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Abstract. Given a set C' of binary n-tuples and ¢ € C', how many bits
of ¢ suffice to distinguish it from the other elements in C' 7 We shed
new light on this old combinatorial problem and improve on previously
known bounds.

1 Introduction

Let C' C {0,1}™ be a set of distinct binary vectors that we will call a code, and
denote by [n] = {1, 2,...n} the set of coordinate positions. It is standard in coding
theory to ask for codes (or sets) C' such that every codeword ¢ € C is as different
as possible from all the other codewords. The most usual interpretation of this
is that every codeword ¢ has a large Hamming distance to all other codewords,
and the associated combinatorial question is to determine the maximum size
of a code that has a given minimal Hamming distance d. The point of view of
the present paper is to consider that “a codeword c is as different as possible
from all the other codewords” means that there exists a small subset W C [n] of
coordinates such that ¢ differs from every other codeword in W. Put differently,
it is possible to single out ¢ from all the other codewords by focusing attention
on a small subset of coordinates. More precisely, for z € {0,1}", and W C [n]
let us define the projection my,

mw {0,130 = {0, 1}V

x> () iew

and let us say that W is a witness set (or a witness for short) for ¢ € C if
mw (c) # mw (') for every ¢ € C, ¢ # ¢’. Codes for which every codeword has a
small witness set arise in a variety of contexts, in particular in machine learning
theory [1, 3, 4] where a witness set is also called a specifying set or a discriminant:
see [5, Ch. 12] for a short survey of known results and also [2] and references
therein for a more recent discussion of this topic and some variations.



Let us now say that a code has the w-witness property, or is a w-witness
code, if every one of its codewords has a witness set of size w. Our concern is to
study the maximum possible cardinality f(n,w) of a w-witness code of length
n. We shall give improved upper and lower bounds on f(n,w) that almost meet.

The paper is organised as follows. Section 2 gives some easy facts for reference.
Section 3 is devoted to upper bounds on f(n,w) and introduces our main result,
namely Theorem 2. Section 4 is devoted to constant weight w-witness codes, and
we derive precise values of the cardinality of optimal codes. Section 5 studies
mean values for the number of witness sets of a codeword and the number of
codewords that have a given witness set. Section 6 is devoted to constructions
of large w-witness codes, sometimes giving improved lower values of f(n,w).
Finally, Section 7 concludes with some open problems.

2 Easy and known facts

Let us start by mentioning two self-evident facts

— If C is a w-witness code, so is any translate C' + z,
— f(n,w) is an increasing function of n and w.

Continue with the following example. Let C be the set of all n vectors of length
n and weight 1. Then every codeword of C' has a witness of size 1, namely its
support. Note the dramatic change for the slightly different code C'U {0}. Now
the all-zero vector 0 has no witness set of size less than n. Bondy [3] shows
however that if |C] < n, then C is a w-witness code with w < |C| — 1 and
furthermore C' is a uniform w-witness code, meaning that there exists a single
subset of [n] of size w that is a witness set for all codewords.

We clearly have the upper bound |C] < 2* for uniform w-witness codes. For
ordinary w-witness codes however, the best known upper bound is, [5, Proposi-
tion 12.2],

wl M
fnwy <20 () )
The proof is simple and consists in applying the pigeon-hole principle. A subset
of [n] can be a witness set for at most 2" codewords and there are at most (Z)
witness sets.

We also have the following lower bound on f(n,w), based on a trivial con-

struction of a w-witness code.

Proposition 1. We have: f(n,w) > (").

Proof. Let C = ([Z]) be the set of all vectors of weight w. Notice that for all
c € C, W(c) = support(c) is a witness set of c.

Note that the problem is essentially solved for w > n/2; since f(n,w) is
increasing with w, we then have:

2" > fln,w) > f(n.n/2) > (1) > 2"/(2n)1/2.



We shall therefore focus in the sequel on the case w < n/2.
In the next section we improve the upper bound (1) to a quantity that comes
close to the lower bound of Proposition 1.

3 An improved upper bound

The key result is the following.

Theorem 1. Let g(n,w) = f(n,w)/(). Then, for fited w, g(n,w) is a decreas-
ing function of n. That is:

n>v>w = g(n,w) < g(v,w).

Proof. Let C be a binary code of length n having the w-witness property, with
maximal cardinality |C| = f(n,w). Fix a choice function ¢ : C' — ([Z]) such
that for any ¢ € C, ¢(c) is a witness for c¢. For any V € ([ ]) denote by Cy the
subset of C' formed by the c satisfying ¢(c) C V. Remark that the projection my
is injective on Cly, since each element of Cy has a witness in V. Then 7y (Cy)
also has the w-witness property.

Remark now that if V' is uniformly distributed in ([Z]) and W is uniformly
distributed in ([Z]) and independent from V', then for any function % : ([Z]) —R
one has

Ew(¥(W)) = Ev(Ew (W) |W C V), (2)

where we denote by Ew (¢)(W)) the mean value (or expectation) of (W) as W
varies in ([Z]), and so on.
We apply this with (W) = |¢~1(W)] to find

s = (1) el () ey 16700

=Ew(|¢" |

the last inequality because 7y (Cy ) is a binary code of length v having the w-
witness property.



