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Abstract. This paper deals with the ergodicity and the existence of a strong law of

large numbers for adaptive Markov Chain Monte Carlo. We show that a diminishing

adaptation assumption together with a drift condition for positive recurrence is enough

to imply ergodicity. Strengthening the drift condition to a polynomial drift condition

yields a strong law of large numbers for possibly unbounded functions. These results

broaden considerably the class of adaptive MCMC algorithms for which rigorous analysis

is now possible. As an example, we give a detailed analysis of the Adaptive Metropolis

Algorithm of Haario et al. (2001) when the target distribution is sub-exponential in the

tails.

1. Introduction

This paper deals with the convergence of Adaptive Markov Chain Monte Carlo (AM-

CMC). Markov Chain Monte Carlo (MCMC) is a well known, widely used method to sam-

ple from arbitrary probability distributions. One of the major limitation of the method is

the difficulty in finding sensible values for the parameters of the Markov kernels. Adap-

tive MCMC provides a general framework to tackle this problem where the parameters

are adaptively tuned, often using previously generated samples. This approach generates

a class of stochastic processes that is the object of this paper.

Denote π the probability measure of interest on some measure space (X,X ). Let {Pθ, θ ∈
Θ} be a family of φ-irreducible and aperiodic Markov kernels each with invariant distribu-

tion π. We are interested in the class of stochastic processes based on non-homogeneous

Markov chains {(Xn, θn), n ≥ 0} with transition kernels {P̄ (n; (x, θ); (dx′, dθ′)) , n ≥ 0}
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satisfying
∫

Θ P̄ (n; (x, θ); (·, dθ′)) = Pθ(x, ·). Often, these transition kernels are of the

form {Pθ(x, dy)δHn(θ,y)(dθ′), n ≥ 0} where {Hl, l ≥ 0} is a family measurable func-

tions, Hl : Θ × X → Θ. The stochastic approximation dynamic corresponds to the case

Hl(θ, x) = θ + γl H(θ, x). In this latter case, it is assumed that the best values for θ are

the solutions of the equation
∫

H(θ, x)π(dx) = 0. Since the pioneer work of Gilks et al.

(1998); Holden (1998); Haario et al. (2001); Andrieu and Robert (2001), the number of

AMCMC algorithms in the literature has significantly increased in recent years. But de-

spite many recent works on the topic, the asymptotic behavior of these algorithms is still

not completely understood. Almost all previous works on the convergence of AMCMC

are limited to the case when each kernel Pθ is geometrically ergodic (see e.g.. Roberts and

Rosenthal (2007); Andrieu and Moulines (2006)). In this paper, we weaken this condition

and consider the case when each transition kernel is sub-geometrically ergodic.

More specifically, we study the ergodicity of the marginal {Xn, n ≥ 0} i.e. the con-

vergence to π of the distribution of Xn irrespective of the initial distribution, and the

existence of a strong law of large numbers for AMCMC.

We first show that a diminishing adaptation assumption of the form |θn−θn−1| → 0 in a

sense to be made precise (assumption B1) together with a positive recurrence uniform-in-θ

drift condition towards a small set C (assumptions A1-2) and a uniform-in-θ ergodicity

condition of the kernels {Pθ, θ ∈ Θ} (assumption A3) are enough to imply the ergodicity of

AMCMC. This result solves a problem left open in Roberts and Rosenthal (2007) and we

believe is close to be optimal. Indeed, it is well documented in the literature that AMCMC

can fail to be ergodic if the diminishing assumption does not hold (see e.g. Roberts and

Rosenthal (2007) for examples). Furthermore, the additional assumptions are also fairly

weak since in the case where Θ is reduced to the single point {θ⋆} so that {Xn, n ≥ 0}
is a Markov chain with transition kernel Pθ⋆

, these conditions hold if Pθ⋆
is an aperiodic

positive Harris recurrent kernel.

We then prove a strong law of large numbers for AMCMC. We show that the diminishing

adaptation assumption and a uniform-in-θ polynomial drift condition towards a small set

C of the form PθV ≤ V − cV 1−α + b1C(x), α ∈ (0, 1), implies a strong law of large number

for all real-valued measurable functions f for which supX(|f |/V β) < ∞, β ∈ [0, 1 − α).

This result is close to what can be achieved with Markov chains (with fixed transition

kernel) under similar conditions (Meyn and Tweedie (1993)).

On a more technical note, this paper makes two key contributions to the analysis of

AMCMC. Firstly, to study the ergodicity, we use a more careful coupling technique which

extends the coupling approach of Roberts and Rosenthal (2007). Secondly, we tackle the

law of large numbers using a resolvent kernel approach together with martingales theory.

This approach has a decisive advantage over the more classical Poisson equation approach
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(Andrieu and Moulines (2006)) in that no continuity property of the resolvent kernels is

required. It is also worth noting that the results developed in this paper can be applied to

adaptive Markov chains beyond Markov Chain Monte Carlo simulation provided all the

transition kernels have the same invariant distribution.

The remainder of the paper is organized as follows. In Section 2 we state our assump-

tions followed by a statement of our main results. Detailed discussion of the assumptions

and some comparison with the literature are provided in Section 2.4. We apply our results

to the analysis of the Adaptive Random Walk Metropolis algorithm of Haario et al. (2001)

when the target distribution is sub-exponential in the tails. This is covered in Section 3

together with a toy example taken from Atchade and Rosenthal (2005). All the proofs are

postponed to Section 4.

2. Statement of the results and discussion

2.1. Notations. For a transition kernel P on a measurable general state space (T,B(T)),

denote by Pn, n ≥ 0, its n-th iterate defined as

P 0(x,A)
def
= δx(A) , Pn+1(x,A)

def
=

∫

P (x, dy)Pn(y,A) , n ≥ 0 ;

δx(dt) stands for the Dirac mass at {x}. Pn is a transition kernel on (T,B(T)) that acts

both on bounded measurable functions f on T and on σ-finite measures µ on (T,B(T))

via Pnf(·) def
=
∫

Pn(·, dy)f(y) and µPn(·) def
=
∫

µ(dx)Pn(x, ·).
If V : T → [1,+∞) is a function, the V -norm of a function f : T → R is defined as

|f |V def
= supT |f |/V . When V = 1, this is the supremum norm. The set of functions with

finite V -norm is denoted by LV .

If µ is a signed measure on a measurable space (T,B(T)), the total variation norm

‖µ‖TV is defined as

‖µ‖TV
def
= sup

{f,|f |1≤1}
|µ(f)| = 2 sup

A∈B(T)
|µ(A)| = sup

A∈B(T)
µ(A)− inf

A∈B(T)
µ(A) ;

and the V -norm, where V : T→ [1,+∞) is a function, is defined as ‖µ‖V def
= sup{g,|g|V ≤1} |µ(g)|.

