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Abstract

For its simplicity and efficiency, the bag-of-words representation based on
appearance features is widely used in image and text classification. Its draw-
back is that shape patterns of the image are neglected. This paper presents
a novel image classification approach using a bag-of-words representation
of textons while taking into account spatial information. Agenerative proba-
bilistic modeling of the distribution of textons is proposed. The parameters of
the mixture’s components are estimated using a EM algorithm. We show that
the number of classes in a database can be found automatically and exac-
tly by MDL. This modeling gives very good results for the taskof weakly
supervised classification in satellite images.

1 Introduction

Image classificationis designed to assign one —out of several— class to each pixel or to
each local-patch of avisual scene1. Automatic classification is relevant in a variety of ap-
plications ranging from text/image/video indexing and retrieval, to object categorisation,
surveillance systems, medical and remote sensing images understanding [22, 12, 3, 4, 14].
In particular, in recent years, thanks to the advent of very high resolution (VHR) satellite
imagery and its diffusion via web-based tools such asGoogleEarth, remote sensing (RS)
applications attracted an increasing interest in the Machine Vision and Image Processing
communities [3].

Textons, defined as the atomic visual elements of a visual scene, werefirst introduced
by Julesz at the early stage of visual perception [11]. In hisprimal sketch representa-
tion [15], Marr extended this concept to image primitives, namely the ”symbolic tokens”,
where primitives were defined as geometric features computed in a deterministic way. If
the concept of the atomic structure endured, its definition has evolved: it is nowadays
widely acknowledged that image primitives are features computed by statistical analysis
of small image windows from large databases [10], [13], [19].

1Several terminologies are used in the literature, thought referring to the same task: labeling (e.g. [8]),
simultaneous segmentation and recognition (e.g. [22]), classification (e.g. [19]).



A large literature in recent years has been dedicated to modeling the image via a
bag of words/features/textons representation [19, 24, 18,23]. The orderless (indepen-
dence and exchangeability) assumption of the bag-of-wordsyields in a simple and easy-
to-manipulate representation,i.e. vectors or histograms. However, because it overlooks
the spatial location of textons in the image, it entails a loss of valuable and discrimina-
tive information associated topattern and shape features. To tackle this problem, [12]
proposes to take into account the spatial layout of patches through a pyramidal approach.
In [16], keypoints extracted from the image are given some importance according to their
relative position within the object. The shape-context descriptor [2] is designed to capture
the relative position of other shape points around a reference point. In [1], the authors use
generalised correlograms to extract information about theneighbourhood of a keypoint.

A classic representation theorem due to De Finetti [5] asserts that any collection of
exchangeable random variables can be modeled as a mixture distribution. In this respect,
Sivic exploited earlier developments in text classification, document analysis and machine
learning (see [17] for example), and proposes a pLSA model (e.g. [9]) for image cate-
gories classification [22]. Weber introduces a generative mixture model to represent the
variability of shape and appearance of objects [25]. A thorough hierarchical approach is
developed in [24] to model objects, parts and the scene context.

In this paper, an image is represented as a number of individual patches. The size
of the patches is taken large enough to enable the computation of robust statistics of
textons within each patch, and small enough to assign each patch to a uniquevisual class.
Our contribution is threefold. First, inspired from [1], weintroduce a new pattern-texton
descriptor that takes into account the spatial pattern/layout of points of interest extracted
by an Harris detector. We show that classification results from our descriptor outperform
results obtained from an appearance-based descriptor alone. Second, we propose a gene-
rative model of the patch under the form of mixture components of independent textons.
In this model, each class corresponds to a latent variable, which in turn is associated to a
set of parameters that define the distribution of textons. Lastly, we show that the optimal
number of classes that describe a database can be estimated automatically and exactly by
selecting the optimal complexity of the model. This modeling gives very efficient results
on a database generated from very high resolution optical images.

The remainder of the paper is organised as follows. In Section 2 we introduce a
probabilistic modeling for weakly-supervised classification; the model definition, the pa-
rameters learning and the classification task are detailed.Experimental results on remote
sensing images are illustrated and evaluated in Section 3. We conclude in Section 4.

