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Abstract

In this paper, the matching of SIFT-like features [5]
between images is studied. The goal is to decide which
matches between descriptors of two datasets should be
selected. This matching procedure is often a prelimi-
nary step towards some computer vision applications,
such as object detection and image registration for in-
stance. The distances between the query descriptors
and the database candidates being computed, the clas-
sical approach is to select for each query its nearest
neighbor, depending on a global threshold on dissimi-
larity measure.

In this contribution, an a contrario framework for the
matching procedure is introduced, based on a thresh-
old on a probability of false detections. This approach
yields dissimilarity thresholds automatically adapted to
each query descriptor and to the diversity and size of the
database. We show on various experiments on a large
image database, the ability of such a method to decide
whether a query and its candidates should be matched.

1. Introduction

Matching local features is a very convenient way to
compare several pictures. Many applications -such as
object detection, stereo correspondence, image stitch-
ing, 3D reconstruction- are based on such procedures.
An exhaustive list of the applications of the matching
of local descriptors is beyond the scope of this paper.
Illustrating examples can be found in [5, 2].

Whereas the extraction and representation of des-
criptors has been thoroughly studied (see e.g. the ref-
erences in [7], where the SIFT [5] has proven to be
the most robust and invariant representation method),
there are few studies about their matching. The match-
ing process consists in comparing query descriptors
{ai}i=1...NQ

(e.g. extracted from a query image) with

candidate descriptors {bj}j=1...NC
from a database

(e.g. another image or a set of images), using a dis-
similarity measure (a distance) and a selection criterion.
Deciding whether a query descriptor ai matches one
or several candidates from the database {b1, . . . , bNC}
boils down to setting a threshold on distances D(ai, bj).
Ideally, this threshold should be set automatically and
should depend on ai and on the entire database.
In practice, two different criteria are used to validate
matches (as detailed in [7]), both relying on user-
selected thresholds. The simplest one, that we call
DT, uses a global threshold on distances. Generally,
matches are restricted to the nearest neighbor for each
query descriptor, in order to avoid multiple false detec-
tions that often occur. We will refer to this criterion as
NN-DT.

In [5], Lowe introduces another criterion to decide
whether the nearest neighbor matches the query. As-
suming that the query ai occurs at best once in the
database, this test only considers the comparison of dis-
tances d1 and d2 > d1 to the first and the second nearest
neighbors. A query and its closest neighbor are matched
when the ratio r = d1/d2 between theses two distances
is below a threshold. This popular criterion, that we call
NN-DR, is far more robust than a simple global thresh-
old on distances and, indeed, behaves very well when
the structure to be matched is present exactly once in
the candidate database. Nevertheless, it is less clear
that the same global threshold r should work when the
query is not present in the database, whereas computer
vision systems have to deal with situations when the tar-
get is present or not. Both scenarios will be considered
in the experimental section. Moreover, if the structure
appears more than once (because some interest points
are repeated, because of repetitive structures or because
the objects of interest are present more than once in the
database) this criterion may fail.

In this paper, we propose an alternative matching cri-
terion relying on adaptive thresholds. Roughly speak-
ing, the method rests on the rejection of matches that



occur by chance. This matching procedure allows mul-
tiple detections over a database, while controlling the
total number of matches. In Section 3, we compare its
performances with the classical aforementioned match-
ing criteria.

2. A contrario matching criterion (AC)

The a contrario framework was initially proposed
by Desolneux et al. [3] in order to group low-level vi-
sual features. The basic principle is to detect groups
of features that are very unlikely under the hypothe-
sis that features are independent. In what follows, we
call such a hypothesis a null hypothesis. The unlike-
liness is ensured by controlling the average number of
false detections. This generic approach has been ap-
plied with success to, among other things, the detection
of alignments [3], contrasted edges, vanishing points,
and grouping [4]. Recently, this methodology has been
adapted to shape matching [8]. In the next two para-
graphs, we adapt this methodology to the matching of
SIFT-like features.