Remark: It would be interesting to try to improve Theorem 1 using some unex-
ploited aspects of the above proof, such as the fact that the choice function ¢ may
be non-unique, or the fact that the last inequality not only holds in mean value,
but for all V. For instance, suppose there is a codeword ¢ € C' (with C optimal as
in the proof) that admits two distinct witnesses W and W', with W ¢ W’. Let
¢ be a choice function with ¢(c) = W, and let ¢’ be the choice function that co-
incides everywhere with ¢, except for ¢'(¢) = W'. Let V' contain W’ but not W.
If we denote by Cf, the subcode obtained as Cy but using ¢’ as choice function,
then Cf, = Cy U {c} (disjoint union), so |1y (Cy)| = |1v(C})| — 1 < f(v,w),
and g(n,w) < g(v,w).

Theorem 1 has a number of consequences: the following is straightforward.
Corollary 1. For fixed w, the limit

)

s
g

lim g(n,w) = /

= )

exists.
The following theorem gives an improved upper bound on f(n,w).

Theorem 2. For w < n/2, we have the upper bound:

F(n,w) < 2w1/2<”).

w

Proof. Choose v = 2w and use f(v,w) < 2¥; then f(n,w) < (Z)f(?w,w)/(iﬁ’)
and the result follows by Stirling’s approximation.

Set w = wn and denote by h(x) the binary entropy function
h(z) = —zlogy x — (1 — ) logy(1 — ).
Theorem 2 together with Proposition 1 yield:
Corollary 2. We have
limy, o0 2 log, f(n,wn) = h(w) for 0 <w <1/2

=1 for 1/2<w < 1.

4 Constant-weight codes

Denote now by f(n,w, k) the maximal size of a w-witness code with codewords
of weight k. The following result is proved using a folklore method usually at-
tributed to Bassalygo and Elias, valid when the required property is invariant
under some group operation.



Proposition 2. We have:

n
max f(n,w, k) < f(n,w) < min 7f(n,u:; k)2
: N6
Proof. The lower bound is trivial.

For the upper bound, fix k, pick an optimal w-witness code C' and consider its
2™ translates by all possible vectors. Every n-tuple, in particular those of weight
k, occurs exactly |C| times in the union of the translates; hence there exists a
translate (also an optimal w-witness code of size f(n,w) - see the remark at
the beginning of Section 2) containing at least the average number |C| (2)2_" of
vectors of weight k. Since k was arbitrary, the result follows.

‘We now deduce from the previous proposition the exact value of the function
f(n,w, k) in some cases.

Corollary 3. For constant-weight codes we have:
— Ifk <w<n/2 then f(n,w, k) = (Z) and an optimal code is given by Si(0),
the Hamming sphere of radius k centered on 0.
— Ifn—k <w<n/2 then f(n,w,n—k) = (Z) and an optimal code is given
by the sphere Si(1).

Proof. If k < w < n/2, we have the following series of inequalities:

(7) = £k < sy < ()

If n — k < w < n/2, perform wordwise complementation.

5 Some mean values

Let C be a binary code of length n (not necessarily having the w-witness prop-
erty). Let

[n]

Wew : C — a( )7 Wewe) ={W e ([Z]) : W is a witness for c},

and symmetrically,

Cow: ([n]) — 29 Cow(W)={ceC : W is a witness for c}.
w

Remark that if C" C C is a subcode, then Wer ,(c) D We w(c) for any
¢ € C', while Cor o, (W) D (C" N Cepp(W)) for any W e (IM).



Lemma 1. With these notations, the mean values of |Wew| and |Cowl| are
related by

CIE(Wer(l) = () BwlCeunl WD)
or equivalently
€] _ Ew(Ceu(W))

(Z,) B E.(IWew(c)l) '
Proof. Double count the set {(VK c) € ([Z]) x C : W is a witness for c}.

Now let v(C,w) = Ew (|Ccw(W)|) and let v+ (n, w) be the maximum possible
value of (C, w) for C a binary code of length n, and y™(n, w) be the maximum
possible value of y(C, w) for C' a binary code of length n having the w-witness
property.

Lemma 2. With these notations, one has v+ (n,w) = y+t+(n,w).

Proof. By construction y™(n,w) > 47 (n,w). On the other hand, let C be
a binary code of length n with v(C,w) = vT(n,w), and let then C’ be the
subcode of C' formed by the ¢ having at least one witness of size w, i.e. C' =
UWe([Z]) Cc,w(W). Then C’ has the w-witness property, and

Y (n,w) = 9(Cw) = 4(Cw) =" (n,w).
The technique of the proof of Proposition 1 immediately adapts to give:

Proposition 3. With these notations, w being fived, v*(n,w) is a decreasing
function of n. That is:

n>v>w = v (n,w) < 41 (v, w).

