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ABSTRACT 
Current mobile terminals are often equipped with several network 

interfaces, which may be of different access technologies, both 

wireless and cellular. It is possible to select dynamically the best 

interface according to different attributes such as the interface 

characteristics, user preferences and/or application preferences … 

MADM is an algorithmic approach suitable to realize a dynamic 

interface selection with multiple alternatives (interfaces) and 

attributes (interface characteristics, user preferences …). In this 

paper, we propose the Distance to ideal Alternative (DiA) 

algorithm to help terminal to select dynamically the best interface 

and deals with the ranking abnormalities of the TOPSIS method 

and the ranking identification of the SAW and WP method. 

Simulation results in are presented to validate the DiA algorithm. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – Classifier 

design and evaluation.  

General Terms 
Algorithms, Performance, Reliability. 

Keywords 
Multi-interface mobile terminal, interface selection, MADM 

approach, decision making.  

1. INTRODUCTION 
The foreseen evolutions of the next generation of mobile 

networks are expected to be an evolution of UMTS and 

CDMA2000 standards, and to capitalize on a large number of 

wireless networks based on IEEE standards : 802.11, .15, .16, .20, 

.21, .22, also known as branding names Wi-Fi, WiMedia, 

WiMAX, Wi-MAX Mobile, Wi-RAN. 

Each access technology has specific characteristics in terms of 

coverage area and technical characteristics (bandwidth, QoS …) 

and provides diverse commercial opportunities for the operators.  
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It seems likely that these various technologies have to coexist 

and, from then, solutions of integration and interoperability will 

be necessary to deal with the technological diversity.  

Solutions of integration allow a network operator to reduce the 

risks of introducing a new technology and provide the users a 

ubiquitous access to a large range of services. 

Mobile terminals are expected to have several radio interfaces 

providing the possibility to communicate simultaneously through 

the different interfaces and choose the “best” interface according 

to several parameters such the application characteristics, the user 

preferences, the networks characteristics, the operator policies, 

tariff constraints. 

In our work, we tackle the interface selection issue where the 

mobile terminal equipped with several interfaces has to select at 

any time the best interface or the best access technology according 

to interface and network characteristics, user preferences, 

application quality of service requirements, operators’ policies, 

etc.  

Interface selection is a “decision making” problem with 

multiple alternatives (interfaces) and attributes (interface 

characteristics, user preferences …). Various approaches [1] [2] 

[3] [4]  have been proposed for decision making and interface 

selection, Multiple Attribute Decision Making (MADM) is one of 

the most promising approach [5] [6] [7] [8] [15]. 

MADM includes many methods such as SAW (Simple Additive 

Weighting), WP (Weighting Product) [9], and TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution) 

[10]. SAW calculates the overall score of alternatives by the 

weighted sum of all attribute values. The overall score in WP is a 

product of the weighted values made across the attributes. The 

fundamental premise of TOPSIS is that the best alternative should 

have the shortest relative distance to the positive ideal solution 

(made up of the best value for each attribute regarding the 

alternatives) and the  negative ideal solution (made up of the 

worst value of each attribute regarding the alternatives).   

In this paper, we propose the distance to ideal alternative 

(DiA) algorithm belonging to the MADM category which aims to 

select the best interface while ensuring no ranking abnormalities, 

that is the removal of an alternative does not influence the ranking 

order of the alternatives and improving the ranking identification 

problem that allows to distinguish easily the alternative ranks and 

select the best alternative.    

This paper is organized as follows. Section 2 presents 

background and related works to the interface selection issue; the 

MADM algorithms are presented and analyzed. In section 3, we 

present the DiA algorithm comparing to TOPSIS and SAW. 

Simulation results are presented in section 4 to validate the DiA 

approach and demonstrate that DiA outperforms MADM 

algorithms. Section 5 concludes this paper with further work. 

 



2. BACKGROUND AND RELATED WORK 
In cellular networks, when a mobile terminal moves away from 

a base station the signal level degrades and there is a need to 

switch to another base station [16].  The mechanism by which an 

ongoing connection between the mobile terminal and its 

correspondent is transferred from one point of access to the fixed 

network to another is called handover or handoff.  

