated for each element of the range set.

For listing 1, one might want to check whether all threads are periodic. Using the
check in listing 5, the evaluation will fail on the first element e (the Receiver thread),
but would have been successful on the second one (the Watcher thread).

theorem Only_Periodic_Thread
foreach e in Thread_Set do

check (Get_Property_Value (e, "Dispatch_Protocol") =
"periodic");

end Only_Periodic_Thread;

Listing 5: Thread periodicity

4.2. Relations

As exposed in Section 4.1.2, sets can be defined that refer to previously defined
sets. Sets gather elements matching specified properties. REAL defines relations
to find hierarchical links between AADL component instances. Relations allow to
navigate in the AADL model and thus to access AADL architectural semantics within
REAL. For instance, the relation A is_subcomponent_of Breturns true whenever
the instance A is a subcomponent of the instance B. Relation can be expressed between
two elements, or between a set and an element. In that case, this example would return
true whenever A is a subcomponent of any element of the set B.

4.3. Advanced features

4.3.1. Flow analysis

Aside from the REAL interpreter, we have developed Flow Analysis Tool (FAT),
a tool which allows to deduce AADL implicit flows from the AADL model, and to
store them back in the OCARINA tree. Hence, end-to-end flows can be designated

8
¢ soumission a IDM’08

with REAL, thus allowing to check flow-related constraints in an efficient and concise
manner. An example of such constraint is to check the bound of flow latency.

4.3.2. REAL & AADL annexes

A REAL theorem can be declared either in a REAL file or in annexes within
AADL components.

When a REAL theorem is declared in an AADL component, the component’s
instances form the theorem context, the theorem itself being contextualized. Practi-
cally, a set named the local set that contains all the instances of the component will
be generated. It allows the direct addressing of a kind of peculiar component instead
of the whole class (eg. check a property only on SPARC processors instead of all
processors).

A theorem defined in a REAL file is named contextfree. Such theorems can refer
to the local set, but without having a priori any information on the kind of its ele-
ments (cf. Section 4.3.3). The main usage of REAL files is to define libraries for
contextualized theorems.

4.3.3. Required theorems

REAL allows the definition of other theorems as required for proving the current
one. Those theorems are evaluated before the current one. If any of those required
theorems is false, then REAL will tag the current theorem as false.

When a required theorem is evaluated, its context (ie. its Local Set) is inherited
from the callee theorem. It implies that required theorems must not be defined within
an AADL annexe, butin REAL files.

4.4. Implementation

We have implemented a REAL parser, checker and verifier within OCARINA which
can work with separate REAL files as well as REAL annexes of AADL components.
Manipulations are performed on OCARINA’s Abstract Syntax Tree (AST). A set being
a collection of entities from the AST. The REAL checker works on the internal view
of the AADL model to perform validation.

Let us note a REAL theorem puts constraints on the structure of the model. Its ver-
ification implies building subsets of the AST impacted by the theorem, and performing
set operations on them (union, intersection, iteration, etc.). This gives an upper-bound
on the resources used by the operation.

Hence, memory use for proving a REAL theorem is bounded by the complexity of
the AADL model and the number of sets actually declared in the theorem. A subset
references entities from the AST. Therefore, its size is at most proportional to that of
the AST. It usually consumes less memory.

Validating requirements at model-level 9

All operations within REAL are either unary or binary. In a worst-case scenario,
both operands of an operation are sets (rather than being a set/element or element/ele-
ment couple), and both sets may have the same size as the number of elements in the
original AADL model, in which case the operator will be applied a total of NxN times.
Thus, the upper bound for the execution time of the algorithm is quadratic.

5. Using REAL to validate models

Two kind of constraints can appear in a model : runtime constraints and model-
specific constraints. The runtime constraints must be enforced in all models fit in the
constraint, while model-specific constraints must be enforced regardless of the actual
runtime. In this section, we illustrate both by giving an example, and then the related
REAL theorem.

5.1. A runtime-specific set of constraints : the Ravenscar Profile

In this section we illustrate the use of REAL on a complete example: ensuring that
an AADL model complies to the Ravenscar Profile. We first give a quick definition of
the Ravenscar Profile, and then we explain how to ensure that the model is compliant
to this profile, with the help of REAL and AADL. For each described theorem, we
give a short interpretation for the model corresponding to Figure 1.