Recall that each SIFT-like descriptor ai is made of
M orientation histograms, ai = (ai

1, . . . , a
i
M ). In

this section, we assume that the distance between two
descriptors ai and b can be written as D(ai, b) =∑M

m=1 d(ai
m, bm). This is the case for classical bin-

to-bin distances (Euclidean, Manhattan or χ2 distance).
The a contrario approach to descriptor matching then
reads as follows. A candidate descriptor ai being
given, it is matched with b if D(ai, b) is small enough
(as will be detailed in the next section) under the hy-
pothesis that distances d(ai

m, bm) are independent ran-
dom variables. More precisely, we assume that b is a
random descriptor, such that the distances d(ai

m, bm)
(m ∈ {1, . . . M}) are mutually independent random
variables. We call this hypothesis “null hypothesis”,
and write it Hi

0. Under this hypothesis, the probability
density function of the random variable D(ai, b) could
be written pi

1 ∗ . . . ∗ pi
M , where ∗ denotes the convo-

lution product and pi
m the pdf of the random variable

d(ai
m, bm). This enables us to compute the probability

P
(
D(ai, b) ≤ δ |Hi

0

)
. (1)

In order to numerically estimate these probabilities,
we use empirical marginals. That is, for each i ∈
{1, . . . NQ} and each m ∈ {1, . . . M}, the laws pi

m are
empirically estimated over the database {b1, . . . , bNC}.
In other words, for each circular histogram ai

m, the dis-
tribution function of the distance d(ai

m, bm) is obtained
as bm spans the mth histogram of the descriptors in the
database.

A match between ai and an element bj in the
database is considered as meaningful and validated as
soon as the distance δ = D(ai, bj) between them is
smaller than what can be expected under the hypothesis
Hi

0, i.e. as soon as the probability P(D(ai, b) ≤ δ |Hi
0)

is small enough. Therefore, the probability is thresh-
olded instead of D(ai, b) itself. In order to control the
rate of false detections, it is necessary to fix δ in a way
that depends on the number of queries and the number
of candidate descriptors (the bigger these numbers, the
more chances to observe false detections). Following
previous works on a contrario detection or matching,
we use a value of δ that is proportional to NQNC . We
define δi(ε) as the largest threshold δ that satisfies

P
(
D(ai, b) ≤ δ |Hi

0

)
≤ ε

NQNC
. (2)

A match between ai and b is said to be ε-meaningful
if D(ai, b) ≤ δi(ε). With this definition, it is easy
to prove that the expected number of ε-meaningful
matches, when testing NQ queries against NC candi-
dates satisfying the null hypotheses, is smaller than ε.

This should be interpreted as a control over the num-
ber of false detections when comparing NQ query des-
criptors against NC candidates. In practice, ε is fixed
and for each descriptor ai we perform the following
steps

1. δ 7→ P
(
D(ai, b) ≤ δ |Hi

0

)
is computed using

Formula (1) ;

2. the threshold δi(ε) is automatically computed in
function of the value ε using Formula (2) ;

3. for each descriptor bj (j = 1, . . . , NC), ai is
matched with bj if D(ai, bj) ≤ δi(ε).

We will refer from now to this matching criterion as AC.
Anticipating on the experimental section, let us un-

derline the conceptual advantages of fixing ε to control
the matches over other thresholds on distances. First,
ε has the relatively intuitive meaning of a number of
false alarms. Second, as said earlier, a single num-
ber yields thresholds that adapt to the query and the
database. Note that the AC criterion permits multiple
detections since the number of possible matches is not
a priori restricted. However, it is also possible to limit
the AC criterion to the matching of each query descrip-
tor to its nearest neighbor. We call this criterion NN-AC.
We will experimentally show in the next section the ad-
vantages of both criteria.

3. Experiments

This section presents several experiments to compare
the performances of different matching criteria, making



use of a large set of 3.1 106 descriptors, extracted from
732 images1 modified by synthetic degradations (affine
transformation and noise). Descriptors, obtained in a
way similar to [5], are composed of M = 9 circular
direction histograms, corresponding to nine disjoint re-
gions around each oriented point. Each histograms is
composed of 12 bins. We use CEMD [9], an adaptation
of the Earth Mover’s Distance for circular histogram, as
a dissimilarity measure between features.

ROC curves are used to show the behavior of the dif-
ferent matching criteria introduced in Section 2.

3.1 Experimental protocols

The experiments follow two protocols. The first one,
called A → A′, consists in matching interest points be-
tween an image A and an image A′ obtained by apply-
ing an affine transform and adding Gaussian noise to
A (with σ = 5 for 8-bit coded images). A match is
declared false (i.e. false positive) or correct (i.e. true
positive) depending on some spatial tolerance (we fol-
low exactly the protocol of [7]). This classical protocol
checks out very simply the behavior of a matching pro-
cedure when two images containing exactly the same
“objects” (before and after some transformations) are
compared.

Now, because a great number of computer vision
systems are confronted to cases when the target is not
always present (the search of an object in an image
database for instance), we propose an additional pro-
tocol called A↗A′

↘B . In this protocol, both comparisons
of the image A with the modified image A′ and with an
image B, independent of A, are performed using the
same thresholds. Correct and false matches between
A and A′ are defined in the same way as in the proto-
col A → A′. All matches between the NA descriptors
from A and the NB descriptors from B are considered
as false matches.