Handoff techniques have been well studied and deployed in 

cellular systems and are of a great deal of importance in the 

wireless systems.  

A horizontal handoff is made between two networks that use 

the same technology and interface. Vertical handoff occurs when 

the mobile terminal moves between two different networks of 

different technologies. In the simplest context, a vertical handover 

involves at least two different network interfaces. 

Traditionally, the handover decision, especially in case of 

horizontal handovers, is made purely according to radio signal 

strength (RSS) thresholds and hysteresis values as input 

parameters. However, these parameters are not able to present the 

whole performance of the network.  

A decision for vertical handoff which consists in choosing the 

“best” interface may depend on several parameters such as 

network conditions, application types, power requirements, 

terminal conditions, user preferences, security, cost and quality of 

service parameters.  

The interface selection challenge is to determine the most 

favorable trade-off among all these metrics. 

There are many approaches to support the interface selection. 

Cost function [1] approach is based on a measurement of the 

cost obtained by selecting a particular interface. The interface 

which has the minimum cost is the best interface. The cost 

function is defined by the sum of some normalized form of each 

parameter.  

In profit function-based approach, each interface is associated 

with a profitability function. The function defined in [2] is 

evaluated as the difference between a profit and a cost to select 

interface. The algorithm considers the input data coming from two 

different sources: the bandwidth gain and the handoff cost. 

Although, this method cannot deal with a multi-criteria interface 

selection, profit functions can be combined with other methods for 

interface selection. 

The policy-based approach [3] is different from the 

mathematical function based approaches in the sense that, in this 

approach, there is no procedure to rank interfaces. The interface is 

selected when it matches a specific policy. A set of policies can be 

defined and used to describe users/applications/operators needs 

and rights. The decision makers have to define all possible cases 

(policy rules). The approach is not really dynamic for interface 

selection procedure.  

The MADM is an algorithmic approach suitable to realize a 

dynamic interface selection with multiple alternatives (interfaces) 

and attributes (interface characteristics, user preferences …).  

A MADM problem is formulated as follows:  

A= {Ai, i =1, 2,…, n} (1) 

 is a set of a finite number of alternatives which represents the 

possible interfaces the mobile terminal supports. 

C= {Cj, j=1, 2,…, m} (2) 

is a set of attributes such as the interface characteristics, 

application characteristics or user preferences, (e.g. signal 

strength, bit rate, power consumption, price, coverage, delay 

constraints, security, …) 

The weight vector w= {w1, w2,…, wm} represents the relative 

importance of these attributes.  

An MADM problem can be represented by a matrix as shown 

in Table I. 

Table I. MADM matrix 
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2.1 SAW 
The SAW approach is probably the well-known method of 

MADM. In the SAW approach, the overall score of an interface is 

determined by the weighted sum of all attribute values. The score 

of each interface (or alternative) is obtained by adding the 

normalized contributions from each value xij multiplied by the 

assigned importance weight wj.  The selected interface is then: 
m

j

jij
i

wxSAW
1

* max (3) 

2.2 WP 
This approach is similar to SAW but the attribute values of 

each interface (or alternative) are xij in power wj and the overall 

score is a product of the values made across the attributes. The 

selected interface is then: 

m
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w
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jxWP
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2.3 TOPSIS 
TOPSIS is an algorithm widely used for mobile terminal 

interface selection based on multiple attributes. The approach is 

based upon the concept that the chosen alternative should have the 

relative shortest distance to the ideal solution. 

 The TOPSIS alternative calculation includes several steps: 

- Step 1: Construct the normalized decision matrix. Each 

element rij of the Euclidean normalized decision matrix R 

can be calculated as follows: 

n

i

ij

ij
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x
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(5) 

- Step 2: Construct the weighted normalized decision 

matrix. This matrix V is calculated by multiplying each 

column of the matrix R with its associated weight wi.  
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- Step 3: Determine ideal and negative-ideal solutions: 

miij
j

vvvvvA ,...,,...,,max 21
 (7) 

miij
j

vvvvvA ,...,,...,,min 21
 (8) 

- Step 4: The distance between alternatives are measured 

using the m-dimensional Euclidean distance.  

