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Abstract. Data warehouses are increasingly supplied with data produced by a
large number of distributed sensors in many applications: medicine, military, road
traffic, weather forecast, utilities like electric power suppliers etc. Such data is
widely distributed and produced continuously as data streams. The rate at which
data is collected at each sensor node affects the communication resources, the
bandwidth and/or the computational load at the central server. In this paper, we
propose a generic tool for summarizing distributed data streams where the amount
of data being collected from each sensor adapts to data characteristics. Experi-
ments done on electric power consumption real data are reported and show the
efficiency of the proposed approach.

1 Introduction

A growing number of applications in areas like utilities, retail industry and sensor net-
works deal with a challenging type of data: data elements arrive in multiple, continuous,
rapid and time-varying data streams. A key requirement of such applications is to con-
tinuously monitor and react to interesting phenomena occurring in the input streams.
For instance, electric power utilities may want to alert their customers when their con-
sumption is going to exceed a threshold during a period with expensive electric power.

Many solutions have been developed recently to process data streams that arrive from
a single or from multiple locations. The concept of Data Stream Management System
(DSMS) has been introduced and several systems (including commercial ones) have
been developed [4,7,17,18,21]. These systems enable to process data streams on-the-fly
and issue alarms or compute aggregates in real-time without storing all data on disk.
But in many applications there is a need to keep track of such data in a data warehouse
for further analyses. For instance electric power utilities (or telecommunication compa-
nies) need to keep track of the way their customers use electric power (telecommunica-
tion services) upon time: applications concern power (telecommunication) consumption
forecast, definition of new price policies, ... It is inconceivable to load all such data in a
data warehouse due to its volume, arrival rate and possible spatial distribution.

This paper proposes an approach to summarize the contents of a large number of dis-
tributed data streams describing uni-dimensional numerical data, where each data source
corresponds to a sensor which periodically records measures in a specific field (electric
power consumption, use of telecommunication services, ...). The approach is based on
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optimized temporal sampling of data sources in order to produce summaries of good
quality with respect to computing, storage and network constraints. The computation of
the summaries is decentralized and some sensor computing capacities are used.

The basic scheme is to choose the best policy of summarizing data over each temporal
window t taking into account data of the previous window t − 1. This assumes that data
is somewhat periodic and that the window length is chosen to be compatible with this
period. This assumption is realistic in many applications and in particular in the one
studied in this paper concerning sensors which are communicating electric power meters.

The paper is organized as follows. Section 2 describes related work in this area.
In Section 3, we present the proposed summarizing system. Section 4 evaluates the
approach on real data and Section 5 gives an outlook upon our ongoing and future
research in this area.

2 Related Work

Summarizing online data streams has been largely studied with several techniques like
sketching ([8,9]), sampling and building histograms ([2,10]). Authors in [15] exper-
imentally compare existing summarizing techniques and use the best one in terms of
reconstruction accuracy; they also introduce a user-defined model to reduce data qual-
ity when data gets older. However, most work concentrates on summarizing a single
stream and without exploiting possible bi-directional communications between a cen-
tral server and its sensors nor computing facilities within sensors.

In the context of DSMS’s, load shedding techniques ([1,19]) drop randomly data
stream records when the load of the system increases beyond what it can handle. But
these approaches do not scale to a large number of streams issued by remote sensors.

In the context of sensor networks, several adaptive sampling techniques have been
developed to manage limited resources. The aim is to preserve network bandwidth (or
the energy used for wireless communications) and storage memory by filtering out data
that may not be relevant in the current context. Data collection rates thus become dy-
namic and adapted to the environment.

An adaptive sampling scheme which adjusts data collection rates in response to the
contents of the stream was proposed in [11]. A Kalman filter is used at each sensor to
make predictions of future values based on those already seen. The sampling interval
SI is adjusted based on the prediction error. If the needed sampling interval for a sensor
exceeds that is allowed by a specified Sampling Interval range, a new SI is requested
to the server. The central server delivers new SIs according to available bandwidth,
network congestion and streaming source priority. Again a probabilistic model is used
in [5]: a replicated dynamic probabilistic model minimizes communications between
sensor nodes and the central server. The model is constructed by exploiting intelligently
historical data and spatial correlations across sensors. Correlations between sensors can
be computed incrementally as described in [16].