2 Probabilistic framework

This section presents a probabilistic framework for classifying highly textured images.
We define a probabilistic generative model of the data; threeassumptions about the gene-
rative process are made: i) the data are described by appearance and shape/pattern char-
acteristics; pattern and appearance features are independently sampled and exchangeable;
ii) the probability distribution that generates the data takes the form of a mixture model
parametrised by the set{Θ,π}; iii) there is a one to one correspondence between mixture
components and classes (i.e. a component is associated to one class only). Each compo-
nent of the mixture is associated to a latent variableL.



Figure 1: Example of some visual words. Each line corresponds to several different
elements of the same visual cluster.

Before giving the details of the generative model (subsection 2.2), we describe the fea-
tures that are used to feed this model (subsection 2.1). The parameters of the distribution
are estimated during the training task, from a weakly labelled database (subsection 2.3).
We show how to compute optimally the number of classes that describe the data set (sub-
section 2.4). Equipped with the estimated parameters, the classification is performed by
maximisation of the posterior probability (subsection 2.5).

2.1 Descriptors

Appearance feature Keypoints are extracted using the Harris detector [7]. Amongst the
main advantages of this detector are its invariance to rotation and translation. We sample
a fixed number of keypoints in a given patch by keeping theN highest responses of the
Harris detector, whereN is large enough to make possible statistical modeling. As patches
of fixed size are considered, we do not make use here of scale adaptation. Following
several recent approaches [22, 19], we use SIFT descriptor as appearance feature [14].
SIFT vectors, of dimension 128, are computed on a square of size 16× 16 pixels and
quantised innt cluster using a k-means algorithm. The quantised descriptors, namely
appearance-textons, constitute a discrete vocabulary{t1, ..., tnt}.

Pattern/shape feature The general idea from the pattern descriptor we propose hereis
to characterise the spatial distribution of keypoints within a given region by computing
the Fourier transform of the function of their occurrences for a given radius. We explain
it here as a transformation of a generalised correlogram taken at a keypoint [1].

Thus, let{x1, ...,xN} be the set of vectors of location of keypoints extracted in the
patch, and{p1, ..., pN} the textons extracted at these points. At each keypointxi , a gene-
ralised correlogramhi is extracted as follows [1]:

Let the spatial relation(xi − x j) of any keypointx j with reference toxi be written

in polar coordinates(αi j , r i j ), whereαi j = ̂(xi −x j) andr i j = ‖xi − x j‖. The angle and
radius are quantised innα andnr bins respectively. Let noteAu be theu-th bin of angles,
u ∈ {1,2, ...,nα}, and letRv be thev-th bin of radius,v ∈ {1, ...,nr}. The generalised
correlogramhi , of dimensionnh = nα ×nr ×nt and linked topi , is defined by:

hi(t,u,v) =
1
N

∣

∣

∣
{p j ∈ P : p j = t, ̂(xi −x j) ∈ Au,‖xi −x j‖ ∈ Rv}

∣

∣

∣
.

Taken as such, the correlograms have very high dimensionality, are usually very sparse,
and are not rotation-invariant. To tackle these problems, we propose to apply to the cor-
relogram the following transformation: Given a bin of radius v and a keypointxi , we



consider the unidimensional functionfiv(u) = ∑nt
t=1hi(u,v, t); this function simply counts

the occurrences of textons in every bin of angle for a given bin of radius, independently
of the texton bin. We compute the Fourier transform offiv and retain the module of the
nf first coefficients. It results in a descriptor which is invariant to rotation transformation,
and of sizenf ×nv < nh. Finally, we build, from a large database, apattern-textons code-
bookof sizens. Then, to each keypoint of the image is assigned an entry in the pattern
codebook.

2.2 Probabilistic modeling

We assume that each patch of indexi is linked to the realisation of a discretelatent varia-
ble Li , which is taken independently for each patch. This latent variable takes its values
in a vocabulary{V1, ....,VK} of sizeK, with probability π = {π1, ...,πK} respectively;
these values correspond to the differentclasseswhich will be assigned to the patches.