The distance between each alternative and the positive ideal 

solution is: 

m

i

iijj vvS
1

2)(  (9) 

The distance between each alternative and the negative ideal 

solution is:  

m

i

iijj vvS
1

2)(  (10) 

- Step 5: Calculate the relative closeness to the ideal 

solution: 

jj

j

j
SS

S
C   (11) 

- Step 6: Rank the preference order. A set of alternatives 

can now be ranked according to the decreasing order of Cj 

2.4 Comparative Study of SAW, WP and 

TOPSIS 
In [14], we presented a performance comparison of SAW, WP 

and TOPSIS algorithms. The comparative study allowed us to 

highlight and identify the limitations of each MADM algorithm 

influencing the decision making for interface selection.  

TOPSIS suffers from “ranking abnormality” problem, SAW 

and WP provide less accuracy in identifying the alternative ranks. 

 The “ranking identification” problem in SAW happens   

especially when the attribute values of alternatives are not much 

different. The overall scores of alternatives are similar leading to 

confusion in the decision making as stated above. 

Additionally to the “identification problem”, the WP algorithm 

penalizes the alternatives with poor attribute values. This 

influences the overall score of alternative. Moreover, if some 

values of the constraint factor are equal to zero (e.g. the 

connection is free of charge), the overall score of alternative is 

equal to zero. In this situation, a decision can not be made.  

There are many factors influencing the ranking abnormality of 

TOPSIS. When one of the interfaces (alternatives) is removed 

from the candidates list, the weighted normalized calculation of of 

V matrix (see equation 6) will change and the best and worst 

values for each of the attributes (see equation 7, and 8) will 

change also. TOPSIS calculates the m-dimensional Euclidean 

distance of attributes from the respective positive ideal and 

negative ideal values (as described in equation 9, 10).  

When an alternative is removed, the Euclidean distance 

calculation for each alternative will be based on the new positive 

ideal and new negative ideal values and this distance changes non-

uniformly with the alternatives. Therefore, the relative closeness 

to the ideal solution based on these new distance values will 

change non-uniformly and, as a result, the calculation of the 

preference order Cj (see equation 11) can provide a different 

ranking order than the prior one. 

 

3. THE DiA ALGORITHM 
In this section, we present the DiA algorithm which aims at 

selecting the best interface while ensuring no ranking abnormality 

problem and provide a good accuracy in identifying the 

alternative ranks.  

To avoid the limitation of TOPSIS, DiA calculates the 

Manhattan distance1 (in the m-dimensional space) to the positive 

and negative ideal attributes instead of the Euclidean distance in 

TOPSIS. This allows these distances to change uniformly when an 

alternative is removed out of the list of candidates. Moreover, the 

positive ideal alternative (PIA) which has the minimum distance 

to the positive ideal attribute and maximum distance to the 

negative ideal attribute is determined and the best “actual” 

alternative has the shortest distance to the PIA instead of the 

relative closeness to the ideal solution in TOPSIS.  

The DiA algorithm is based on the following principles. 

As TOPSIS, DiA determines the positive and negative ideal 

alternative attribute values of each attribute. These are the 

maximum and minimum values of attribute in each column of the 

MADM matrix.  

][max ij
j

i va  (12) 

][min ij
j

i va  (13) 

While TOPSIS uses the positive ideal solution values to 

calculate in the m-dimensional space the Euclidean distance 

between the solutions and the ideal solution, DiA uses the 

Manhattan distance to calculate the distance between the attribute 

values and the positive and negative ideal values of each attribute. 
m

i

iijj avD
1

 (14) 

m

i

iijj avD
1

 (15) 

Then, DiA considers the minimum value of D+ and maximum 

value of D-. 

                                                                 

1 Manhattan distance is also known as rectilinear distance, L1 

distance, or city blocks distance. It is the distance between two 

points measured along axes at right angles [13]. 
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If we consider the (D+, D−) plane, the point (minDi
+, maxDi

-) is 

defined as the “positive ideal alternative” (PIA) (see Figure 1).  