A backcasting approach to reduce communication and energy consumption
while maintaining high accuracy in a wireless sensor network was proposed in [20].
Backcasting operates by first activating only a small subset of sensor nodes which
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communicate their information to a fusion center. This provides an estimate of the envi-
ronment being sensed, indicating some sensors may not need to be activated to achieve
a desired level of accuracy. The fusion center then backcasts information based on the
estimate to the network and selectively activates additional sensors to obtain a target
error level. In this approach, adaptive sampling can save energy by only activating a
fraction of the available sensors.

In [14], authors present a feedback control mechanism which makes dynamic and
adaptable the frequency of measurements in each sensor. Sampled data are compared
against a model representing the environment. An error value is calculated on the basis
of the comparison. If the error value is more than a predefined threshold, then a sensor
node collects data at a higher sampling rate; otherwise, the sampling rate is decreased.
Sensor nodes are completely autonomous in adapting their sampling rate.

In [13], authors present a method to prevent sensor nodes to send redundant infor-
mation; this is predicted by a sink node using an ARIMA prediction model. Energy ef-
ficiency is achieved by suppressing the transmission of some samples, whose ARIMA
based prediction values are within a predefined tolerance value with respect to their
actual values. A similar approach is proposed by Cormode and Garofalakis [6]. Their
results show that reduced communication between sensors and the central server can be
sufficient by using an appropriate prediction model. A wide range of queries (includ-
ing heavy hitters, wavelets and multi-dimensional histograms) can be answered by the
central server using approximate sketches.

3 Architecture of the Summarizing System

We consider a distributed computing environment, describing a collection of n remote
sensors and a designated central server. Sensors communicate with the central server
which is responsible for loading into the data warehouse measurements done by sen-
sors. We assume that communications between the central server and sensors are bi-
directional and that there is no communication between sensors. Such architecture is
representative of a large class of applications. In the particular case of electric power
metering, several million meters feed a unique data warehouse but using intermediate
network nodes which play the role of the central server of our model. There are typically
several hundreds of meters directly connected to an intermediate node.

We assume that sensor measures are generated regularly at the same rate for every
sensor. We cut out all streams into periods (also called temporal windows) of the same
duration. A typical period corresponds to a duration of one day. A temporal window
is composed of p elements for each sensor (the number of elements is the same for
all sensors). Elements issued by a sensor during a period is also referred as a curve in
the following. For each sensor, the number of elements gathered by the central server
within a temporal window will vary between m (fixed parameter) and p. Let us define s
as the maximum number of elements which can be received by the central server from
the n sensors during a temporal window (s < n ∗ p).

From the observation of what is happening during a period t − 1, we determine
a data collection model to apply to the n sensors for period t. The problem consists
of finding the best “policy of summarizing” each sensor, respecting the constraints of



68 R. Chiky and G. Hébrail

the maximum number of data collected by the central server (parameter s) and the
minimum number of data taken from each sensor (parameter m).

The data collection model should preserve as much as possible the detailed informa-
tion by reducing summarizing errors. Several measures can be used to measure errors.
We use in this paper the Sum of Square Errors SSE, which is the square of the L2
distance between the original curve C = {c1, c2, ..., cp} and an estimation from the
summarized curve Ĉ = {ĉ1, ĉ2, ..., ĉp}. SSE is computed as follows: SSE(C, Ĉ) =∑p

i=1(ci − ĉi)2 where p is the number of elements in C. Other error measures can
be defined depending on the application. SSE is well adapted to electric power con-
sumption. Note that error measures cannot be defined arbitrarily and some properties
(not studied in this paper) are necessary for the optimization problem to be solved in
reasonable time.

During a period t, sensors send data to the server at the scheduled sampling rate
along with SSE’s values for different assumptions of sampling rates corresponding to
sending between m and p values. Then the server solves an optimization problem to
find the best sampling rate for each sensor during period t + 1. Actually, we assume
that the number of sensors connected to a server is large enough to distribute uniformly
with time all data exchanges so that there is no temporary overload of the server.

3.1 Sensor Side Module

Several sampling schemes are considered by each sensor to summarize its curve during
a period. Almost all methods of curve compression can be used depending on the han-
dled data. For the needs of our application, we concentrated on three methods: regular
sampling, curve segmentation and wavelet compression.