Let X,Θ be two general state space resp. endowed with a countably generated σ-field

X and B(Θ). Let {Pθ, θ ∈ Θ} be a family of Markov transition kernels on (X,X ) such that

for any (x,A) ∈ X×X , θ 7→ Pθ(x,A) is measurable. Let {P̄ (n; ·, ·), n ≥ 0} be a family of

transition kernels on (X×Θ,X ⊗ B(Θ)), satisfying for any A ∈ X ,
∫

A×Θ
P̄
(

n; (x, θ); (dx′, dθ′)
)

= Pθ(x,A) . (1)

An adaptive Markov chain is a non-homogeneous Markov chain {Zn = (Xn, θn), n ≥ 0}
on X×Θ with transition kernels {P̄ (n; ·; ·), n ≥ 0}.
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Among examples of such transition kernels, consider the case when {(Xn, θn), n ≥ 0}
is obtained through the algorithm: given (Xn, θn), sample Xn+1 ∼ Pθn

(Xn, ·) and set

θn+1 = θn with probability 1 − pn+1 or set θn+1 = Ξ̃n+1(Xn, θn,Xn+1) with probability

pn+1. Then

P̄
(

n; (x, θ); (dx′, dθ′)
)

= Pθ(x, dx′)
{

(1− pn+1) δθ(dθ′) + pn+1 δΞ̃n+1(x,θ,x′)(dθ′)
}

.

A special case is the case when pn+1 = 1 and θn+1 = Hn+1(θn,Xn+1), where {Hl, l ≥ 0}
is a family of measurable functions Hl : Θ× X→ Θ. Then,

P̄
(

n; (x, θ); (dx′, dθ′)
) def

= Pθ(x, dx′) δHn+1(θ,x′)(dθ′) .

Such a situation occurs for example if θn+1 is updated following a stochastic approximation

dynamic: θn+1 = θn + γn+1H(θn,Xn+1).

From {P̄ (n; ·, ·) , n ≥ 0} and for any integer l ≥ 0, we introduce a family - indexed by l

- of sequence of transition kernels {P̄l(n; ·, ·), n ≥ 0}, where P̄l (n; ·, ·) def
= P̄ (l + n; ·, ·) and

we denote by P
(l)
x,θ and E

(l)
x,θ the probability and expectation on the canonical space (Ω,F)

of the canonical non-homogeneous Markov chain {Zn = (Xn, θn), n ≥ 0} with transition

kernels {P̄l(n; ·; ·), n ≥ 0} and initial distribution δ(x,θ). We denote by θ the shift operator

on Ω and by {Fk, k ≥ 0} the natural filtration of the process {Zk, k ≥ 0}. We use the

notations Px,θ and Ex,θ as shorthand notations for P
(0)
x,θ and E

(0)
x,θ.

Set

D(θ, θ′)
def
= sup

x∈X

‖Pθ(x, ·) − Pθ′(x, ·)‖TV .

2.2. Convergence of the marginals. We assume that minorization, drift conditions and

ergodicity are available for Pθ uniformly in θ. These assumptions imply that each transition

kernel Pθ is φ-irreducible, aperiodic and possesses an unique invariant probability measure

π.

A1 There exist a probability measure ν on X, a positive constant ε and a set C ∈ X
such that for any θ ∈ Θ, Pθ(x, ·) ≥ 1C(x) εν(·).

A2 There exist a measurable function V : X→ [1,+∞) and a positive constant b such

that for any θ ∈ Θ, PθV ≤ V − 1 + b1C .
A3 There exists a probability measure π such that for any level set D def

= {x ∈
X, V (x) ≤ d} of V ,

lim
n→+∞

sup
D×Θ

‖Pn
θ (x, ·) − π‖TV = 0 .

B1 There exist probability distributions ξ1, ξ2 resp. on X,Θ such that for any ǫ > 0,

limn Pξ1,ξ2 (D(θn, θn−1) ≥ ǫ) = 0.
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Theorem 2.1. Assume A1-3, B1 and ξ1(V ) < +∞. Then

lim
n→+∞

sup
f,|f |1≤1

|Eξ1,ξ2 [f(Xn)− π(f)]| = 0 .

Assumption A2 is designed to control the behavior of the chain “far from the center”.

When the state space X is “bounded” so that for example, the conditions A3 and B1 hold

with D = X, assumptions A1-A2 are unnecessary.

Proposition 2.2. Assume B1 and that there exists a probability measure π such that

limn→+∞ supX×Θ ‖Pn
θ (x, ·) − π‖TV = 0. Then

lim
n→+∞

sup
f,|f |1≤1

|Eξ1,ξ2 [f(Xn)− π(f)]| = 0 .

In that case, Proposition 2.2 coincides with (Roberts and Rosenthal, 2007, Theorem 5).

2.3. Strong law of large numbers. Assumptions A2-3 and B1 are strengthened as

follows

A4 There exist a measurable function V : X → [1,+∞), 0 < α < 1 and positive

constants b, c such that for any θ ∈ Θ, PθV ≤ V − c V 1−α + b1C.
A5 There exist a probability measure π and some 0 ≤ β < 1 − α such that for any

level set D def
= {x ∈ X, V (x) ≤ d} of V ,

lim
n→+∞

sup
D×Θ
‖Pn

θ (x, ·) − π‖V β = 0 .

B2 For any level set D of V and any ǫ > 0,

lim
n

sup
l≥0

sup
D×Θ

P
(l)
x,θ (D(θn, θn−1) ≥ ǫ) = 0 .

Theorem 2.3. Assume A1, A4-5 and B2. Then for any measurable function f : X→ R

in LV β and any initial distribution ξ1, ξ2 resp. on X,Θ such that ξ1(V ) < +∞,

lim
n→+∞

n−1
n
∑

k=1

f(Xk) = π(f) , Pξ1,ξ2 − a.s.

As in the case of the convergence of the marginals, when A5 and B2 hold with D = X

and β = 0, A1 and A4 can be omitted. We thus have

Proposition 2.4. Assume that A5 and B2 hold with D = X and β = 0. Then for any

measurable bounded function f : X→ R and any initial distribution ξ1, ξ2 resp. on X,Θ

lim
n→+∞

n−1
n
∑

k=1

f(Xk) = π(f) , Pξ1,ξ2 − a.s.

2.4. Discussion.
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2.4.1. Non-adaptive case. We start by comparing our assumptions to assumptions in

Markov chain theory under which the ergodicity and the law of large numbers hold. In

the setup above, taking Θ = {θ⋆} and H(θ⋆, x) = θ⋆ reduces {Xn, n ≥ 0} to a Markov

chain with transition kernel Pθ⋆
. Assume that Pθ⋆

is Harris-recurrent.

In that case, A1-A2 are equivalent to the condition that Pθ⋆
is an aperiodic positive

Harris recurrent transition kernel ((Meyn and Tweedie, 1993, Theorem 11.0.1)), a con-

dition which in turn is known to be minimal and to imply ergodicity in total variation

norm ((Meyn and Tweedie, 1993, Theorem 13.0.1)). B1 is trivially true. Finally, A3 is

stronger than what we want to prove (since A3 implies the conclusion of Theorem 2.1 in

the non-adaptive case); this is indeed due to our technique of proof which is based on the

comparison of the adaptive process to a process - namely, a Markov chain with transition

kernel Pθ - whose stationary distribution is π. Our proof is thus designed to address the

adaptive case.

For the strong law of large numbers (Theorem 2.3), B2 is still trivially true in the Mar-

kovian case and A5 is implied by A1 and A4 combined with the assumption that Pθ⋆
is

φ-irreducible and aperiodic (see Appendix A and references therein). In the Markovian

case, whenever Pθ⋆
is φ-irreducible and aperiodic, A1 and A4 are known sufficient condi-

tions for a strong law of large numbers for f ∈ LV 1−α , which is a bit stronger than the

conclusions of Theorem 2.3. This slight loss of efficiency is due to the technique of proof

based on martingale theory (see comments Section 2.4.5). Observe that in the geometric

case, there is the same loss of generality in (Andrieu and Moulines, 2006, Theorem 8).