The best alternative has the shortest distance to the PIA. This 

absolute distance is calculated as follow. 

22 ))max(())min(( DDDDR jjj
(18) 

The alternative having the smallest Rj value has the shortest 

distance to the PIA. 

In the following, we will show that DiA has no ranking 

abnormality compared to TOPSIS.  
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Figure 1. The D+ , D− plane. 

If we consider a ranking order of the alternatives as follows 

(e.g. the best alternative is A1 and the worst alternative is An) 

nj AAAA ......21
 (19) 

We have the following distances to the PIA associated to the 

alternatives. 

nj RRR ......1  (20) 

Now, we suppose that an alternative (e.g. Aj) including one of 

the positive ideal attribute value (e.g. ak
+ (old)) in the kth column of 

the MADM matrix is removed. The distances to the negative ideal 

attribute of alternatives D-
j are not changed.  

We can find a new positive ideal attribute value in the kth 

column (e.g. ak
+(new)).  

The new value of the positive ideal attribute is smaller than the 

previous one. 

)()( new

k
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k aa   (21) 

The distance between the new and previous positive ideal 

attributes is d (where d is constant). 

daa old

k
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k
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 (22)  

The Manhattan distances of all attribute values to the positive 

ideal attribute value in the kth column before and after removing 

an alternative are respectively: 
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We have: 
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Therefore, the distance between all attribute values to the new 

positive ideal attributes will decrease uniformly with distance d. 
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We can conclude also that the new minimum value of D+ 

decreases uniformly also with a distance d compared to the old 

minimum value of D+  

dDD oldnew )min()min( )()(
 (27) 

Thus, the old distance to the old PIA of the alternative i (e.g. 

Ri
old) is equal to the new distance to the new PIA (new Ri

new). 
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This shows that the distances to the PIA of all alternatives are 

unchanged ( nj RRR ...... 11 ), and thus, the 

ranking order of alternatives is unchanged 

(
nj AAAA ...... 121

).  

If the removed alternative includes one of negative ideal 

attributes, all distances Dj
- of the alternatives to negative ideal 

alternative will increase uniformly with the same distance. As 

analyzed above, the distance to the PIA is also unchanged. 

Therefore, the ranking order of alternatives is also unchanged  

The DiA algorithm is not subject to the ranking abnormality 

problem and outperforms TOPSIS algorithm. 

In the following, we tackle the accuracy of the alternative 

ranking identification and we will easily demonstrate that DiA 

provides better accuracy than SAW.  

In SAW, the difference of ranking values between two 

alternatives (e.g. two alternatives Ak and At), is calculated as the 

subtraction of two overall score SAWk and SAWt. 
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In DiA, the difference between D+
k and D+

t is 
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k and D-

t 

m

i

m

i

jitjiktk avavDD
1 2

)()(  

m

i

itiktk vvDD
1

)(  (31) 

Then 

tktktk DDDDSAWSAW  (32) 

The difference of ranking values in DiA is the distance 

between two alternatives (e.g. two alternatives Ak and At) is 

calculated as follow: 

22 )()( tktkkt DDDDR   

2)(2 tk SAWSAW  (33) 

We have: 

tkkt SAWSAWR  (34) 

Therefore, we can conclude that the difference of ranking 

values in DiA is larger than in SAW.  

Considering WP, it is hard to prove analytically that DiA 

provides better accuracy than WP. However, the simulation 

results presented in section 4 demonstrate that DiA outperforms 

WP as well as SAW.    

In the following, we summarize the main steps of DiA 

algorithm: 

- Step 1: Construct the normalized decision matrix R. Each 

element rij of the Euclidean normalized decision matrix R 

can be calculated as equation 5. 

- Step 2: Construct the weighted normalized decision 

matrix. This matrix V is calculated by multiplying each 

column of the matrix R with its associated weight wi (see 

equation 6). 

- Step 3: Determine positive and negative ideal attribute 

values of the alternatives (see equation 7, 8).  

