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Abstract

For its simplicity and efficiency, the bag-of-words repms¢ion based on
appearance features is widely used in image and text ctzggifi. Its draw-
back is that shape patterns of the image are neglected. &pir presents
a novel image classification approach using a bag-of-woegsesentation
of textons while taking into account spatial informationgénerative proba-
bilistic modeling of the distribution of textons is propds& he parameters of
the mixture’s components are estimated using a EM algorithvmshow that
the number of classes in a database can be found automatceallexac-
tly by MDL. This modeling gives very good results for the tasfkweakly
supervised classification in satellite images.

1 Introduction

Image classificatiolis designed to assign one —out of several— class to each pixel o
each local-patch of @isual scenk Automatic classification is relevant in a variety of ap-
plications ranging from text/image/video indexing andie¥al, to object categorisation,
surveillance systems, medical and remote sensing imagkessianding [22, 12, 3, 4, 14].
In particular, in recent years, thanks to the advent of végi hesolution (VHR) satellite
imagery and its diffusion via web-based tools suclGasgleEarth remote sensing (RS)
applications attracted an increasing interest in the Mehision and Image Processing
communities [3].

Textonsdefined as the atomic visual elements of a visual scene, fisstrtroduced
by Julesz at the early stage of visual perception [11]. Inphisial sketch representa-
tion [15], Marr extended this concept to image primitivesiely the "symbolic tokens”,
where primitives were defined as geometric features cordpuata deterministic way. If
the concept of the atomic structure endured, its definitiag évolved: it is nowadays
widely acknowledged that image primitives are featurespnaied by statistical analysis
of small image windows from large databases [10], [13], [19]

1Several terminologies are used in the literature, thoudierniag to the same task: labeling.g. [8]),
simultaneous segmentation and recognitiew.([22]), classification€.g. [19]).



A large literature in recent years has been dedicated to lingdihe image via a
bag of words/features/textons representation [19, 24238, The orderless (indepen-
dence and exchangeability) assumption of the bag-of-wgelds in a simple and easy-
to-manipulate representatioig. vectors or histograms. However, because it overlooks
the spatial location of textons in the image, it entails & losvaluable and discrimina-
tive information associated toattern and shape feature§o tackle this problem, [12]
proposes to take into account the spatial layout of patdiresigh a pyramidal approach.
In [16], keypoints extracted from the image are given somgoirtance according to their
relative position within the object. The shape-contextdesor [2] is designed to capture
the relative position of other shape points around a retergoint. In [1], the authors use
generalised correlograms to extract information abouh#ighbourhood of a keypoint.

A classic representation theorem due to De Finetti [5] &sdbat any collection of
exchangeable random variables can be modeled as a mixtaribakion. In this respect,
Sivic exploited earlier developments in text classificatidocument analysis and machine
learning (see [17] for example), and proposes a pLSA maalgl (9]) for image cate-
gories classification [22]. Weber introduces a generatigure model to represent the
variability of shape and appearance of objects [25]. A thgtohierarchical approach is
developed in [24] to model objects, parts and the scene xionte

In this paper, an image is represented as a number of indivizhiches The size
of the patches is taken large enough to enable the computatioobust statistics of
textons within each patch, and small enough to assign edch fma uniquevisual class
Our contribution is threefold. First, inspired from [1], weroduce a new pattern-texton
descriptor that takes into account the spatial patteratlagf points of interest extracted
by an Harris detector. We show that classification resuttsifour descriptor outperform
results obtained from an appearance-based descriptar.df@tond, we propose a gene-
rative model of the patch under the form of mixture compos@ftindependent textons.
In this model, each class corresponds to a latent variatblighwn turn is associated to a
set of parameters that define the distribution of textonstlizave show that the optimal
number of classes that describe a database can be estimtiathtically and exactly by
selecting the optimal complexity of the model. This modglgives very efficient results
on a database generated from very high resolution opticad@s.