More generally, any proof of the law of large numbers based on the martingale theory

(through for example the use of the Poisson’s equation or of the resolvent kernel) will

incur the same loss of efficiency since limit theorems exist only for Lp-martingale with

p > 1.

2.4.2. Checking assumptions A3 and A5. A3 and A5 are the most technical of our as-

sumptions. Contrary to the case of a single kernel, the relations between A3 (resp. A5)

and A1-2 (resp. A1, A4) are not completely well understood. Nevertheless these assump-

tions can be checked under conditions which are essentially of the form A1, A4 plus the

assumptions that each transition kernel Pθ is phi-irreducible and aperiodic, as discussed

in Appendix A.

Lastly, it is a recognized fact that A4 is equivalent to π(V 1−α) < +∞ (although, to

the best of our knowledge, there exist no rigorous proof in the literature). In that sense,

A2-A3 is weaker than the set of conditions “A2 and π(V ) < +∞”.

2.4.3. On the uniformity in θ in assumptions A1, A2 and A4. We have formulated A1, A2

and A4 such that all the constants involved are independent of θ, for θ ∈ Θ. Intuitively,
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this corresponds to AMCMC algorithms based on kernels with overall similar ergodicity

properties. This uniformity assumption might seem unrealistically strong at first. But

the next example shows that when A1, A2 and A4 do not hold uniformly in θ for θ ∈ Θ,

pathologies can occur if the adaptation parameter can wander to the boundary of Θ.

Example 1. The example is adapted from Winkler (2003). Let X = {0, 1} and {Pθ, θ ∈
(0, 1)} be a family of transition matrices with Pθ(0, 0) = Pθ(1, 1) = 1− θ. Let {θn, n ≥ 0},
θn ∈ (0, 1), be a deterministic sequence of real numbers decreasing to 0 and {Xn, n ≥ 0}
be a non-homogeneous Markov chain on {0, 1} with transition matrices {Pθn

, n ≥ 0}. One

can check that D(θn, θn−1) ≤ θn−1 − θn for all n ≥ 1 so that B1 and B2 hold.

For any compact subset K of (0, 1), it can be checked that A1, A2 and A4 hold uniformly

for all θ ∈ K. But these assumption do not hold uniformly for all θ ∈ (0, 1). Therefore

Theorems 2.1 and 2.3 do not apply. Actually one can easily check that Px,θ0 (Xn ∈ ·) →
π(·) as n → ∞, but that Ex,θ0

[

(

n−1
∑n

k=1 f(Xk)− π(f)
)2
]

do not converge to 0 for

bounded functions f . That is, the marginal distribution of Xn converges to π but a weak

law of large numbers fails to hold.

This raises the question of how to construct AMCMC when A1, A2 and A4 do not hold

uniformly for all θ ∈ Θ. When these assumptions hold uniformly on any compact subsets

of Θ and the adaptation is based on stochastic approximation, one approach is to stop

the adaptation or to reproject θn back on K whenever θn /∈ K for some fixed compact K
of Θ. A more elaborate strategy is Chen’s truncation method which - roughly speaking -

reinitializes the algorithm with a larger compact, whenever θn /∈ K (Chen and Zhu (1986);

Chen et al. (1988)). A third strategy consists in proving a drift condition on the bivariate

process {(Xn, θn), n ≥ 0} in order to ensure the stability of the process (Andrieu and Tadic

(2008), see also Benveniste et al. (1987)). This question is however out of the scope of this

paper; the use of the Chen’s truncation method to weaken our assumption is addressed in

Atchade and Fort (2008).

2.4.4. Comparison with the literature. The convergence of AMCMC has been considered

in a number of early works, most under a geometric ergodicity assumption. Haario et al.

(2001) proved the convergence of the adaptive Random Walk Metropolis (ARWM) when

the state space is bounded. Their results were generalized to unbounded spaces in Atchade

and Rosenthal (2005) assuming the diminishing adaptation assumption and a geometric

drift condition of the form

PθV (x) ≤ λV (x) + b1C(x), (2)

for λ ∈ (0, 1), b <∞ and θ ∈ Θ.

Andrieu and Moulines (2006) undertook a thorough analysis of adaptive chains under

the geometric drift condition (2) and proved a strong law of large numbers and a central
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limit theorem. Andrieu and Atchade (2008) gives a theoretical discussion on the efficiency

of AMCMC under (2).

Roberts and Rosenthal (2007) improves on the literature by relaxing the convergence

rate assumption on the kernels. They prove the convergence of the marginal and a weak law

of large numbers for bounded functions. But their analysis requires a uniform control on

certain moments of the drift function, a condition which is easily checked in the geometric

case (i.e. when A2 or A4 is replaced with (2)) but is very difficult to prove in the polynomial

case. We show here that this uniform control is unnecessary.

Yang (2007) tackles some open questions mentioned in Roberts and Rosenthal (2007),

by providing sufficient conditions - close to the conditions we give in Theorems 2.1 and

2.3 - to ensure convergence of the marginals and a weak law of large numbers for bounded

functions. The conditions in (Yang, 2007, Theorems 3.1 and 3.2) are stronger than our

conditions (our conditions are weaker than π(V ) < +∞, see Section 2.4.2) and not easily

checked (the proof that {V (Xn), n ≥ 0} is bounded in probability is not trivial at all in

the sub-geometric case). We also observed some skips and mistakes in the proofs of these

theorems.

2.4.5. Comments on the methods of proof. The proof of Theorem 2.1 is based on an argu-

ment extended from Roberts and Rosenthal (2007) which can be sketched heuristically as

follows. For N large enough, we can expect PN
θn

(Xn, ·) to be within ǫ to π (by ergodicity).

On the other hand, since the adaptation is diminishing, by waiting long enough, we can

find n such that the distribution of Xn+N given (Xn, θn) is within ǫ to PN
θn

(Xn, ·). Com-

bining these two arguments, we can then conclude that the distribution of Xn+N is within

2ǫ to π. This is essentially the argument of Roberts and Rosenthal (2007). The difficulty

with this argument is that the distance between PN
θn

(x, ·) and π depends in general on x

and can rarely be bounded uniformly in x. We solve this problem here by introducing

some very large level set of V - D = {x ∈ X : V (x) ≤ d} - and by using two basic facts:

(i) under A2, the process cannot wait too long before coming back in D; (ii) under A3, a

bound on the distance between PN
θn

(x, ·) and π uniformly in x, for x ∈ D, is possible.

The proof of Theorem 2.3 is based on a resolvent kernel approach that we adapted

from Merlevede et al. (2006) (see also Maxwell and Woodroofe (2000)), combined with

martingale theory. Another possible route to the SLLN is the Poisson’s equation technique

which has been used to study adaptive MCMC in Andrieu and Moulines (2006). Under

A1 and A4, a solution gθ to the Poisson’s equation with transition kernel Pθ exists for any

f ∈ LV β , 0 ≤ β ≤ 1 − α and gθ ∈ LV β+α . But in order to use {gθ, θ ∈ Θ} to obtain a

SLLN for f , we typically need to control |gθ − gθ′ | which overall can be expensive. Here

we avoid these pitfalls by introducing the resolvent ĝa(x, θ) of the process {Xn}, defined
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by

ĝ(l)
a (x, θ)

def
=
∑

j≥0

(1− a)j+1
E

(l)
x,θ [f(Xj)] , x ∈ X, θ ∈ Θ, a ∈ (0, 1), l ≥ 0 .