- Step 4: Calculate the Manhattan distance to the positive 

and negative attribute.  
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- Step 5: Determine the “positive ideal alternative” (PIA) 

which has minimum D+, and maximum D-.  

jj DDPIA max(),min(  (37) 

- Step 6: The distance of an alternative to the PIA is 

calculated as follow:     

22 ))max(())min(( iiiii DDDDR (38) 

A set of alternatives can now be ranked according to the 

increasing order of Ri 

 

4. PERFORMANCE COMPARISON 
In this section, we present the simulation results and 

performance comparison of the three MADM decision algorithms: 

SAW, WP, TOPSIS, and DiA. The simulations are carried out 

using MATLAB. 

In the first simulation, we calculate the overall score of SAW 

and WP, the relative closeness to the ideal solution of TOPSIS 

and the distance to the PIA of DiA. This simulation allows 

determining the ranking order of the algorithms related to 

interface characteristics and selection criteria considered in the 

simulation.  

In the second simulation, we focus on the ranking abnormality 

problem. The ranking abnormality happens when the low ranking 

alternative is removed from the candidate list; the ranking order of 

the alternatives changes. A robust MADM algorithm ensures that 

the best alternative does not change when an alternative which is 

not the best is removed or replaced by another alternative. 

Therefore, if an algorithm suffers from the ranking abnormality 

problem, the ranking order is not stable.  

In the third simulation, we measure the difference of the 

ranking values of each algorithm. In SAW and WP, the ranking 

values are the overall score values of alternatives.  

In DiA, the distance to the PIA is the raking value of DiA.  

The difference of ranking value between two alternatives 

corresponds to the subtraction of two ranking values. When this 

difference is small, it is very difficult to identify which alternative 

is better. This may lead confusion in the decision making. The 

difference of ranking values between alternatives of the 

algorithms allows determining the accuracy of the algorithms in 

identifying the alternative ranks.  

In the simulation, we consider five attributes associated to five 

network interfaces (UMTS, 802.11b, 802.11a, 802.11n, and 4G). 

The attributes are: packet jitter, packet delay, utilization, packet 

loss, and cost per byte for each network as presented in Table II. 

These attributes represent two main criteria: QoS parameters and 

user’s preferences. The attribute list can be expanded depending 

on the interface selection objectives.  

The Packet Jitter (J): is a measure of the average delay 

variation within the access system (milliseconds). 

The Packet delay (D): measures the average delay variation 

within the access system( milliseconds). 

Utilization (U): is a measure of the current utilization of the 

access network (%). The Packet Loss (L): is a average packet loss 

rate over a duration of time. (packet losses per million packets). 

The Cost (CB): is the cost of the access network. (cent/byte). 

Table II. The attribute parameters 



 J 

(ms) 

D 

(ms) 

U 

(%) 

L 

(per 106) 

CB 

(cent/ 

byte) 

Network #1 

UMTS 

 

50 400 10 100 100 

Network #2 

802.11b 

 

25 200 20 20 20 

Network #3 

802.11a 

15 100 20 15 10 

Network #4 

802.11n  

 

30 150 40 20 5 

Network #5 

4G 

20 100 20 15 30 

 

The attribute values of all algorithms are normalized by the 

Euclidean normalization method. We choose this normalization 

method since it provides the highest ranking consistency [11].  

In the simulation, we consider a weight vector for comparing 

the cost i to QoS parameters.. Therefore, the cost per byte is given 

a very high weight.  

 

w= [0.05  0.05  0.15  0.05  0.7] 

 

4.1 Simulation 1 
In this simulation, we calculate the ranking order of 

alternatives by using the SAW, WP, TOPSIS and DiA algorithms. 

Table III presents the overall score of SAW and WP, the relative 

closeness to the ideal solution of TOPSIS and the distance to PIA 

of DiA. 