The remainder of the paper is organised as follows. In Se@iave introduce a
probabilistic modeling for weakly-supervised classifioat the model definition, the pa-
rameters learning and the classification task are detdieplerimental results on remote
sensing images are illustrated and evaluated in Sectiorexdfclude in Section 4.

2 Probabilistic framework

This section presents a probabilistic framework for clggsy highly textured images.
We define a probabilistic generative model of the data; tassamptions about the gene-
rative process are made: i) the data are described by appeasad shape/pattern char-
acteristics; pattern and appearance features are indepiindampled and exchangeable;

i) the probability distribution that generates the dateetathe form of a mixture model
parametrised by the sé®, rt}; iii) there is a one to one correspondence between mixture
components and classe®(a component is associated to one class only). Each compo-
nent of the mixture is associated to a latent variable
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Figure 1: Example of some visual words. Each line correspdndseveral different
elements of the same visual cluster.

Before giving the details of the generative model (subsa@i2), we describe the fea-
tures that are used to feed this model (subsection 2.1). afsneters of the distribution
are estimated during the training task, from a weakly l@sbtlatabase (subsection 2.3).
We show how to compute optimally the number of classes tratridee the data set (sub-
section 2.4). Equipped with the estimated parameters,|#ssification is performed by
maximisation of the posterior probability (subsection)2.5

2.1 Descriptors

Appearance feature Keypoints are extracted using the Harris detector [7]. Agsbthe
main advantages of this detector are its invariance toiootaind translation. We sample
a fixed number of keypoints in a given patch by keepingNhieighest responses of the
Harris detector, wheri is large enough to make possible statistical modeling. Aches
of fixed size are considered, we do not make use here of scafgeadin. Following
several recent approaches [22, 19], we use SIFT descriptappearance feature [14].
SIFT vectors, of dimension 128, are computed on a squarezeflfix 16 pixels and
guantised i, cluster using a k-means algorithm. The quantised descsipt@amely
appearance-textonsonstitute a discrete vocabulafty, ..., ty, }.

Pattern/shape feature The general idea from the pattern descriptor we proposeitiere
to characterise the spatial distribution of keypoints iith given region by computing
the Fourier transform of the function of their occurrenaasa given radius. We explain
it here as a transformation of a generalised correlograentaka keypoint [1].

Thus, let{xy,...,xn} be the set of vectors of location of keypoints extracted & th
patch, and p1, ..., pn} the textons extracted at these points. At each keypagi@at gene-
ralised correlogranh; is extracted as follows [1]:

Let the spatial relatiorfx — x;) of any keypointx; with reference tog be written
in polar coordinategaij, rij), whereai; = (ﬁ) andrij = ||xi — %;|. The angle and
radius are quantised imy, andn, bins respectively. Let not&, be theu-th bin of angles,
ue{1,2,..,nq}, and letR, be thev-th bin of radius,v € {1,...,n;}. The generalised
correlogramh;, of dimensiomy, = ng x Ny x ny and linked top;, is defined by:

1 —
hi(t,uv) =5 {pieP:pj=t,(x —Xj) €A, [IX —Xj[| € R} .

Taken as such, the correlograms have very high dimensignate usually very sparse,
and are not rotation-invariant. To tackle these problengspropose to apply to the cor-
relogram the following transformation: Given a bin of raglwand a keypoint;, we



consider the unidimensional functidp (u) = S ; hi(u,v,t); this function simply counts
the occurrences of textons in every bin of angle for a givendbiradius, independently
of the texton bin. We compute the Fourier transfornfigfand retain the module of the
n first coefficients. It results in a descriptor which is ingant to rotation transformation,
and of sizens x ny < ny. Finally, we build, from a large databasepattern-textons code-
bookof sizens. Then, to each keypoint of the image is assigned an entryeipéttern
codebook.

2.2 Probabilistic modeling

We assume that each patch of indéxlinked to the realisation of a discrdtgent varia-
ble L, which is taken independently for each patch. This lateriaisée takes its values
in a vocabulary{V?,....,VK} of sizeK, with probability T= {rm,..., i } respectively;
these values correspond to the differelaissesvhich will be assigned to the patches.