3. Examples

3.1. A toy example. We first consider an example discussed in Atchade and Rosenthal

(2005) (see also Roberts and Rosenthal (2007)). Let π be a target density on the integers

{1, · · · ,K}, K ≥ 4. Let {Pθ, θ ∈ {1, · · · ,M}} be a family of Random Walk Metropolis

algorithm with proposal distribution qθ, the uniform distribution on {x− θ, · · · , x− 1, x+

1, · · · , x + θ}.
Consider the sequence {(Xn, θn), n ≥ 0} defined as follows: given Xn, θn,

• the conditional distribution of Xn+1 is Pθn
(Xn, ·).

• if Xn+1 = Xn, set θn+1 = max(1, θn − 1) with probability pn+1 and θn+1 = θn

otherwise; if Xn+1 6= Xn, set θn+1 = min(M,θn + 1) with probability pn+1 and

θn+1 = θn otherwise.

This algorithm defines a non-homogeneous Markov chain - still denoted {(Xn, θn), n ≥ 0}
- on a canonical probability space endowed with a probability P. The transitions of this

Markov process are given by the family of transition kernels {P̄ (n; (x, θ), (dx′, dθ′), n ≥ 0}
where

P̄ (n; (x, θ), (dx′, dθ′) = Pθ(x, dx′)
(1x=x′

{

pn+1 δ1∨(θ−1)(dθ′) + (1− pn+1) δθ(dθ′)
}

+1x 6=x′

{

pn+1 δM∧(θ+1)(dθ′) + (1− pn+1) δθ(dθ′)
})

.

In this example, each kernel Pθ is uniformly ergodic : Pθ is φ-irreducible, aperiodic,

possesses an invariant probability measure π and

lim
n

sup
x∈X

‖Pn
θ (x, ·) − π(·)‖TV = 0 .

Since Θ is finite, this implies that A3 (resp. A5) hold with D = X (resp. D = X and

β = 0). Furthermore, E
(l)
x,θ [D(θn, θn+1)] ≤ 2pn+1 so that B1 (resp. B2) hold with any

probability measures ξ1, ξ2 (resp. with D = X) provided pn → 0. By Propositions 2.2 and

2.4, we have

Proposition 3.1. Assume limn pn = 0. For any probability distributions ξ1, ξ2 on X,Θ,

(i) sup{f,|f |1≤1} |Eξ1,ξ2[f(Xn)]− π(f)| → 0

(ii) For any bounded function f

n−1
n
∑

k=1

f(Xk)→ π(f) , Pξ1,ξ2 − a.s.
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3.2. The adaptive Random Walk Metropolis of Haario et al. (2001). We illustrate

our results with the adaptive Random Walk Metropolis of Haario et al. (2001). The

Random Walk Metropolis (RWM) algorithm is a popular MCMC algorithm Hastings

(1970); Metropolis et al. (1953). Let a target density π, absolutely continuous w.r.t. the

Lebesgue measure µLeb with density still denoted by π. Choose a proposal distribution with

density w.r.t. µLeb denoted q, and assume that q is a positive symmetric density on R
p. The

algorithm generates a Markov chain {Xn, n ≥ 0} with invariant distribution π as follows.

Given Xn = x, a new value Y = x + Z is proposed where Z is generated from q(·). Then

we either ’accept’ Y and set Xn+1 = Y with probability α(x, Y )
def
= min (1, π(Y )/π(x)) or

we ’reject’ Y and set Xn+1 = x.

For definiteness, we will assume that q is a zero-mean multivariate Gaussian distribution

(this assumption can be replaced by regularity conditions and moment conditions on the

proposal distribution). Given a proposal distribution with finite second moments, the

convergence rate of the RWM kernel depends mainly on the tail behavior of the target

distribution π. If π is super-exponential in the tails with regular contours, then the RWM

kernel is typically geometrically ergodic (Jarner and Hansen (2000)). Otherwise, it is

typically sub-geometric (Fort and Moulines (2000, 2003); Douc et al. (2004)).

Define

µ⋆
def
=

∫

X

x π(x) µLeb(dx) , Σ⋆
def
=

∫

X

xxT π(x)µLeb(dx)− µ⋆ µT
⋆ ,

resp. the expectation and the covariance matrix of π (·T denotes the transpose opera-

tion). Theoretical results suggest setting the variance-covariance matrix Σ of the proposal

distribution Σ = c⋆Σ⋆ where c⋆ is set so as to reach the optimal acceptance rate ᾱ in

stationarity (typically ᾱ is set to values around 0.3−0.4). See e.g. Roberts and Rosenthal

(2001) for more details. Haario et al. (2001) have proposed an adaptive algorithm to learn

Σ∗ adaptively during the simulation. This algorithm has been studied in detail in An-

drieu and Moulines (2006) under the assumption that π is super-exponential in the tails.

An adaptive algorithm to find the optimal value c⋆ has been proposed in Atchade and

Rosenthal (2005) (see also Atchade (2006)) and studied under the assumption that π is

super-exponential in the tails. We extend these results to cases where π is sub-exponential

in the tails.

For 0 < Λl < Λu, let Θ+(Λl,Λu) be the space of p × p symmetric positive definite

matrices A such that Λl ≤ |A|s ≤ Λu, where |A|s denotes the spectral norm |A|s def
=

√

λm(AAT ), and for a symmetric square matrix λm(M) denotes the largest eigenvalue of

M . Next, for −∞ < κl < κu <∞ and Θµ a compact subset of X, we introduce the space

Θ
def
= Θµ×Θ+(Λl,Λu)× [κl, κu]. For θ = (µ,Σ, c) ∈ Θ, denote by Pθ the transition kernel
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of the RWM algorithm with proposal qθ where qθ stands for the multivariate Gaussian

distribution with variance-covariance matrix ecΣ.

Consider the adaptive RWM defined as follows

Algorithm 3.1. Initialization: Let ᾱ be the target acceptance probability. Choose

X0 ∈ X, (µ0,Σ0, c0) ∈ Θ.

Iteration: Given (Xn, µn,Σn, cn):

1: Generate Zn+1 ∼ qθn
dµLeb and set Yn+1 = Xn + Zn+1. With probabil-

ity α(Xn, Yn+1) set Xn+1 = Yn+1 and with probability 1 − α(Xn, Yn+1), set

Xn+1 = Xn.

2: Set

µ = µn + (n + 1)−1 (Xn+1 − µn) , (3)

Σ = Σn + (n + 1)−1
[

(Xn+1 − µn) (Xn+1 − µn)T − Σn

]

, (4)

c = cn +
1

n + 1
(α(Xn, Yn+1)− ᾱ) . (5)

3: If (µ,Σ, c) ∈ Θ, set µn+1 = µ, Σn+1 = Σ and cn+1 = c. Otherwise, set

µn+1 = µn, Σn+1 = Σn and cn+1 = cn.