Proof. Let C be a binary code of length n with v(C,w) = v+ (n,w). For V €
([Z]), denote by Cy the subset of C' formed by the ¢ having at least one witness of
size w included in V, i.e. Cf, = UWe(V) Cc.w(W). Then Cf, has the w-witness

property, Co,w(W) C Coy, (W) for any W C V, and 7y is injective on Cf,.
Using this and (2), one gets:
v (n,w) = Ew (ICow(W)))

— By (Bu( ICo(W)| | W C V)

< Ev(Ew ([Ccy, (W)W CV))

= Ev(Ew ([Cry(c) (W) [W CV))

= Bv(y(mv(Cy), w))

<7 (v, w).

o~ o~ o~ o~



6 Constructions

6.1 A generic construction

Let F C (gﬂ)) be a set of subsets of {1,...,n} all having cardinality at most w.

Let Cr C {0,1}"™ be the set of words having support included in one and
only one W € F. Then:

Proposition 4. With these notations, Cr has the w-witness property.

Proof. For each ¢ € Cg, let W, be the unique W € F containing the support of
c. Then W, is a witness for c.

Example 1. For F = ([Z]) we find Cr = S,,(0), and

w021 = (1)

w

Example 1°. Suppose w > n/2. Then for F = (7[;}]2) we find Cr = S, 2(0),

w05 = ()

(where for ease of notation we write n/2 instead of [n/2]).

Example 2. For F = {W} with [W| < w we find Cr = {0,1}" (where we
see {0,1}" as a subset of {0,1}" by extension by 0 on the other coordinates),
and

and

f(n,w) > |Cx| =2%.

Exemple 3. Let F be the set of (supports of) words of a code with constant
weight w and minimal distance d (one can suppose d even). Then for all distinct
W, W’ e F one has [WNW'| <w—d/2, so for all W € F, the code Cz contains
all words of weight larger than w — d/2 supported in W. This implies :

Corollary 4. For all d one has
fn,w) > A(n,d, w)B(w,d/2 — 1)
where:

— A(n,d,w) is the maximal cardinality of a code of length n with minimal
distance at least d and constant weight w
— B(w,r) = Y1<i<,(Y) is the cardinality of the ball of radius r in {0,1}".

For d = 2, this construction gives the sphere again. For d = 4, this gives
f(n,w) > (1 +w)A(n,d,w). We consider the following special values:
—n=4,d=4,w=2: A(4,4,2) =2

—n=8d=4,w=4: A(8,4,4) =14
—n=12,d=4, w=6: A(12,4,6) = 132



the last two being obtained with F the Steiner system S(3,4,8) and S(5,6,12)
respectively.

The corresponding codes C'x have same cardinality as the sphere (2 x 3 = 6,
14 x 5 = 70 and 132 x 7 = 924 respectively), but they are not translates of
a sphere. Indeed, when C' is a (translate of a) sphere with w = n/2, one has
Cow(W) = 2 for any window W € ([Z)]). On the other hand, for C = Cr as
above, one has by construction Cc,,, (W) =w + 1 for W € F.

6.2 Another construction

Let D C {0,1}" be a binary (non-linear) code of length w > n/2 and minimal
weight at least 2w — n.

Let C be the code of length n obtained by taking all words of length w that
do not belong to D, and completing them with 0 on the last n — w coordinates.
Thus |Cy] = 2% — |D|.

Let C5 be the code of length n formed by the words ¢ of weight exactly w,
and such that the projection of ¢ on the first w coordinates belongs to D. Thus
if ny, is the number of codewords of weight & in D, one finds [Ca| = 3=, i (I7%).

Now let C be the (disjoint!) union of Cy and Cs. Then C has the w-witness
property. Indeed, let ¢ € C. Then if ¢ € C1, ¢ admits [w] as witness, while if
c € (5, c admits its support as witness.

As an illustration, let D be the sphere of radius w — ¢ in {0,1}%, for t €
{1,...,%5%}. Then

oz (2 )((1%) )

If w satisfies 2% > (n’/LQ) but w < n— 1, this improves on examples 1, 1, and
2 of the last subsection, in that one finds then

v = (01> max(2). (],) 2

On the other hand, remark that C; C {0,1}[*] and Cy C S,(0), so that
cl<2v+(3)-

7 Conclusion and open problems

We have determined the asymptotic size of optimal w-witness codes. A few issues
remain open in the non-asymptotic case, among which:

— When is the sphere S,,(0) the/an optimal w-witness code? Do we have
f(n,w) = () for w < n/2 ? In particular do we have f(2w,w) = (>*) ?

— For w > n/2, do we have f(n,w) < max((n%),Qw +(2)?

— Denoting by f(n,w, > d) the maximal size of a w-witness code with minimum
distance d, can the asymptotics of Proposition 2 be improved to

1 logy f(n,wn,> dn) < h(w) ?
n
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