Recall that for the NN-AC and AC criteria, a threshold
on distances is obtained by thresholding a probability
of false detections (see Equation (2)). For the A → A′

protocol, Equation (2) is applied with NQ = NC =
NA, and for the A↗A′

↘B protocol with NQ = NA and
NC = NA + NB .

3.2 Performance evaluation

The evaluation, based on a set of 732 images, is per-
formed with approximately 25 billion comparisons of
descriptors. Each image A is compared to a modified
image A′ (protocol A → A′) and to the next image B

1Images available at: http://www.tsi.enst.fr/~rabin/ICPR08/

in the image set (protocol A↗A′

↘B ), yielding 732 ROC
curves for both protocols.

In order to compare the performances of the dif-
ferent matching procedures on the whole database, we
draw global ROC curves: for each threshold value, we
plot the total number of correct matches on the whole
database versus the total number of false matches.
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(a) A→ A′ protocol.
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(b) A↗A′

↘B protocol

Figure 1. Global ROC curves (on 732 images
and 3.1 106 descriptors) for nearest neighbor criteria:
NN-AC (red), NN-DT (blue) and NN-DR (green).
(a) A → A′ protocol (an image A is matched against
its transformed version A′).
(b) A↗A′

↘B protocol (an image A is matched separately
against A′ and an independent image B).

Figure 1(a) shows the global ROC curve for the near-
est neighbor criteria NN-AC, NN-DT and NN-DR, with
the A → A′ protocol. Let us remark that such a curve
permits to evaluate how stable an optimal threshold is
from one experiment to the other. In particular, it shows
that NN-DT is not stable in this regard, and is clearly out-
performed by other criteria. We observe that both NN-
AC and NN-DR, which have very similar global ROC



curves, are more stable. In this case, the proposed NN-
AC criterion does not offer significant advantages in
comparison with NN-DR. Indeed, as explained in Sec-
tion 1, the NN-DR criterion is well adapted to the case
where the target is present.

Figure 1(b) shows the global ROC curve (as before,
computed on the whole image database) of the same
three criteria, this time on the A↗A′

↘B protocol. As ex-
plained earlier, this protocol mixes the matching results
obtained by comparing separately A with A′ and A with
B. We can see that the performances of NN-DR clearly
decrease in comparison to the proposed NN-AC crite-
rion. On average, for a given number of correct cor-
respondences between A and A′, NN-AC yields fewer
false correspondences than NN-DR. This means that
NN-AC is better at deciding if the target is present or
not, which is crucial in the context of object recogni-
tion.
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Figure 2. Global ROC curves (on 732 images)
with A↗A′

↘B protocol for both AC (red) and DT (blue)
criteria in continuous lines. In comparison, the same
criteria with nearest neighbor restriction from Fig. (1)
are represented in dashed lines.

Nearest neighbor restriction. In section 2, the AC
matching criterion is defined without nearest neighbor
restriction. Indeed, the thresholds δi(ε) on dissimilarity
measure, computed from Formula (2), could also define
for each query descriptor the number of nearest neigh-
bors which have to be matched. On Figure 2, we show
the global ROC curves obtained for the two matching
criteria AC and DT with the A↗A′

↘B protocol. The pre-
vious results obtained with nearest neighbor restriction
with the same protocol are displayed in dashed line. As
could be expected, the performance of DT decreases sig-
nificantly in comparison to NN-DT. Yet, we observe that
AC and NN-AC criteria have similar results. This quite
surprising result indicates that the adaptive matching

criterion introduced in this paper permits the rejection
of false matches without any restriction on the number
of possible matches.

4. Conclusion

A new criterion for the matching of SIFT-like fea-
tures has been proposed. Our approach, based on the
a contrario framework [4], first estimates the probabil-
ity of false detections to define adaptive thresholds on
a dissimilarity measure. Experimental results, obtained
on a large image database, show that this a contrario
matching criterion behaves well in situations where the
target is present or not, without requiring any nearest
neighbor restriction.

An extension of the A↗A′

↘B protocol, where A′ con-
tains several occurrences of the target A and where B is
a large image set, is currently being studied to show the
advantage of the AC criterion for multiple object detec-
tion.

Moreover, the matching criterion (introduced in this
paper) is generic and could be applied to other local
descriptors, such as affine invariant descriptors [6] or
shape context [1]. Next, we plan to group matches un-
der geometrical constraints, by using RANSAC-type al-
gorithms. Here again, the same a contrario methodol-
ogy can be used to decide if an object is present in a
database.
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