We consider that appearance-textdngand pattern-texton§ in the patchi depend
only on the latent variable;. We make also the strong assumption BatndT; are inde-
pendent conditionally td;, i.e.: P(S,Ti|L;) = P(S|L)P(Ti|Li). Moreover, we suppose
that the textons within the set of textofsare independent conditionally tg; the same
assumption is made for the Skt

To simplify the notations, we concatenate the represemzfS andT; in a single
histogram vecto;. If ny andns are respectively the number of quantisation values of the
SIFT vectors and the pattern feature descriptors, the tiigdgram is of siz& = ng+ny.
The vocabulary of this set of textons is given{ny, ..., 0n}.

Let o be a texton inside this patch, we defifig = P(o = 0;|L; = V¥) the probability
of the realisation of texton entny;, conditionally toVik. The distributionsP(Oi|L;) are
then entirely described by the set of parame@es {6k }1<j<n 1<k<k-

The observatio®; = {Ni1,Ni2, ..., Nin } stands for the histogram of the textons inside
the patchi, whereN;j is the number of occurrences of entiyin this patch. Using the
assumption of independence of textons conditionally tdatent variable, the probability
to generate the textons in patchrites:

K
P(0I|O,n) = z (Li =Vi|©, M P(OI|Li =V} mrLeN” . 1)

Thus, each visual class of a database is associated to avateble, which in turn
is associated to one component of the mixture model. Thisefisadion is a mixture of
unigrams model ([17]) and, unlike pLSA, each patch is supgds be associated to a
single value of the latent variable.

2.3 Learning the probability distribution

The learning task consists of estimating the parametetrs#fimes the mixture model (1),
using a training set of unlabelled data containkhgisual classes. These parameters are
estimated by maximising the likelihood of the observatiB(®|o, m).

The Expectation-Maximization algorithm [6] suits perfgahis optimisation prob-
lem: it gives an efficient way to compute step by step a (lavaimum of the likelihood,
in case of incomplete data. Our data is considered incompletause it comes without a
class label.



We introduce a hidden variable—which can be associated to the indicator func-
tion of the latent variable. The following two steps are comeygl iteratively and until
convergence:

E-step: computation of the expectatimiO;) = E(zk|O;, ©, m), for all k andi, using
the Bayes inversion rulet(stands for the iteration index):

t t .
Who) = n M)
k i) = -
Sk 7753) ﬂ?:l(ej(lt(>)Nll
M-step: maximisation 0Ez0 e (logP(O,2/®, m)), using the Lagrange multipliers
method. The following update formula are thus obtained:

gttt = Ik Zon
t+1) Z. ly(t“)(wiN[ 2)
Té NZl 1Vk (O.)

with N the total number of patches in the learning database Naride total number of
textons in a patch. B
The estimated parameters at the end of the iterations aed {@t, 77 }.

Initialization of the parameters The resulting estimated components depend upon the
initialization of the parameter§@(=0) nt=0)} at the first E-step. In order to ensure
a robust convergencén the sense of repetitiveness; it does not ensugéobal con-
vergence), we first apply a k-means clustering algorithmhto tormalisedOjc (1, ny
histograms (here taken as vectors); it results in a preimgiestimation of the compo-
nents®. The EM is then initialized by assignin@®=% = &. Weighting parameters

T are initialised from a uniform distribution. This processrepeated several times.
Finally, the optimal set of parameters that is used durirgsification is defined by:
(6,71} = arg max|'| P(Li|Oi, @, ), whereQ; is computed from the training database.

2.4 Model selection

Fixing arbitrarily anda priori the number of classds§ that describe a given database is
not quite satisfying. We show in this subsection how to epf@ Minimum Description
Length principle to compute automatically tbetimal number of classesf a training
database.