 

 

 

Table III. The ranking order of SAW, WP, TOPSIS, and DiA 

 SAW WP TOPSIS DiA 

Network #1 0,154 

Rank #5 

0,923 

Rank #5 

0,052 

Rank #5 

0,987 

Rank #5 
Network #2 0,745 

Rank #3 

0,994 

Rank #4 

0,833 

Rank #3 

0,149 

Rank #3 
Network #3 0,851 

Rank #1 

0,998 

Rank #1  

0,947 

Rank #1 

0 

Rank #1 
Network #4 0,799 

Rank #2 

0,997 

 Rank #2 

0,904 

Rank #2 

0,073 

Rank #2 
Network #5 0,734 

Rank #4 

0,995 

Rank #3 

0,748 

Rank #4 

0,166 

Rank #4 

 
The results show that the ranking order of the alternatives is the 

same for three algorithms SAW, TOPSIS and DiA. The ranking 

order is Network#3, Network #4, Network #2, Network #5 and 

Network #1. 

The ranking order of WP is Network#3, Network #4, Network #5, 

Network #2 and Network #1. 

The ranking order of WP is different from the ranking order of 

SAW, TOPSIS and DiA related to Network #5 and Network#2. The 

reason is that WP (see equation 4) penalizes the alternative having 

worse attributes than the other alternatives. In this situation, the 

ranking order of Network#2 is lower than Network#5 since 

Network#2 has poor QoS attribute values compared to Network#5. 

However, Network#2 has a higher ranking order than Network#5 

in SAW, TOPSIS and DiA.  

Although Network #2  has poor QoS attributes, its cost with the 

very high weight is better than Network #5. WP did not make a 

good decision in ranking the Network #5 and Network#2 when it 

considers only the poor attributes.  

Note that SAW, WP, TOPSIS and DiA algorithms provide the 

same best alternative (e.g. Network#3).  
 

4.2 Simulation 2 
In this simulation, we focus on the ranking abnormality 

problem and the “robustness” of the algorithms to removal of 

interfaces related to the interface ranking order. 

We then remove an alternative (i.e. Network #1) from the 

alternatives candidate list. Table IV presents the overall score of 

SAW and WP, the relative closeness to the ideal solution of 

TOPSIS and the distance to PIA of DiA. 

 
Table IV. The ranking order of SAW, WP, TOPSIS, and DiA 

 SAW WP TOPSIS DiA 

Network #1 ------ ------ ------ ------ 
Network #2 0,455  

Rank#3 

0,968  

Rank#4 

0,397 

Rank#3 

0,335 

Rank #3 
Network #3 0,693  

Rank#1 

0,986  

Rank#1 

0,805 

Rank#2 
0 

Rank #1 
Network #4 0,651  

Rank#2 

0,984  

Rank#2 
0,856 

Rank#1 

0,081 

Rank #2 
Network #5 0,380 

Rank#4 

0,973 

Rank#3 

0,142 

Rank#4 

0,441 

Rank #4 

 
In this situation, the results show that a removal of an 

alternative causes a change in the ranking order of TOPSIS. The 

ranking order of SAW, WP and DiA remains the same. In 

particular, the top ranked alternative in TOPSIS has changed 

(from Network#3 to Network#4).  

We continue removing an alternative (i.e. Network#5) from the 

alternatives candidate list.  

The results, in Table V, show that the ranking order in SAW, 

WP and DiA is always stable, but the top ranked alternative in 

TOPSIS has changed from Network#4 to Network#3. 

In Table III, all algorithms determine that Network#3  is the best 

interface since it has the best QoS attribute values and the cost is 

not very high. Network#1 is the worst interface because it has the 

worst QoS and cost attribute values.   

When we remove the worst interface (i.e. Network#1) out of the 

candidates list, this does not influence the ranking order of other 

interfaces of SAW, WP and DiA. However, the best interface in 

TOPSIS changes (i.e. from Network#4 to Network#4 in Table IV). 

When another worst interface (i.e. Network#5) is removed, the best 

interface in TOPSIS also changes (see Table V).  