The Ravenscar Profile (Burns et al., 2003) targets real-time and critical systems.
It is a subset of the Ada language that restricts concurrency constructs that prevent
schedulability analysis. In particular, strong restrictions are put on communication
and runtime constructs such as tasks, rendezvous and protected objects. Basically, this
profile forbids any dynamic and non-deterministic features in concurrent program-
ming. It has also been adapted for RTSJ (Kwon er al., 2005).

5.1.1. Thread and protected objects restrictions
To be Ravenscar-compliant, the code must comply to the following properties :

— No aperiodic tasks : Threads are either sporadic or periodic, scheduled by the
FIFO_Within Priorities policy.

— PCP-consistent : concurrent access to shared data uses the Priority Ceiling Pro-
tocol (Sha et al., 1990). This protocol ensures mutual exclusion while also bounding
priority inversion.

Other restrictions are more specific to the code being used, and cannot be checked

at model level (e.g. use of time-related functions).

By defining these properties as REAL rules, one can ensure an AADL model
matches the constraints of the target runtime. This ensures earlier detection of model
errors, but also reduce the complexity of checks to be performed by the code generator.

10
¢ soumission a IDM’08

Therefore, one can generate code that follows the architectural description with an
code generator like OCARINA/PolyORB-HI for High-Integrity systems.

We now detail how to check the Ravenscar properties.

5.1.2. Absence of aperiodic tasks
5.1.2.1. AADL translation

The first step toward writing a REAL theorem is to map the code-related state-
ment in the AADL model. The statement is natural : the Dispatch Protocol
AADL standard property defined the nature of the thread. Hence, verifying whether
tasks are periodic or sporadic is the same as verifying if threads have the property
Dispatch Protocol set to Sporadic or Periodic.

5.1.2.2. REAL translation

In listing 6, Thread_Set is a predefined set that includes all AADL thread compo-
nent instances. Get_Property_Value returns the value of the property for the given
element. In this case, the value is tested for each element of the range set.

theorem task_periodicity

foreach t in Thread_Set do
check ((Get_Property_Value (t, "Dispatch_Protocol") =
"periodic") or
(Get_Property_Value (t, "Dispatch_Protocol") =
"sporadic"));

end task_periodicity;

Listing 6: Task Periodicity

5.1.2.3. Interpretation

In Listing 1, the threads Receiver and Watcher are part of the process node. i.
Since Receiver is sporadic and Watcher is periodic, the theorem is verified for this
model.

5.1.3. PCP-Compliance
5.1.3.1. AADL translation
For a model to be compliant with PCP hypothesis, one has to check two conditions:

— Shared data components use the PCP concurrency control mechanism;
— No data component following PCP has an accessor thread whose priority is su-
perior to the ceiling priority and all those threads are hosted by the same processor.

The first condition is equivalent to assessing that if more than one thread
access a data component instance (ie. the same data component instance is

Validating requirements at model-level 11

provided to those threads), then the data component instance must have the
Concurrency_Control Protocol set to priority ceiling.

The second condition states: all threads accessing a data must have a priority (ie.
user-defined property Priority) which is less than the priority of the accessed data.
Furthermore, all threads must be on the same processor.

5.1.3.2. REAL translation

The theorem is split in two parts: the theorem in Listing 7 checks whether PCP has
been declared for all shared data; the second one (listing 8) checks whether conditions
for PCP are present. We will use some predefined sets and relations:

— Data_Set contains all data instances

— Processor_Set contains all processor instances

— Is_Accessing To relation returns true when the first argument accesses the
second one.

— Is_Bound To relation returns true when the first argument’s
Actual Processor_ Binding property refers to the second argument.

theorem all_pcp
foreach d in Data_Set do
accessor_threads := {t in Thread_Set | Is_Accessing_To (t, d)}

check (Cardinal (accessor_threads) = 1 or
(Get_Property_Value
(d, "Concurrency_Control_Protocol") =
"Priority_Ceiling"));
end all_pcp;

Listing 7: Shared data access

theorem PCP
foreach e in Data_Set do

— Set of the threads that acceed to the protected data
accessor_threads := {t in Thread_Set | Is_Accessing_To (t, e)}

— set of the processor(s) that the

— accessor_threads are bound to

threads_processors := {p in Processor_Set |
Is_Bound_To (accessor_threads, p)}

— call PCP theorem
requires (pcp);