Regular sampling: Curves are sampled using a step j chosen between 1 and m′ =⌊
p
m

⌋
(�x� is the floor function). j = 1 means that all elements are selected, j = 2

means that every two elements are selected and so on. This technique is described as
regular because selected points are temporally equidistant, a jump j is made between
two sampled elements. As for the estimation of the original curve from the sampled
elements, two interpolation methods are used: “Linear Interpolation” and “Constant
Interpolation”. Given one interpolation method, SSE’s for the different values of j can
be computed by the sensor and sent to the server.

Curve segmentation: Segmentation approximates a curve by using a piecewise rep-
resentation. The curve is split into a given number of segments and each segment is
associated with a constant value. Segmentation has been considered in many areas and
there exists an algorithm from Bellman [3] which computes exactly the segment bounds
which minimize the SSE between the curve and its piecewise representation given the
number of segments. Other error measures can be used and lead to other optimization
algorithms (see [12]). The number of segments applicable to a sensor varies between⌊

m
2

⌋
and p. Indeed, the number of elements of each segment is also needed to construct

the piecewise representation. If a k-segmentation is applied to a curve C, the central
server needs {(ĉ1, n1), (ĉ2, n2), ..., (ĉk, nk)} to construct the piecewise representation
Ĉ, where ĉl is the average value of segment l composed of nl elements. Thus, we can
assign an integer value j to a curve from 1 (all elements are collected) to m′ (optimally
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the curve is segmented in
⌊

p
2∗m′

⌋
segments). Here again each sensor performs segmen-

tation locally with different numbers of segments, computes the corresponding SSE’s
and can send SSE’s corresponding to different summarizing levels indexed by a value j
varying between 1 and m′.

Curve compression: Wavelet coefficients are projections of the curve onto an orthog-
onal set of basis vectors. The choice of basis vectors determines the type of wavelets.
Haar wavelets are often used for their ease of computation and are adapted to electric
power consumption curves. The estimation of a curve from its summarized version is a
linear combination of a number of basis vectors chosen from {1, 21, 22, ...2J}, (j = 1
means the whole curve is collected). J is the biggest integer such that 2J ≤ m′. The
number of data points in a curve must be a power of 2 in the case of the Haar wavelet.
If it is not the case zeros are padded at the right end of the curve. Again, each sensor
computes the wavelet decomposition with different levels indexed by j varying from 1
to m′ and send the corresponding SSE’s to the server.

At the end of every temporal window, sensors compute the SSE’s corresponding to
each summarizing procedure (regular sampling, curve segmentation and curve com-
pression) and send for each value of index j the minimum of errors between these three
methods to the central server.

3.2 Central Server Module

At the end of each period, the central server receives from each sensor different values of
SSE’s corresponding to different levels of summarization, indexed by j varying between
1 and m′. These SSE’s are stored in a matrix Wn∗m′ of n lines and m′ columns (n is
the number of sensors connected to the server). Element wij of the matrix corresponds
to the SSE obtained when collecting data from sensor i with a summarizing level j.

Instead of distributing equally the summarizing levels between all sensors for period
t + 1, an optimization is performed to assign different sampling rates to sensors from
SSE’s computed during period t. The central server solves the following optimization
problem minimizing the sum of SSE’s on sensors:

Minimize
∑n

i=1
∑m′

j=1(Wij × Xij)

subject to:

⎧
⎪⎨

⎪⎩

Xij = 0 or 1
∑m′

j=1 Xij = 1 i from 1 to n
∑n

i=1
∑m′

j=1(
⌊

p
j

⌋
× Xij) ≤ s i from 1 to n

This is a problem of assignment of summarizing levels to the curves respecting the
constraints above. A variable Xij = 1 means that the central server assigns summa-

rizing level j to the curve of index i. The second constraint
∑m′

j=1 Xij = 1 imposes
only one value of j per curve. Lastly, the third constraint means that the number of
data to be communicated to the central server should not exceed the threshold s. Once
the optimization problem is solved, the ji are sent to each sensor. The sensor uses the
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summarizing method corresponding to the smallest SSE value. At the end of the pe-
riod, sensors send the SSEs to update the matrix of errors as explained above. This
process continues as long as data streams arrive on line. This optimization problem
can be solved using standard integer linear programming techniques. We used a solver
based on the simplex method and Branch-and-bound methods. This approach solves in
reasonable time(less than one minute using a standard PC 2GHZ with 1.5 GB) prob-
lems with less than 30000 variables, which is quite enough in our context (up to 1000
sensors connected to each intermediate node).