This is an algorithmic description of a random process {(Xn, θn), n ≥ 0} which is a non-

homogeneous Markov chain with successive transitions kernels {P̄ (n; (x, θ), (dx′, dθ′)), n ≥
0} given by

P̄ (n; (x, θ), (dx′, dθ′)) =

∫

qθ(z)
{

α(x, x + z)δx+z(dx′) + (1− α(x, x + z))δx(dx′)
}

· · ·
(1{φ(θ,x+z,x′)∈Θ}δφ(θ,x+z,x′)(dθ′) + 1{φ(θ,x+z,x′)/∈Θ}δθ(dθ′)

)

dµLeb(dz)

where φ is the function defined from the rhs expressions of (3) to (5). Integrating over θ′,

we see that for any A ∈ X ,
∫

A×Θ
P̄ (n; (x, θ), (dx′, dθ′)) = Pθ(x,A) .

Lemma 3.2. Assume that π is bounded from below and from above on compact sets. Then

any compact subset C of X with µLeb(C) > 0 satisfies A1.

Proof. See (Roberts and Tweedie, 1996, Theorem 2.2). �

Following (Fort and Moulines (2000)), we assume that π is sub-exponential in the tails:

D1 π is positive and continuous on R
p, and twice continuously differentiable in the

tails.

D2 there exist m ∈ (0, 1), positive constants di < Di, i = 0, 1, 2 and r,R > 0 such that

for |x| ≥ R:
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(i) 〈 ∇π(x)
|∇π(x)| ,

x
|x|〉 ≤ −r.

(ii) d0|x|m ≤ − log π(x) ≤ D0|x|m,

(iii) d1|x|m−1 ≤ |∇ log π(x)| ≤ D1|x|m−1,

(iv) d2|x|m−2 ≤ |∇2 log π(x)| ≤ D2|x|m−2.

Examples of target density that satisfies D1-D2 are the Weibull distributions on R with

density π(x) ∝ |x|m−1 exp(−β|x|m) (for large |x|), β > 0, m ∈ (0, 1). Multidimensional

examples are provided in Fort and Moulines (2000).

3.2.1. Law of large numbers for exponential functions. In this subsection, we assume that

D3 there exist s⋆ > 0, 0 < υ < 1−m and 0 < η < 1 such that as |x| → +∞,

sup
θ∈Θ

∫

{z,|z|≥η|x|υ}

(

1 ∨ π(x)

π(x + z)

)s⋆

qθ(z) µLeb(dz) = o
(

|x|2(m−1)
)

.

A sufficient condition for D3 is that π(x + z) ≥ π(x)π(z) for any x large enough and

|z| ≥ η|x|υ (which holds true for Weibull distributions with 0 < m < 1). Indeed, we then

have

∫

{z,|z|≥η|x|υ}

(

1 ∨ π(x)

π(x + z)

)s⋆

qθ(z)µLeb(dz)

≤ C exp(−λ⋆η
2|x|2υ) sup

θ∈Θ

∫

exp(s⋆D0|z|m) exp(λ⋆|z|2) qθ(z)µLeb(dz)

for some constant C < +∞, and λ⋆ > 0 such that the rhs is finite.

Lemma 3.3. Assume D1-3. For 0 < s ≤ s⋆, define Vs(x)
def
= 1 + π−s(x). There exist

0 < s ≤ s⋆ and for any α ∈ (0, 1), there exist positive constants b, c and a compact set C
such that

sup
θ∈Θ

PθVs(x) ≤ Vs(x)− cV 1−α
s (x) + b1C(x).

Hence A2-5 hold.

Lemma 3.4. Assume D1-3. B2 holds and B1 holds for any probability measures ξ1,ξ2

such that
∫

| ln π|2/mdξ1 < +∞.

The proof of Lemmas 3.3 and 3.4 are in Appendix C.

Proposition 3.5. Assume D1-3. Consider the sequence {Xn, n ≥ 0} given by the algo-

rithm 3.1.

(i) For any probability measures ξ1, ξ2 such that
∫

| ln π|2/mdξ1 < +∞,

sup
{f,|f |1≤1}

|Eξ1,ξ2[f(Xn)]− π(f)| → 0 .
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(ii) There exists 0 < s ≤ s⋆ such that for any probability measures ξ1, ξ2 such that
∫

|π|−sdξ1 < +∞, and any function f ∈ L1+π−r , 0 ≤ r < s,

n−1
n
∑

k=1

f(Xk)→ π(f) , Pξ1,ξ2 − a.s.

The drift function Vs exhibited in Lemma 3.3. is designed for limit theorems relative to

functions f increasing as exp(β|x|m). This implies a condition on the initial distribution

ξ1 which has to possess sub-exponential moments (see Proposition 3.5(ii)), which always

holds with ξ1 = δx, x ∈ X.

3.2.2. Law of large numbers for polynomially increasing functions. Proposition 3.5 also

addresses the case when f is of the form 1 + |x|r, r > 0. Nevertheless, the conditions on

ξ1 and the assumptions D3 can be weakened in that case.

We have to find a drift function V such that V 1−α(x) ∼ 1 + |x|r+ι for some α ∈ (0, 1),

ι > 0. Under D3, this can be obtained from the proof of Lemma 3.3. and this yields

V (x) ∼ 1 + |x|r+ι+2−m (apply the Jensen’s inequality to the drift inequality (18) with the

concave function φ(t) ∼ [ln t](r+ι+2)/m−1; see (Jarner and Roberts, 2002, Lemma 3.5) for

similar calculations). Hence, the condition on ξ1 gets into ξ1(|x|r+ι+2−m) < +∞ for some

ι > 0.

Drift inequalities with V ∼ (− ln π)s for some s > 2/m − 1, can also be derived by

direct computations: in that case, D3 can be removed. Details are omitted and left to the

interested reader.

To conclude, observe that these discussions relative to polynomially increasing functions

can be extended to any function f which is a concave transformation of π−s.

4. Proofs of the results of Section 2

For a set C ∈ X , define the return-time to C ×Θ of {Zn, n ≥ 0} and its hitting-time on

C ×Θ by

τC
def
= inf{n ≥ 1, Zn ∈ C ×Θ} , σC

def
= inf{n ≥ 0, Zn ∈ C ×Θ} .

If π(|f |) < +∞, we set f̄
def
= f − π(f).

4.1. Preliminary results. We gather some useful preliminary results in this section.

Section 4.1.1 gives an approximation of the marginal distribution of the adaptive chain by

the distribution of a related Markov chain. In Section 4.1.2, we develop various bounds

for modulated moments of the adaptive chain as consequences of the drift conditions. In

Section 4.1.3 we bound the expected return times of the adaptive chain to level sets of the

drift function V . The culminating result of this subsection is Theorem 4.10 which gives

an explicit bound on the resolvent function g
(l)
a (x, θ).
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4.1.1. Optimal coupling.

Lemma 4.1. For any integers l ≥ 0, N ≥ 2, any measurable bounded function f on X
N

and any (x, θ) ∈ X×Θ,

∆
def
=

∣

∣

∣

∣

∣

E
(l)
x,θ [f(X1, · · · ,XN )]−

∫

XN

Pθ(x, dx1)

N
∏

k=2

Pθ(xk−1, dxk)f(x1, · · · , xn)

∣

∣

∣

∣

∣

≤ |f |1
N−1
∑

j=1

j
∑

i=1

E
(l)
x,θ [D(θi, θi−1)] .