— proceed to the actual verification
check (((Get_Property_Value
(e, "Concurrency_Control_Protocol") <>
"Protected_Access") or
(Get_Property_Value (e, "ARAO:: Priority") >=
Max (accessor_threads,
Get_Property_Value,
"ARAO:: Priority ")))
and Cardinal (threads_processors) <= 1);

12
¢ soumission a IDM’08

end PCP;

Listing 8: PCP

5.1.3.3. Interpretation

Listings 1 and 3 show that the only data which is accessed by more
than one thread is sh mem of type shared data, which does have the
Concurency_Control_Protocol set to the value Protected Access, thus verifying
theorem 7. In the AADL model, we also see that the threads Watcher and Receiver
priorities are respectively 2 and 4. Since only those threads access to the shared data,
and the latter priority is 5, the theorem 8 is verified too. We can conclude that the
AADL model is compliant to PCP.

5.2. Model-specific constraints

Model-specific constraints are diverse by nature. In this section, we present two of
them : secure communications and task fitness. For both of them, we present a short
description, the meaning in the AADL model and the REAL theorem corresponding
to the constraint.

5.2.1. Secure communication

Secure communication is a condition requested by the standard API ARINC 653
part 1 (ARINC, 1997). It’s a commonly used standard in avionic systems to ensure
a strict separation of the processes, with different level of separation according to the
process criticity. One of the condition that the system must comply to is that a thread
must not interfere with a thread of superior criticity.

5.2.1.1. AADL translation

A ARAO: :criticity property has been defined in AADL. A communication from
a thread to another one (ie. a message sent) is modeled by a connection between the
corresponding component instances.

5.2.1.2. REAL translation

In Listing 9, Thread_Set is a predefined set that includes all AADL thread com-
ponent instances. Is_Connecting Toreturns all threads which receive data or signals
(ie. AADL connections) from the current one. Get_Property Value returns the
value of the property for the given element. In this case, the value is tested for each
element of the range set.

— Check a condition of ARINC security :
— for any thread, all threads which send it messages must have an
— equal or less criticity

theorem ARINC_Secure

Validating requirements at model-level 13

foreach e in Thread_Set do
Cnx_threads(e) := {t in Thread_Set | Is_Connecting_To (e, t)}

check (Get_Property_Value (e, "RTOS_Properties:: criticity ") >=
Max (Cnx_threads, Get_Property_Value, "RTOS_Properties:: criticity "));

end ARINC_Secure;

Listing 9: Task isolation

5.2.1.3. Interpretation

In Listing 1, the threads Receiver and Watcher are of the same criticity. Yet, they
have no direct connections, hence they comply to the constraint.

5.2.2. Correct use of a subprogram

A frequent requirement of embedded systems is to follow string period and priority
assignment for threads running mathematical functions (e.g. Kalman filters, Runge-
Kunta functions to control a systems). We present here how such constraints can be
dealt with AADL and REAL.

5.2.2.1. Implementation

Such a constraint on a subprogram is strictly local, and must be designed separately
for each subprogram. REAL allows the designer to define a theorem relatively to a
given component, here a subprogram. As described in Section 4.3.2, it consists in
placing the theorem within the component’s annex, and then using the Local_ Set as
a reference to it.

We used the REAL relation Is_Calling, which returns the components instances
that are called by the parameter-passed component instance. The Period AADL
property defines the period of a thread, in milliseconds.

The Listing 10, complete the model defined by Listing 1 by defining more pre-
cisely the Watcher thread. It now calls the subprogram watch. The REAL theorem
written in the subprogram annex checks whether the thread which it is run by has the
right period and priority.

subprogram watch

features

data_in : requires data access shared_data.i;
properties

source_language => Ada95;
annex

min_req {**
theorem subprogram_requierements

foreach t in Thread_Set do
Called := {I| in Local_Set | Is_Calling (t, 1)}
check ((Cardinal (Called) = 0) or

((Get_Property_Value (t, "ARAO:: Priority") = 4)
and (Get_Property_Value (t, "Period") = 500)));

14
¢ soumission a IDM’08

end subprogram_requierements;
*+};

end watch;

thread implementation Watcher.impl
calls {

sp : suprogram watch;
b
connections

data access mem — sp.data_in;
end Watcher.impl;

Listing 10: Subprogram constraints

5.2.2.2. Interpretation

First, the theorem execution build the intermediary set Called. It is composed of
a subset of the Local_Set defined by the component which are called by the current
range element, a thread component. Called on any subprogram, it will return the
subprogram, if it is called by the current range element, or else be empty. In our
case, watch is present in the Local_Set, hence the called set will be successively
containing watch (when thread Watcher is the current range element) and nothing
(when others threads are the current range element).