4 Experimental Validation

The approach described above has been assessed empirically on real data against a
standard non adaptive approach called the fixed approach. In this approach, the three
summarizing methods have been considered but the number of selected elements is
equally distributed between sensors depending on parameter s.

Experiments were carried out on two real data sets issued from electric meters. Each
meter produces a curve representing the electric power consumption of one customer.
The first data set describes 1000 meters each producing one measure every 10 minutes
during one day (144 measurements per meter per day). This data set is used to assess the
efficiency of the approach in the case of a stationary consumption for each customer:
the optimized sampling rates are assessed on the same curve which is used to choose
them. This experiment is referred as “stationary window” below.

The second data set describes 140 meters each producing one measure every 30
minutes but during one year (365 days). It is used to assess the efficiency on a non-
stationary consumption for each customer: the optimized sampling rates are assessed on
the curve of a different day than the one used for choosing them. This second experiment
will be referred as “jumping window” below.

These data sets are those available today. They do not show very high rates of ele-
ments. In the next future with the generalization of automatic communicating meters,
each meter will possibly generate a measure every one second.

4.1 Stationary Window Results

In these experiments, we used m = 7 (m′ =
⌊144

7

⌋
= 20). This means that sampled

curves consist of at least 7 values if they are built regularly, of 3 values if built with
segmentation and of 9 with wavelet compression. We point out that a curve in our
example consists of 144 points. Several values of threshold s have been tested: the
results are presented in Table 1. Each column of the table corresponds to a threshold
value s. s = 144000 = 144 ∗ 1000 means that all elements are collected for all curves.
Experimented thresholds are equal to 144000 divided by one of {1, 2, 3, 5, 7, 10, 15}.
For instance, s = 48000 is the third of total number of data ( 144000

3 ).
For each method the Sum of Square Errors have been computed. The standard de-

viation is also presented to illustrate the dispersion of number of data computed by
optimization around the average which is equal to s

1000 (n = 1000).
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Table 1. Experimental Results. SSE: Sum of Square Error. opt: sampling steps (#segments or
#wavelet coefficients) obtained by optimization. avg: Average and std: Standard Deviation. Samp
CI: Regular Sampling with Constant Interpolation, Samp LI: Regular Sampling with Linear In-
terpolation, seg: Segmentation and wav: Wavelet Compression.

Threshold s 144000 72000 48000 28800 20571 14400 9600

SSE opt Samp CI 0 696.36 1571.79 3037.02 4265.46 5839.95 8767.05
SSE opt Samp LI 0 434.35 996.34 1969.67 2781.54 3883.9 5676.6
SSE opt seg 0 161.62 385.13 874.1 1346.58 2027.17 3432.16
SSE opt wav 0 381.15 916.22 1881.66 2724.08 3888.6 6118.8
SSE opt all 0 139.29 346.05 801.91 1240.62 1859.6 3026.24
SSE fixed CI 0 2770.8 4329 8040 9313 13157 16048
SSE fixed LI 0 1956 2821 4245 5501 7024 9087
SSE fixed seg 0 505.8 860.8 1535 2042.6 2761.5 4677.1
SSE fixed wav 0 1385.32 2725.35 4766.09 4766.09 7179.5 7179.5
avg data/meter 144 72 48 28.8 20.57 14.4 9.6
std data CI 0 50.3 44.8 32.05 24.48 15.62 4.4
std data LI 0 51 45.45 33.6 24.7 16.5 4.9
std data seg 0 43 35.73 25.32 17.64 10.6 3.9
std data wav 0 48.9 42 30 21.8 13.5 3

As can be seen in Table 1, the optimization performs well for all summarizing meth-
ods, it considerably reduces the Sum of Square Errors compared to the “fixed” ap-
proach. For instance, in the case of regular sampling with Linear Interpolation, the op-
timization reduces the SSE by about 77% for threshold s = 72000 compared to a“fixed
regular sampling”. The transmission cost of SSE values is not included in the reported
experiments. This impacts only on the comparison between the ’fixed’ and ’optimized’
approaches, since SSE’s transmission is not needed in the ’fixed’ approach. However,
the number of SSE values to transmit is bounded and can be considered as negligible
compared to the number of elements p in the window.