Proof. We can assume w.l.g. that |f |1 ≤ 1. Set zk = (xk, tk). With the convention that
∏b

k=a ak = 1 for a > b and upon noting that
∫

X
Pθ(x, dx′)f(x′) =

∫

X×Θ P̄l(0; (x, θ), (dx′, dθ′))f(x′),

∆ =

∣

∣

∣

∣

∣

∣

∫

(X×Θ)N

N−1
∑

j=1

P̄l(0; (x, θ), dz1)

j
∏

k=2

P̄l(k − 1; zk−1, dzk) · · ·

{

P̄l(j; zj , dzj+1)− P̄l(0; (xj , θ), dzj+1)
}

N
∏

k=j+2

P̄l(0; (xk−1, θ), dzk)f(x1, · · · , xN )

∣

∣

∣

∣

∣

∣

≤
N−1
∑

j=1

∫

Xj

P̄l(0; (x, θ), dz1)

j
∏

k=2

P̄l(k − 1; zk−1, dzk) sup
x∈X

‖Ptj (x, ·)− Pθ(x, ·)‖TV

where we used that
∫

(X×Θ)N−j−1

N
∏

k=j+2

P̄l(0; (xk−1, θ), dzk)f(x1, · · · , xN )

is bounded by a function Ξ(x1, · · · , xj+1) that does not depend upon tk, k ≤ N and for

any bounded function Ξ on X
j+1

∫

X×Θ

{

P̄l(j; zj , dzj+1)− P̄l(0; (xj , θ), dzj+1)
}

Ξ(x1, · · · , xj+1)

=

∫

X

{

Ptj (xj, dxj+1)− Pθ(xj, dxj+1)
}

Ξ(x1, · · · , xj+1) ≤ sup
x∈X

‖Ptj (x, ·)−Pθ(x, ·)‖TV |Ξ|1 .

Hence

∆ ≤
N−1
∑

j=1

E
(l)
x,θ

[

sup
x∈X

‖Pθj
(x, ·)− Pθ0(x, ·)‖TV

]

≤
N−1
∑

j=1

E
(l)
x,θ

[

j
∑

i=1

sup
x∈X

‖Pθi
(x, ·)− Pθi−1

(x, ·)‖TV

]

=

N−1
∑

j=1

j
∑

i=1

E
(l)
x,θ [D(θi, θi−1)] .

�

Lemma 4.2. Let µ, ν be two probability distributions. There exist a probability space

(Ω,F , P) and random variables X,Y on (Ω,F) such that X ∼ µ, Y ∼ ν and P(X = Y ) =

1− ‖µ− ν‖TV.
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The proof can be found e.g. in (Roberts and Rosenthal, 2004, Proposition 3). As a

consequence of Lemmas 4.1 and 4.2, we have

Proposition 4.3. Let l ≥ 0, N ≥ 2 and set z = (x, θ). There exists a process {(Xk, X̃k), 0 ≤
k ≤ N} defined on a probability space endowed with the probability P

(l)
z,z such that

P
(l)
z,z

(

Xk = X̃k, 0 ≤ k ≤ N
)

≥ 1−
N−1
∑

j=1

j
∑

i=1

E
(l)
z [D(θi, θi−1)] ,

(X0, · · · ,XN ) has the X-marginal distribution of P
(l)
z restricted to the time-interval {0, · · · ,N},

and (X̃0, · · · , X̃N ) has the same distribution as a homogeneous Markov chain with transi-

tion kernel Pθ and initial distribution δx.

4.1.2. Modulated moments for the adaptive chain. Let V : X → [1,+∞) be a measurable

function and assume that there exist C ∈ X , positive constants b, c and 0 < α ≤ 1 such

that for any θ ∈ Θ,

PθV ≤ V − cV 1−α + b1C . (6)

Under A2, (6) holds with α = 1 and c = 1; under A4, (6) holds with α < 1. We establish

a set of results that hold under (6) and thus, under A2 or A4.

Lemma 4.4. Assume (6). There exists b̄ such that for any 0 ≤ β ≤ 1, θ ∈ Θ: PθV
β ≤

V β − βcV β−α + b̄1C.
Proof. See (Jarner and Roberts, 2002, Lemma 3.5). �

Proposition 4.5. Assume (6). For any l ≥ 0, (x, θ) ∈ X×Θ, and any stopping-time τ ,

c E
(l)
x,θ

[

τ−1
∑

k=0

(kαc + 1)α−1−1

]

≤ V (x) + b E
(l)
x,θ

[

τ−1
∑

k=0

((k + 1)αc + 1)α−1−1 1C(Xk)

]

.

Proof. The proof can be adapted from (Douc et al., 2004, Proposition 2.1) and (Meyn and

Tweedie, 1993, Proposition 11.3.2)and is omitted. �

Proposition 4.6. Assume (6).

(i) There exists b̄ such that for any j ≥ 0, 0 ≤ β ≤ 1, l ≥ 0 and (x, θ) ∈ X×Θ

E
(l)
x,θ

[

V β(Xj)
]

≤ V β(x) + b̄jβ .

(ii) Let 0 ≤ β ≤ 1 and 0 ≤ a ≤ 1. For any stopping-time τ ,

E
(l)
x,θ

[

(1− a)τV β(Xτ )1τ<+∞

]

+ E
(l)
x,θ





τ−1
∑

j=0

(1− a)j {a V β(Xj) + βc(1 − a)V β−α(Xj)}





≤ V β(x) + b̄(1− a)E
(l)
x,θ





τ−1
∑

j=0

(1− a)j 1C(Xj)



 ..
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(iii) Let 0 ≤ β ≤ 1− α and 0 < a < 1. For any stopping-time τ and any q ∈ [1,+∞],

E
(l)
x,θ





τ−1
∑

j=0

(1− a)jV β(Xj)





≤ a1/q−1(1− a)−1/q V β+α/q(x)



1 + b̄ E
(l)
x,θ





τ−1
∑

j=0

(1− a)j1C(Xj)







 (αc)−1/q ,

(with the convention that 1/q = 0 when q = +∞).

Proof. The proof is done in the case l = 0. The general case is similar and omitted. (i) is a

trivial consequence of Lemma 4.4. (ii) Let β ≤ 1. Set τN = τ∧N and Yn = (1−a)nV β(Xn).

Then

YτN
= Y0 +

τN
∑

j=1

(Yj − Yj−1) = Y0 +

τN
∑

j=1

(1− a)j−1
(

(1− a)V β(Xj)− V β(Xj−1)
)

= Y0 +

τN
∑

j=1

(1− a)j
(

V β(Xj)− V β(Xj−1)
)

− a

τN
∑

j=1

(1− a)j−1 V β(Xj−1) .

Hence,

Ex,θ [YτN
] + a Ex,θ





τN−1
∑

j=0

(1− a)j V β(Xj)





= V β(x) +
∑

j≥1

(1− a)j Ex,θ

[(

V β(Xj)− V β(Xj−1)
)1j≤τN

]

≤ V β(x) +
∑

j≥1

(1− a)j Ex,θ

[(

−βc V β−α(Xj−1) + b̄1C(Xj−1)
)1j≤τN

]

,

where we used Lemma 4.4 in the last inequality. This implies

Ex,θ [YτN
] + a Ex,θ





τN−1
∑

j=0

(1− a)j V β(Xj)



+ (1− a)βc Ex,θ





τN−1
∑

j=0

(1− a)j V β−α(Xj)





≤ V β(x) + b̄(1− a)Ex,θ





τN−1
∑

j=0

(1− a)j 1C(Xj)



 .

The results follows when N → +∞.