We consider that appearance-textonsTi and pattern-textonsSi in the patchi depend
only on the latent variableLi . We make also the strong assumption thatSi andTi are inde-
pendent conditionally toLi , i.e. : P(Si ,Ti |Li) = P(Si |Li)P(Ti |Li). Moreover, we suppose
that the textons within the set of textonsSi are independent conditionally toLi ; the same
assumption is made for the setTi .

To simplify the notations, we concatenate the representations ofSi andTi in a single
histogram vectorOi . If nT andnS are respectively the number of quantisation values of the
SIFT vectors and the pattern feature descriptors, the totalhistogram is of sizen = ns+nt .
The vocabulary of this set of textons is given by{o1, ...,on}.

Let o be a texton inside this patch, we defineθ jk = P(o = o j |Li = Vk) the probability
of the realisation of texton entryo j , conditionally toVk. The distributionsP(Oi |Li) are
then entirely described by the set of parametersΘ = {θ jk}1≤ j≤n,1≤k≤K .

The observationOi = {Ni1,Ni2, ...,Nin} stands for the histogram of the textons inside
the patchi, whereNi j is the number of occurrences of entryo j in this patch. Using the
assumption of independence of textons conditionally to thelatent variable, the probability
to generate the textons in patchi writes:

P(Oi |Θ,π) =
K

∑
k=1

P(Li = Vk|Θ,π)P(Oi |Li = Vk) =
K

∑
k=1

πk

n

∏
j=1

θ Ni j
jk . (1)

Thus, each visual class of a database is associated to a latent variable, which in turn
is associated to one component of the mixture model. This modelisation is a mixture of
unigrams model ([17]) and, unlike pLSA, each patch is supposed to be associated to a
single value of the latent variable.

2.3 Learning the probability distribution

The learning task consists of estimating the parameters that defines the mixture model (1),
using a training set of unlabelled data containingK visual classes. These parameters are
estimated by maximising the likelihood of the observationsP(O|Θ,π).

The Expectation-Maximization algorithm [6] suits perfectly this optimisation prob-
lem: it gives an efficient way to compute step by step a (local)maximum of the likelihood,
in case of incomplete data. Our data is considered incomplete because it comes without a
class label.



We introduce a hidden variablez —which can be associated to the indicator func-
tion of the latent variable. The following two steps are computed iteratively and until
convergence:

E-step: computation of the expectationγk(Oi) = E(zik|Oi ,Θ,π), for all k andi, using
the Bayes inversion rule (t stands for the iteration index):

γ(t+1)
k (Oi) =

π(t)
k ∏n

j=1(θ
(t)
jk )Ni j

∑K
k=1 π(t)

k ∏n
j=1(θ

(t)
jk )Ni j

M-step: maximisation ofEZ|O,Θ,π(logP(O,z|Θ,π)), using the Lagrange multipliers
method. The following update formula are thus obtained:







θ (t+1)
jk =

∑N
i=1 γ(t)+1

k (Oi)ni

∑n
i=1 γ(t+1)

k (Oi) Nt

π(t+1)
k = 1

N ∑N
i=1 γ(t+1)

k (Oi)

(2)

with N the total number of patches in the learning database, andNt the total number of
textons in a patch.

The estimated parameters at the end of the iterations are noted{Θ̃′, π̃ ′}.

Initialization of the parameters The resulting estimated components depend upon the
initialization of the parameters{Θ(t=0),π(t=0)} at the first E-step. In order to ensure
a robust convergence(in the sense of repetitiveness; it does not ensure aglobal con-
vergence), we first apply a k-means clustering algorithm to the normalisedOi∈{1,...N}

histograms (here taken as vectors); it results in a preliminary estimation of the compo-
nentsΘ̃. The EM is then initialized by assigningΘ(t=0) = Θ̃. Weighting parameters
π are initialised from a uniform distribution. This process is repeated several times.
Finally, the optimal set of parameters that is used during classification is defined by:
{Θ̂, π̂} = arg max

{Θ̃′,π̃ ′}
∏
i

P(Li |Oi ,Θ̃′, π̃ ′), whereOi is computed from the training database.

2.4 Model selection

Fixing arbitrarily anda priori the number of classesK that describe a given database is
not quite satisfying. We show in this subsection how to exploit the Minimum Description
Length principle to compute automatically theoptimal number of classesof a training
database.