Introduced in 1989 [20], th#Minimum Stochastic Complexity criteri@ssumes that
the best model describing a database is the one coding iawitmimal number of bits.
Given a set of modelngK}K’"ax and the learning databa€e the modeMk is associated
to the description lengtB(O,Mk). This length is separated into two parts, the length of
the code which is necessary to code a model, and the lendtle cbtle necessary to code
the data using the moddD(O, Mg ) = D(O|Mk ) + D(M).

In [21], Shannon establishes a relation between the codgheand the probability
of the signal:D(O|Mk) = —logP(O|Mk). Incorporating Equation (1), this expression

becomes: )
D(O|My) = Zlog z |_| ) (3)

k=1 k=1



The model lengttD(Mk) should, in theory, be infinite, becaud consists of a set
of real parameters. However, since the parameters of ouehaod estimated from the
number of occurrences of textons in the patches (see Equed)an use a formula given
by Rissanen in [20] and estiméid Mg ) by:

D(Mi) = & [(n+ 1Iog(N) +nlog(Ny)] @

whereN is the total number of patches in the learning databidsis, the total number of
textons in all patches, amdis the size of the descriptor.

In order to find the optimal model, we use the following heligisfor all K varying
from 1 to a fixed valueKnax the parameters of the mode are estimated and the
stochastic complexitip(O, Mk ) is computed. The mod®lk that minimises the stochas-
tic complexity is retained and determines the optimal nunabelasses°P,

2.5 Classification

Given estimates of the parameté& ft}, the task is to classify a patch of the test data into
a single class. The selected class will be the one that iciased to the latent variable
which has the highest posterior probabiIRYLi|Oi,(:), f). For this purpose, we apply a
Bayes decomposition rule:

P(L|0;, 6, fi) = P(Oi|L;2_?éP7§T§ilé, 1) -

Note that the denominator of Equ. (5) does not depenld ohe selected class on patch
i is then given by:

arg max}P(Li:Vk|Oi,C:),fT):arg max P(Qj|L; =VK 6, MP(L; =VX6, ), (6)

vke{l,...K vke{l,...K}
with P(O1|Li =V, 6, )P(Li = WO, 1) = &)y 6),.

It is possible to introduce a reject class by setting a thokekskialuethreshon the
posterior. It means that the patch will be rejected if no<lkesresponds to a sufficient
likelihood. Thus, a patch is not classified if:

max P(L;j =VK|O) < thresh. 7)
ke{1,...K}

3 Experimental results on satellite images

In this section, we describe the composition of our data, gbts experimental setup,
and the results obtained for the tasks of classification andefrselection. We compare
classification results obtained with and without the pattiscriptor and show evidence
of the improvement of the classification in the former case.

3.1 Data sets and features

Our data set is generated from an optical very high resalu@aickbird panchromatic
image. The original Quickbird image being very large 10,000 pixels) we extracted



Figure 2: Instances of the visual classes. From left to ri@ineéenhouses, Working place,
Big-building area, Fields, Housing area, Small industdesa, Golf field area, Fishing
area, Wasteland, Hutong.

5535 patches, of size 250250 pixels each, which we divided into two distinct sets: the
learning set (containing 3823 patches), and the test satdicing 1712 patches). The
whole data set comprises 10 visual classes illustratedyar€i2.

Appearance and pattern textons (in total around 1 milliaxiors) are computed from
images which are included neither in the training data nahéntesting data set. We
generate a SIFT feature codebook of sige= 180. For the pattern descriptor, we set
(Rny,ng,ns) = (30,3,8,4) . Each patch of the data base is then represented by a his-
togram of sizen = 225.

3.2 Classification

The classification task was performed and quantitativedyuaited on a data set containing
8 visual classes (see Tab. 1) —taken out of the 10 of the otigmabase. During the
learning stage, EM algorithm was applied with 30 differantialisations, assuming that
the number of classds = 8 is known. During the test stage, patches of the test set are
classified from Equation (6).