(iii) The previous case provides two upper bounds, namely for 0 < β ≤ 1− α,

a Ex,θ





τ−1
∑

j=0

(1− a)jV β(Xj)



 ≤ V β(x) + b̄ (1− a)Ex,θ





τ−1
∑

j=0

(1− a)j 1C(Xj)



 ,

and

(1− a) ((β + α)c) Ex,θ





τ−1
∑

j=0

(1− a)jV β(Xj)



 ≤ V β+α(x) + b̄Ex,θ





τ−1
∑

j=0

(1− a)j 1C(Xj)



 .
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We then use the property [c ≤ c1 ∧ c2] =⇒ c ≤ c
1/q
1 c

1−1/q
2 for any q ∈ [1,+∞]. �

Proposition 4.7. Assume (6). Let {rn, n ≥ 0} be a non-increasing positive sequence.

There exists b̄ such that for any l ≥ 0, (x, θ) ∈ X×Θ, 0 ≤ β ≤ 1 and n ≥ 0,

βc E
(l)
x,θ





∑

k≥n

rk+1V
β−α(Xk)



 ≤ rnE
(l)
x,θ

[

V β(Xn)
]

+ b̄ E
(l)
x,θ





∑

k≥n

rk+11C(Xk)



 .

The proof is on the same lines as the proof of Proposition 4.6(ii) and is omitted.

4.1.3. Delayed successive visits to an accessible level set of V . Let D ∈ X and two positive

integers n⋆, N . Define on (Ω,F , P
(l)
x,θ) the sequence of N-valued random variables {τn, n ≥

1} as

τ0 def
= τD , τ1 def

= τ0 + n⋆ + τD ◦ θτ0+n⋆ , τk+1 def
= τk + N + τD ◦ θτk+N , k ≥ 1 .

Proposition 4.8. Assume A1 and A2. Let D ∈ X . Let n⋆,N be two positive integers.

Then

ε ν(D) E
(l)
x,θ

[

τD−1
∑

k=0

1C(Xk)

]

≤ 1 ,

and if supD V < +∞ and ν(D) > 0, there exists a (finite) constant C depending upon

ε, ν(D), supD V, b, n⋆, N such that for any l ≥ 0, (x, θ) ∈ X×Θ and k ≥ 0,

E
(l)
x,θ

[

τk
]

≤ k C + V (x) .

Proof. Since V ≥ 1, Proposition 4.6(ii) applied with a = 0, β = α = 1, c = 1 and τ = τD

implies

E
(l)
x,θ [τD] ≤ V (x) + b̄ E

(l)
x,θ

[

τD−1
∑

k=0

1C(Xk)

]

.

By A1, we have Pθ(x,D) ≥ [εν(D)] 1C(x) for any (x, θ) so that

εν(D) E
(l)
x,θ

[

τD−1
∑

k=0

1C(Xk)

]

≤ E
(l)
x,θ

[

τD−1
∑

k=0

Pθk
(Xk,D)

]

= E
(l)
x,θ

[

τD−1
∑

k=0

1D(Xk+1)

]

≤ 1 .

Hence E
(l)
x,θ [τD] ≤ V (x) + b̄[εν(D)]−1. By the Markov property and Proposition 4.6(i)

E
(l)
x,θ

[

τ1
]

≤ n⋆ + V (x) + b̄[εν(D)]−1 + E
(l)
x,θ

[

E
(n⋆+l+τD)
Zn⋆+τD

[σD]
]

≤ n⋆ + 2 b̄[εν(D)]−1 + V (x) + sup
D

V + n⋆b̄ .

The proof is by induction on k. Assume that E
(l)
x,θ

[

τk
]

≤ kC+V (x) with C ≥ 2b̄[εν(D)]−1+

supD V + (N ∨ n⋆)(1 + b̄). Then using again the Markov property and Proposition 4.6(i),
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and upon noting that P
(l)
x,θ(Zτk ∈ D) = 1,

E
(l)
x,θ

[

τk+1
]

≤ N + E
(l)
x,θ

[

τk
]

+ E
(l)
x,θ

[

E
(τk+N+l)
Z

τk+N
[τD]

]

≤ N + b̄[εν(D)]−1 + E
(l)
x,θ

[

τk
]

+ E
(l)
x,θ

[

V (Xτk+N )
]

≤ N + b̄[εν(D)]−1 + E
(l)
x,θ

[

τk
]

+ E
(l)
x,θ

[

E
(τk+l)
Z

τk
[V (XN )]

]

≤ N + b̄[εν(D)]−1 + E
(l)
x,θ

[

τk
]

+

(

sup
D

V + Nb̄

)

.

�

4.1.4. Generalized Poisson equation. Assume (6). Let 0 < a < 1, l ≥ 0 and 0 ≤ β ≤ 1−α.

For f ∈ LV β such that π(|f |) < +∞, let us define the function

ĝ(l)
a (x, θ)

def
=
∑

j≥0

(1− a)j+1
E

(l)
x,θ[f̄(Xj)] .

Proposition 4.9. Assume (6). Let 0 ≤ β ≤ 1− α and f ∈ LV β . For any (x, θ) ∈ X×Θ,

l ≥ 0 and 0 < a < 1, ĝ
(l)
a exists, and

f̄(x) =
1

1− a
ĝ(l)
a (x, θ)− E

(l)
x,θ

[

ĝ(l+1)
a (X1, θ1)

]

.

Proof. By Proposition 4.6(i),
∣

∣

∣
E

(l)
x,θ

[

f̄(Xj)
]

∣

∣

∣
≤ |f̄ |V β

(

V β(x) + b̄jβ
)

. Hence, ĝ
(l)
a (x, θ)

exists for any x, θ, l. Furthermore, ĝ
(l+1)
a (X1, θ1) is P

(l)
x,θ-integrable. By definition of ĝ

(l)
a

and by the Markov property,

E
(l)
x,θ

[

ĝ(l+1)
a (X1, θ1)

]

=
∑

j≥0

(1−a)j+1
E

(l)
x,θ

[

f̄(Xj+1)
]

= (1−a)−1
∑

j≥1

(1−a)j+1
E

(l)
x,θ

[

f̄(Xj)
]

= (1− a)−1
(

ĝ(l)
a (x, θ)− (1− a)f̄(x)

)

.

�

Theorem 4.10. Assume A1, A4-5 and B2. Let 0 ≤ β < 1 − α. For any ǫ > 0, there

exists an integer n ≥ 2 such that for any 0 < a < 1, f ∈ LV β , l ≥ 0, (x, θ) ∈ X × Θ and

q ∈ [1,+∞],

(

|f̄ |V β

)−1
∣

∣

∣
ĝ(l)
a (x, θ)

∣

∣

∣
≤ 4 ǫ (1− (1− a)n)−1 n

+
V β+α/q(x)

a1−1/q(1− a)1/q
(αc)−1/q

(

1 + b̄[εν(D)]−1 + 2 (1 + b̄n⋆)(1 + b̄) sup
D

V β+α/q

)

.

By convention, 1/q = 0 when q = +∞. In particular, lima→0

(

|f̄ |V β

)−1
∣

∣

∣
aĝ

(l)
a (x, θ)

∣

∣

∣
= 0.