Introduced in 1989 [20], theMinimum Stochastic Complexity criterionassumes that
the best model describing a database is the one coding it witha minimal number of bits.
Given a set of models{MK}

Kmax
K=1 and the learning databaseO, the modelMK is associated

to the description lengthD(O,MK). This length is separated into two parts, the length of
the code which is necessary to code a model, and the length of the code necessary to code
the data using the model:D(O,MK) = D(O|MK)+D(MK).

In [21], Shannon establishes a relation between the code length and the probability
of the signal:D(O|MK) = − logP(O|MK). Incorporating Equation (1), this expression
becomes:

D(O|Mk) = −
N

∑
i=1

log(
K

∑
k=1

π̂k

n

∏
k=1

θ̂ Nik
jk ) . (3)



The model lengthD(MK) should, in theory, be infinite, becauseMK consists of a set
of real parameters. However, since the parameters of our model are estimated from the
number of occurrences of textons in the patches (see Equ. 2),we can use a formula given
by Rissanen in [20] and estimateD(MK) by:

D(MK) =
K
2

[(n+1)log(N)+nlog(Nt)] , (4)

whereN is the total number of patches in the learning database,Nt is the total number of
textons in all patches, andn is the size of the descriptor.

In order to find the optimal model, we use the following heuristic: for all K varying
from 1 to a fixed valueKmax, the parameters of the modelsMK are estimated and the
stochastic complexityD(O,MK) is computed. The modelMK that minimises the stochas-
tic complexity is retained and determines the optimal number of classesKopt.

2.5 Classification

Given estimates of the parameters{Θ̂, π̂}, the task is to classify a patch of the test data into
a single class. The selected class will be the one that is associated to the latent variable
which has the highest posterior probabilityP(Li |Oi ,Θ̂, π̂). For this purpose, we apply a
Bayes decomposition rule:

P(Li |Oi ,Θ̂, π̂) =
P(Oi |Li ,Θ̂, π̂)P(Li |Θ̂, π̂)

P(Oi |Θ̂, π̂)
. (5)

Note that the denominator of Equ. (5) does not depend onLi . The selected class on patch
i is then given by:

arg max
Vk∈{1,...,K}

P(Li =Vk|Oi ,Θ̂, π̂) = arg max
Vk∈{1,...,K}

P(Oi |Li =Vk
,Θ̂, π̂)P(Li =Vk|Θ̂, π̂) , (6)

with P(Oi |Li = Vk,Θ̂, π̂)P(Li = Vk|Θ̂, π̂) = π̂k ∏n
j=1 θ̂ Ni j

jk .
It is possible to introduce a reject class by setting a threshold valuethreshon the

posterior. It means that the patch will be rejected if no class corresponds to a sufficient
likelihood. Thus, a patch is not classified if:

max
k∈{1,...,K}

P(Li = Vk|Oi) < thresh. (7)

3 Experimental results on satellite images

In this section, we describe the composition of our data sets, the experimental setup,
and the results obtained for the tasks of classification and model selection. We compare
classification results obtained with and without the pattern descriptor and show evidence
of the improvement of the classification in the former case.

3.1 Data sets and features

Our data set is generated from an optical very high resolution Quickbird panchromatic
image. The original Quickbird image being very large (≈ 10,0002 pixels) we extracted



Figure 2: Instances of the visual classes. From left to right: Greenhouses, Working place,
Big-building area, Fields, Housing area, Small industriesarea, Golf field area, Fishing
area, Wasteland, Hutong.

5535 patches, of size 250×250 pixels each, which we divided into two distinct sets: the
learning set (containing 3823 patches), and the test set (containing 1712 patches). The
whole data set comprises 10 visual classes illustrated in Figure 2.

Appearance and pattern textons (in total around 1 million vectors) are computed from
images which are included neither in the training data nor inthe testing data set. We
generate a SIFT feature codebook of sizent = 180. For the pattern descriptor, we set
(R,nr ,nα ,nf ) = (30,3,8,4) . Each patch of the data base is then represented by a his-
togram of sizen = 225.