 

Table V. The ranking order of SAW, WP, TOPSIS, and DiA 

 SAW WP TOPSIS DiA 

Network #1 ------ ------ ------ ------ 
Network #2 0,456  

Rank#3 

0,968  

Rank#3 

0,412 

Rank#3 

0,513 

Rank#3 



Network #3 0,694  

Rank#1 

0,986  

Rank#1 

0,838 

Rank#1 

0 

Rank#1 
Network #4 0,636  

Rank#2 

0,983  

Rank#2 

0,851 

Rank#2 

0,111 

Rank#2 
Network #5 

------ ------ ------ ------ 

 
The simulation results highlight the ranking abnormality 

problem of TOPSIS and show that SAW, WP and DiA provide a 

more efficient behavior in this situation.  

 

4.3 Simulation 3 
In this simulation, we compare DiA to SAW and WP by 

measuring the difference of ranking values of three algorithms. 

This difference allows distinguishing the ranking order and 

selecting easily the best alternative. 

We consider the ranking values measured by SAW, WP and 

DiA in Table III to calculate the difference of ranking values. 

Figures 2, 3 and 4 show the difference of ranking values of all 

algorithms. We measure the difference of ranking values between 

rank#1 and rank#2 (i.e. Diff(R1-R2) in figures 2, 3 and 4), rank#2 

and rank#3 (i.e. Diff(R2-R3)), rank#3 and rank#4 (i.e. Diff(R3-

R4)), and rank#4 and rank#5 (i.e. Diff(R4-R5)) of all algorithms. 

The results show that the difference of ranking values in SAW is 

larger than WP and the difference of ranking values in DiA is 

lager than SAW and WP.  

DiA has the largest difference of ranking values and allows 

more accuracy in identifying the ranks between the alternatives 

compared to SAW and WP. 

To provide results applicable to a wide range attribute values, 

we conduct a simulation that does not only consider the attribute 

values in the previous simulations. 

 

 

 
Figure 2. The difference of ranking values of WP and DiA 

 

Figure 3. The difference of ranking values of WP and SAW 

 
Figure 4. The difference of ranking values of SAW and DiA 

 

The simulation generates random decision matrices with 

alternatives Ai (i=1,2,3,4) and attributes Cj(j=1,2,3,4). The 

decision matrix is normalized by using the Euclidean 

normalization. To obtain an unbiased result, the following settings 

are used in the simulation. 

-10000 decision matrices are generated randomly for each 

simulation 

-For each data range, the process was repeated 10 times and the 

average is noted in the final result table 

-The data range for four attributes (C1,C2,C2,C4) were 1-10, 1-

100,1-1000, 1-10000 respectively.  

Figures 5, 6 and 7 depict the average difference of ranking 

values in 10000 times of simulation. The results show that the 

same conclusion can be made, DiA is more accurate than SAW 

and WP, it shows a larger difference of ranking values.  

 

 
Figure 5. The difference of ranking values of WP and DiA 

 

Figure 6. The difference of ranking values of SAW and WP 
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Figure 7. The difference of ranking values of SAW and DiA 

 

5. CONCLUSION 
In this paper, we propose an algorithm to select the best 

alternative (interface) based on multiple attributes. 

Our solution improves the limits of the MADM approach, 

particularly SAW, WP and TOPSIS algorithms. The simulation 

results validated our proposal and demonstrate that DiA 

outperforms the ranking abnormality of TOPSIS and the 

difference of ranking values of SAW and WP. 

DiA algorithm is implemented as part of an overall framework 

that we develop to allow a mobile terminal to use simultaneously 

multiple interfaces [12]. This allows to take advantage of fault-

tolerance/redundancy, load sharing (data-striping), and interface 

selection capabilities provided by the multi-homing capacity of a 

multi-interface mobile terminal.  

6. REFERENCES  
[1] J. Ylitalo, T. Jokikyyny, T. Kauppinen, A.J. Tuominen, J. 

Laine, “Dynamic network interface selection in multihomed 

mobile hosts”, System Sciences, 2003. Proceedings of the 36th 

Annual Hawaii International Conference, on 6-9 Jan 2003 

Page(s):10 pp. 