Then, the verification expression states that if the set Called is not empty, the
current range element must have a certain period and priority. This expression will
be checked against the thread Watcher, the only matching component.

6. Conclusion and future work

We considered the problem of requirements enforcement in architectural models
prior to performing analysis (schedulability) or code generation. Such enforcement
helps making sure the model can be analyzed by these tools, but also allowing one to
detect inconsistencies in the model earlier. Yet, the designer needs a precise and con-
cise way to express those, without breaking the link between models and constraints.

We propose REAL, a DSL bound to a model as an AADL annex to express re-
quirements on model entities. REAL defines checks as sets and operations on these
sets built from the model. The implementation of a REAL checker allows to assess
a model is compliant to a set of structural rules. REAL manipulates AADL com-
ponent types in an efficient way to check requirements on the model structure. We
illustrate how to use REAL for checking restrictions from the Ravenscar profile ap-
plied to real-time systems. REAL can also be used by modelers in order to ensure
non-functional requirements of some components. Hence, REAL can help building
architectural models that respects precise constraints prior to further exploitations.

Our future work will use REAL first to compute metrics on a model to evaluate its
performance, by adding formulae to theorems. Connections with other analysis tools
will be contemplated to delegate complex computations (e.g. worst-case execution

Validating requirements at model-level 15

time) or simulations. Furthermore, we will evaluate model transformation techniques
to derive optimized, semantically-equivalent model from the user-defined model. In
this context, REAL will provide evaluation of the merit of each model.

7. References

ARINC, Avionics Application Software Standard Interface, ARINC Specification 653. January,
1997.

Burns A., Dobbing B., Vardanega T., Guide for the use of the Ada Ravenscar profile in high
integrity systems. 2003.

Deng W., Dwyer M. B., Hatcliff J., Jung G., Robby, Singh G., « Model-checking Middleware-
based Event-driven Real-time Embedded Software », Proceedings of the First International
Symposium on Formal Methods for Components and Objects (FMCO 2002), 2003.

Dissaux P., « Using AADL for mission critical software development », 2nd European Congres
ERTS (Embedded Reat Time Software, January, 2004.

Douglass B. P., Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Sys-
tems, Addison-Wesley, SEP, 2002.

Farail P., Gaufillet P., TOPCASED : un environnement de développement Open Source pour les
systemes embarqués, Technical report, Airbus France, 2005. http://www.topcased.org.
Feiler P. H., Gluch D. P, Hudak J. J., The Architecture Analysis & Design Language (AADL):

An Introduction, Technical report, CMU, 2006. CMU/SEI-2006-TN-011.
Freitas L., POSIX 1003.21 Standard — Real Time Distributed Systems Communication (in
Z/Eves), Technical report, University of York, 2006.

Hugues J., Zalila B., Pautet L., « Rapid Prototyping of Distributed Real-Time Embedded Sys-
tems Using the AADL and Ocarina », Proceedings of the 18th IEEE International Work-
shop on Rapid System Prototyping (RSP’07), IEEE Computer Society Press, Porto Alegre,
Brazil, p. 106-112, May, 2007.

KwonJ., Wellings A., King S., « Ravenscar-Java: A High-Integrity Profile for Real-Time Java »,
Concurrency and Computation: Practice and Experience, vol. 17, n° 5-6, p. 681-713, 2005.

Medvidovic N., Taylor R. N., « A Framework for Classifying and Comparing Architecture
Description Languages », Proceedings of the Sixth European Software Engineering Con-
ference (ESEC/FSE 97), Springer-Verlag, 1997.

OMG, UML 2.0 Superstructure Specification, OMG, 2003.
OMG, A UML profile for MARTE - Beta 1, OMG, 2007.
SAE, « Architecture Analysis & Design Language(AS5506) », sep, 2004.

Sha L., Rajkumar R., Lehoczky J., « Priority Inheritance Protocols : An approach to Real-Time
Synchronization », IEEE Transactions on Computers, 1990.

team S. A., OSATE : an extensible Source AADL tool environment, Technical report, SEI,
December, 2004.

Vergnaud T., Zalila B., Ocarina: a Compiler for the AADL, Technical report, Télécom Paris,
2006.

Warmer J., Kleppe A., The Object Constraint Language : Precise Modeling with UML,
Addison-Wesley, 1998.