3.2 Classification

The classification task was performed and quantitatively evaluated on a data set containing
8 visual classes (see Tab. 1) —taken out of the 10 of the original database. During the
learning stage, EM algorithm was applied with 30 different initialisations, assuming that
the number of classesK = 8 is known. During the test stage, patches of the test set are
classified from Equation (6).

Classification results are illustrated in Tabular 1. To analyse the effect of pattern-
textons, we compared different descriptors: SIFT textons,SIFT + pattern textons, and
Haralick features. Haralick features —texture features computed from a co-ocurrence
matrix— have proved to be powerful for classification in images of 2.5m resolution [3].

It appears clearly that the performance of our classifier improves significantly when
we incorporate pattern-textons, especially on classes containing a lot of geometrical infor-
mation (see Tab. 1): the correct classification rate can increase up to∼ 14% when adding
pattern-textons to the SIFT textons. We observe also that Haralick features are always less
performing than our pattern-descriptor —the average correct classification is about 77%
with Haralick, against 95% for our descriptor–, except for one class. It is worth noticing
that we did not try to tune the parameter set of our pattern-descriptor (R,nr ,nα ,nf ,m): we
could verify experimentally that certain parameters better fit certain geometric patterns,
however it is out of the scope of this paper.



Figure 3: (a): Stochastic complexity with 8 classes (left) and with 4 classes (right). The
minimum complexity corresponds exactly to the expected number of classes.

3.3 Model selection

We applied our model selection algorithm on two different training data sets containing
respectively K=4 classes and K=8 classes. The model that describes best our data is
given at the minimum stochastic complexity (Equ. (3) and (4)). Note that applying model
selection is equivalent to learning the (optimal) number ofclasses in a database.

Results are illustrated in Figure 3. As expected, the minimal description length cor-
responds toKopt = 4 for the first data set, and toKopt = 8 for the second: in both cases
the number of classes is correctly estimated.

This result indicates that our probabilistic model, definedas mixture distributions of
independent textons, correctly reflects the data.

3.4 Classification using a reject class

We tested our classification procedure on a large size image.ParameterŝΘ and π̂ were
estimated on a small training set (around 500 patches) of 5 visual classes (classes (a),
(d), (e), (f), (j) from Fig. 2). We assume that the test image to be classified might contain
some regions which do not belong to any of the predefined classes; we therefore introduce
a reject threshold on the posterior probability (see Equ. (7)), whose value can be deduced
from the observation of the distribution of the posterior ontraining data. A regular grid
divides the entire test image in patches of size 250×250 pixels. Each patch is classified
independently using Equation (6).

Qualitative results are illustrated in Figure 4. They are consistent with expected re-
sults. We observe —-visually and by detailed inspection of the estimated posterior for
each of the classes— that the rejected patches correspond either to patches containing a
mixture of predefined classes, or to patches that should belong to a class which has not
been learned. We notice the spatial homogeneity of the classification.



Visual classes CCRwithoutpattern
descriptor

CCR with pattern
descriptor

CCR withHaralick
features

(a) Green houses 93.94 93.94 95.68
(b) Work place 84.62 98.56 47.68
(c) Big building 87.30 89.68 73.29
(e) Housing area 98.82 99.29 93.37
(f) Small industr. 84.21 94.77 52.97
(g) Golf field 96.40 96,40 94.53
(h) Fishing area 92.94 92.30 86.51
(j) Hutong 98.15 98.41 98.22

Av. CCR 92.36 95.63 77.32

Table 1: Performance evaluation and comparison from 8 visual classes (see Fig. 2). CCR
stands for theCorrect Classification Rate. Our pattern-descriptor improves significantly
the correct classification rate for classes (b) and (f), and performs always better than
Haralick features, except for class (a).

4 Conclusion

We presented in this paper a probabilistic modeling to classify remote sensing images.
We introduced a new rotation invariant pattern descriptor.The distribution of textons
in a patch is modeled by a mixture distribution, based on the assumption of textons’
independence and exchangeability. We showed that the optimal number of classes to
describe a database can be computed exactly by minimising the stochastic complexity of
the model. Very satisfying results are obtained on a database of Quickbird images. Future
work will be dedicated to developing a multi-scale version of our model and integrating
it in a CRF framework.
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