[2] Sowmia Devi, M.K.; Agrawal, P., “Dynamic Interface 

Selection in Portable Multi-Interface Terminals”, Portable 

Information Devices, 2007. PORTABLE07. IEEE 

International Conference on, 25-29 May 2007 Page(s):1 - 5 

[3] L.-J. Chen, T. Sun, B. Chen, V. Rajendran and M. Gerla, “A 

smart decision model for vertical handoff”, Proceeding of the 

4th ANWIRE International Workshop on Wireless Internet and 

Reconfigurability (ANWIRE 2004), Athens, Greece, 2004 

[4] H.J. Wang, R. H. Katz, and J. Giese, “Policy-Enabled 

Handoffs across Heterogeneous Wireless Networks”, 

Proceeding of ACM WMCSA, 1999. 

[5] Puttonen, J.; Fekete, G., “Interface Selection for Multihomed 

Mobile Hosts”, Proceeding of Personal, Indoor and Mobile 

Radio Communications, 2006 IEEE 17th International 

Symposium on, Sept. 2006 Page(s):1 - 6 

[6] Huiling Jia; Zhaoyang Zhang; Peng Cheng; Hsiao-Hwa Chen; 

Shiju Li, “Study on Network Selection for Next-Generation 

Heterogeneous Wireless Networks”, Proceeding of Personal, 

Indoor and Mobile Radio Communications, 2006 IEEE 17th 

International Symposium on, Sept. 2006 Page(s):1 – 5 

[7] Godor, Gyozo; Detari, Gabor, “Novel Network Selection 

Algorithm for Various Wireless Network Interfaces”, Mobile 

and Wireless Communications Summit, 2007. 16th IST, 1-5 

July 2007 Page(s):1 - 5 

[8] Qingyang Song; Jamalipour, A., “A network selection 

mechanism for next generation networks”, Proceeding of IEEE 

International Conference 2005 (ICC’05) on, Volume 2,  16-20 

May 2005 Page(s):1418 - 1422 Vol. 2 

[9] K. Yoon and C.L. Hwang, “Multiple Attribute Decision 

Making Methods Applications”, ISBN: 978-0387105581, 

Spring Verlag, 1981 

[10] K. Yoon and C.L. Hwang, “Multiple Attribute Decision 

Making Introduction”, ISBN: 978-0803954861, Sage 

Publication, 1995 

[11] S. Chakraborty and C.Yeh, “A Simulation Based Comparative 

Study of Normalization Procedures in Multi-attribute Decision 

Making”, Proceeding of the 6th WSEAS Int. Conf. on 

Artificial Intelligence, Knowledge Engineering and Data Bases 

, Corfu Island, Greece, February 16-19, 2007 

[12] P.N. Tran and N. Boukhatem, “Extension of multiple care-of-

address registration to support host Multihoming”, Proceeding 

of The Internaional Conference on Information Networking 

(ICOIN). Jan. 2008 On page(s): 1-4 

[13] Definition of Manhattan distance – 

http://en.wikipedia.org/wiki/Taxicab_geometry.  

[14] P.N. Tran and N. Boukhatem, “Comparison of MADM 

Decision Algorithms for Interface Selection in Heterogeneous 

Wireless Networks”, Proceeding of The International 

Conference on Software, Telecommunications and Computer 

Networks (SoftCOM), September 2008. 

[15] F. Bari and V. Leung. Multi-Attribute Network selection by 

Iterative TOPSIS for heterogeneous Wireless Access, Jan. 

2007 Page(s):808 - 812 , Consumer Communications and 

Networking Conference (CCNC 2007)  

[16] Majlesi, A.   Khalaj, B.H.  An adaptive fuzzy logic based 

handoff algorithm for hybrid networks. Proceeding of the 6th 

International Conference on Signal Processing, 26-30 Aug. 

2002. On page(s): 1223- 1228 vol.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

D
if
fe

re
n

c
e

 o
f 
ra

n
k
in

g
 v

a
lu

e
s

Diff(R1-R2) Diff(R2-R3) Diff(R3-R4)

Difference between alternative ranks

SAW

DiA

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4022243
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28majlesi%20%20a.%3CIN%3Eau%29&valnm=Majlesi%2C+A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20khalaj%20%20b.%20h.%3CIN%3Eau%29&valnm=+Khalaj%2C+B.H.&reqloc%20=others&history=yes