In our experiments, segmentation always gives better results than the two other sum-
marizing methods. We also experimented with the case where meters choose themselves
the summarizing method to adopt according to the affected j. We notice that the Sum
of Square Errors is again reduced thanks to the automatic selection of summarizing
method (line ’SSE opt all’ of table 1).

We observe high values of standard deviations mainly for high values of threshold
s. The sampling rates significantly deviate from the average. This confirms the impor-
tance of selecting sampling steps by optimization. The same observation is true for all
summarizing methods.

4.2 Jumping Window Results

Previous experiments evaluate the error made over a period from an optimization carried
out over the same period. The global approach consists of summarizing curves over a
period based on optimization results computed over a previous period. We present here
the method adopted for a streaming environment as well as first experiments completed
on 140 load curves available over one year period.
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Optimization Using d-1. We used the second dataset of 140 curves measured every 30
minutes over one year to validate the efficiency of the proposed data collection scheme.
Table 2 gives the percentage of periods (temporal windows) for which the SSE using
optimized summarizing is lower than the SSE using “fixed” summarizing. The length
of the temporal window used for these experiments is one day. The optimization stage
uses data of the previous day and resulting steps j are applied to data of the current
day. We experimented thresholds equal to the total number 6720 divided by each of
{1, 2, 3, 5, 7, 10, 15}.

Table 2. Percentage of days whose SSE with optimization is better than “fixed” methods. opt-1:
Optimization at day d − 1 and sampling at d. %d < 10% SSE corresponds to the percentage of
days whose SSE opt-1 is lower by 10 % than the SSE obtained by “fixed” methods.

Threshold s 6720 3360 2240 1344 960 672 448

%d< 10% SSE LI opt-1 - 84% 84% 84% 85% 85% 85%
%d < 10% SSE CI opt-1 - 84% 84% 85% 86% 97% 100%
%d < 10% SSE seg opt-1 - 83% 83% 84% 84% 84% 84%
%d < 10% SSE wav opt-1 - 84% 85% 94% 89% 100% 100%

Results in Table 2 show that the approach is very accurate. In fact, the optimized
summarizing methods decrease SSE by at least 10% compared to the fixed methods on
more than 83% of the days and for all tested threshold values. Note that the more thresh-
old decreases the more performances of optimized summarizing methods increase.

Optimization Using d-7. Previous experiments were done on data of day d − 1 to
summarize data of day d. Fig. 1 shows the evolution of SSEs during one month (30 days)
for threshold s = 1344. We observe that errors are not distributed regularly with time.
This is due to the weekly cycle of electric power consumption. In fact the consumption
remains generally stable during 5 working days and the consumption level changes on

Fig. 1. Evolution of SSEs during 30 days. opt-7: Optimization at day d-7 and sampling at d. opt-1:
Optimization at day d-1 and sampling at d. opt-c: Optimization and sampling at day d (current
day). fixed: Fixed segmentation.
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weekends. Here sampling rates for mondays are determined with data of sundays and
those of saturdays based on data of fridays. Additional experiments were carried out
with a sampling scheme for a day d based on sampling rates computed from day d − 7.
Results are illustrated in curve opt-7 of Fig. 1 (curve opt-7). We note that this smoothes
the SSE evolution and thus decreases errors due to the periodicity of electric power
consumption.

5 Conclusion and Future Work

We have proposed a new generic framework for summarizing distributed data streams to
be loaded into a data warehouse. The proposed approach limits the load of the central
server hosting the data warehouse and optimizes the sampling rates assigned to each
input stream by minimizing the sum of square errors. This optimization is dynamic
and adapts continuously with the contents of the streams. Moreover, the compression
technique used for each stream adapts continuously to its contents and is selected among
several approaches.

Experiments have been done on real data describing measures of electric power con-
sumption generated by customer meters. These experiments show the efficiency of the
approach. Other experiments are currently being done on larger data sets describing
more meters on a longer period.

This work suggests several developments which are under study:

– Testing the approach on more chaotic data with other summarizing techniques.
– Study how error measures different from SSE can be used, for instance the L1 dis-

tance or L∞ to minimize the maximum of errors instead of the mean. This impacts
on the optimization algorithm.

– Extending the approach to sensors producing multidimensional numerical data.
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