Classification results are illustrated in Tabular 1. To gsalthe effect of pattern-
textons, we compared different descriptors: SIFT text&@iBT + pattern textons, and
Haralick features. Haralick features —texture featuresmaed from a co-ocurrence
matrix— have proved to be powerful for classification in irea@f 2.5m resolution [3].

It appears clearly that the performance of our classifieravgs significantly when
we incorporate pattern-textons, especially on classesirong a lot of geometrical infor-
mation (see Tab. 1): the correct classification rate careass up te- 14% when adding
pattern-textons to the SIFT textons. We observe also thitlidka features are always less
performing than our pattern-descriptor —the average cbalassification is about 77%
with Haralick, against 95% for our descriptor—, except foe@lass. It is worth noticing
that we did not try to tune the parameter set of our pattestmigtor R n;, gy, Ns,M): we
could verify experimentally that certain parameters bdttecertain geometric patterns,
however it is out of the scope of this paper.



Figure 3: (a): Stochastic complexity with 8 classes (lefi)l avith 4 classes (right). The
minimum complexity corresponds exactly to the expectedbemof classes.

3.3 Model selection

We applied our model selection algorithm on two differeairting data sets containing
respectively K=4 classes and K=8 classes. The model thatides best our data is
given at the minimum stochastic complexity (Equ. (3) and. (Mpte that applying model
selection is equivalent to learning the (optimal) numbetlagses in a database.

Results are illustrated in Figure 3. As expected, the mihieacription length cor-
responds td°P' = 4 for the first data set, and #°P! = 8 for the second: in both cases
the number of classes is correctly estimated.

This result indicates that our probabilistic model, defiasdmixture distributions of
independent textons, correctly reflects the data.

3.4 Classification using a reject class

We tested our classification procedure on a large size imlagsameteré and 7T were
estimated on a small training set (around 500 patches) of&aliclasses (classes (a),
(d), (e), (), (j) from Fig. 2). We assume that the test imambe classified might contain
some regions which do not belong to any of the predefinededass therefore introduce
a reject threshold on the posterior probability (see Eq)), {vhose value can be deduced
from the observation of the distribution of the posteriortaining data. A regular grid
divides the entire test image in patches of size 2250 pixels. Each patch is classified
independently using Equation (6).

Qualitative results are illustrated in Figure 4. They arasistent with expected re-
sults. We observe —-visually and by detailed inspection efdhtimated posterior for
each of the classes— that the rejected patches correspibied t&i patches containing a
mixture of predefined classes, or to patches that shoulthbdtoa class which has not
been learned. We notice the spatial homogeneity of theifitzg®n.



Visual classes | CCRwithoutpattern| CCR with pattern| CCR withHaralick
descriptor descriptor features
(a) Green houses$ 93.94 93.94 95.68
(b) Work place | 84.62 98.56 47.68
(c) Big building | 87.30 89.68 73.29
(e) Housing area| 98.82 99.29 93.37
(f) Small industr. | 84.21 94.77 52.97
(9) Golf field 96.40 96,40 94.53
(h) Fishing area | 92.94 92.30 86.51
(j) Hutong 98.15 98.41 98.22
[ Av. CCR | 92.36 | 95.63 | 77.32 \

Table 1: Performance evaluation and comparison from 8 vidasses (see Fig. 2). CCR

stands for theCorrect Classification RateOur pattern-descriptor improves significantly
the correct classification rate for classes (b) and (f), asdopms always better than

Haralick features, except for class (a).

4 Conclusion

We presented in this paper a probabilistic modeling to dlassmote sensing images.
We introduced a new rotation invariant pattern descriptbine distribution of textons
in a patch is modeled by a mixture distribution, based on #sumption of textons’
independence and exchangeability. We showed that the alptimmber of classes to
describe a database can be computed exactly by minimisingttichastic complexity of
the model. Very satisfying results are obtained on a databb®uickbird images. Future
work will be dedicated to developing a multi-scale versidémor model and integrating
itin a CRF framework.
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