Proof. Let ǫ > 0. Let us consider the sequence of stopping times {τk, k ≥ 0} defined in

Section 4.1.3 where (D, N, n⋆) are defined below.
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Choice of D, N, n⋆. Choose a level set D of V large enough so that ν(D) > 0. Choose

N such that

1

N

N−1
∑

j=0

sup
D×Θ

‖P j
θ (x, ·)− π(·)‖V β ≤ ǫ , (7)

the existence of which is given by A5; and such that - since α + β < 1, -

(αc)−1 N−1

(

sup
D

V β+α + b̄Nβ+α + b̄[εν(D)]−1

)

≤ ǫ . (8)

Set ǫN
def
= N−2{ǫ

(

supD V β + b̄N−1
∑N−1

j=1 jβ
)−1
}1/(1−β) (which can be assumed to be

strictly lower than N−2 since β > 0). By B2, choose n⋆ such that for any q ≥ n⋆, l ≥ 0,

supD×Θ P
(l)
x,θ(D(θq, θq−1) ≥ ǫN/2) ≤ ǫN/4.

By Proposition 4.8, P
(l)
x,θ(τ

k < +∞) = 1 for any (x, θ) ∈ X×Θ, l ≥ 0, k ≥ 0.

Optimal coupling. With these definitions, supi≥1 supk≥1 E
(l)
x,θ

[

E
(τk+l)
Z

τk
[D(θi, θi−1)]

]

≤ ǫN ,

upon noting that P
(l)
x,θ(n⋆ ≤ τk) = 1 and D(θ, θ′) ≤ 2. We apply Proposition 4.3 and set

EN def
= {Xk = X̃k, 0 ≤ k < N}. We have for any l ≥ 0, k ≥ 1, (x, θ) ∈ X×Θ,

E
(l)
x,θ

[

P
(τk+l)
Z

τk ,Z
τk

(Ec
N )
]

≤
N−1
∑

j=1

j
∑

i=1

E
(l)
x,θ

[

E
(τk+l)
Z

τk
[D(θi, θi−1)]

]

≤ N2ǫN < 1 . (9)

Observe that D, N and n⋆ do not depend upon a, l, x, θ and f .

Proof of Theorem 4.10. Assume that for any 0 < a < 1, l ≥ 0, (x, θ) ∈ X × Θ and

k ≥ 2,

∣

∣

∣

∣

∣

∣

E
(l)
x,θ





N−1
∑

j=0

(1− a)τ
k+j+1 f̄

(

Xτk+j

)





∣

∣

∣

∣

∣

∣

≤ |f̄ |V β 3Nǫ (1− a)n⋆+(k−1)N . (10)

We have

ĝ(l)
a (x, θ) =

∑

j≥0

(1− a)j+1







E
(l)
x,θ

[

f̄(Xj)1j<τ1

]

+
∑

k≥1

E
(l)
x,θ

[

f̄(Xj)1τk≤j<τk+1

]







.

On one hand, by Proposition 4.6(iii) applied with τ = τD and Proposition 4.8,

∣

∣

∣

∣

∣

∣

∑

j≥0

(1− a)j+1
E

(l)
x,θ

[

f̄(Xj)1j<τ0

]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E
(l)
x,θ





τD−1
∑

j=0

(1− a)j+1f̄(Xj)





∣

∣

∣

∣

∣

∣

≤ |f̄ |V β E
(l)
x,θ





τD−1
∑

j=0

(1− a)j+1V β(Xj)



 ≤ |f̄ |V β

V β+α/q(x)

a1−1/q

(

1 + b̄[εν(D)]−1
)

(1− a)1/q
(αc)−1/q .
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Applied with τ = τD, Propositions 4.6(i and (iii) and 4.8 yield

|f̄ |−1
V β

∣

∣

∣

∣

∣

∣

∑

j≥0

(1− a)j+1
E

(l)
x,θ

[

f̄(Xj)1τ0≤j<τ1

]

∣

∣

∣

∣

∣

∣

= |f̄ |−1
V β

∣

∣

∣

∣

∣

∣

E
(l)
x,θ





τD+n⋆+τD◦θn⋆+τD−1
∑

j=τD

(1− a)j+1f̄(Xj)





∣

∣

∣

∣

∣

∣

≤ E
(l)
x,θ



E
(τD+l)
ZτD





n⋆+τD◦θn⋆−1
∑

j=0

(1− a)j+1V β(Xj)









≤ E
(l)
x,θ



E
(τD+l)
ZτD





n⋆−1
∑

j=0

(1− a)j+1V β(Xj)







+ E
(l)
x,θ



E
(τD+n⋆+l)
ZτD+n⋆





τD−1
∑

j=0

(1− a)j+1V β(Xj)









≤ 2
(1 + b̄n⋆)(1 + b̄)

a1−1/q(1− a)1/q
(αc)−1/q sup

D
V β+α/q .

For k ≥ 1,

∣

∣

∣

∣

∣

∣

∑

j≥0

(1− a)j+1
E

(l)
x,θ

[

f̄(Xj)1τk≤j<τk+1

]

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

E
(l)
x,θ





τk+N−1
∑

j=τk

(1− a)j+1 f̄(Xj)





∣

∣

∣

∣

∣

∣

+ E
(l)
x,θ



(1− a)τ
k+N

E
(τk+N+l)
Z

τk+N





τD−1
∑

j=0

(1− a)j+1
∣

∣f̄
∣

∣ (Xj)







 .

By Proposition 4.6(i) and (ii) applied with τ = τD, Proposition 4.8 and Eq. (10), and

upon noting that τk ≥ n⋆ + (k − 1)N P
(l)
(x,θ)-a.s. ,

∣

∣

∣

∣

∣

∣

∑

j≥0

(1− a)j+1
E

(l)
x,θ

[

f̄(Xj)1τk≤j<τk+1

]

∣

∣

∣

∣

∣

∣

≤ |f̄ |V β E
(l)
x,θ

[

(1− a)n⋆+(k−1)N
(

3Nǫ + (1− a)N{V β+α(Xτk+N ) + b̄[εν(D)]−1}(αc)−1
)]

≤ |f̄ |V β (1− a)n⋆+(k−1)N

(

3Nǫ + (αc)−1 sup
r,D×Θ

E
(r)
x,θ

[

V β+α(XN ) + b̄[εν(D)]−1
]

)

≤ |f̄ |V β (1− a)n⋆+(k−1)N

(

3Nǫ + (αc)−1

(

sup
D

V β+α + b̄Nβ+α + b̄[εν(D)]−1

))

≤ 4 ǫ |f̄ |V β (1− a)(k−1)N N ,

where we used the definition of N (see Eq. (8)) and Proposition 4.6(i). This yields the

desired result.

Proof of Eq.(10). By the strong Markov property and since τk ≥ n⋆+N(k−1) P
(l)
x,θ-a.s.

∣

∣

∣

∣

∣

∣

E
(l)
x,θ





N−1
∑

j=0

(1− a)τ
k+j+1 f̄

(

Xτk+j

)





∣

∣

∣

∣

∣

∣

≤ (1−a)n⋆+N(k−1)
E

(l)
x,θ





∣

∣

∣

∣

∣

∣

E
(τk+l)
Z

τk





N−1
∑

j=0

(1− a)j+1 f̄(Xj)





∣

∣

∣

∣

∣

∣



 .
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Furthermore, by Proposition 4.3,

E
(τk+l)
Z

τk





N−1
∑

j=0

(1− a)j+1 f̄(Xj)



 = E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 f̄(Xj)





= E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 f̄(X̃j)



 + E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 {f̄(Xj)− f̄(X̃j)}1Ec
N



 .

On one hand, we have P
(l)
x,θ − a.s.,

∣

∣

∣

∣

∣

∣

E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 f̄(X̃j)





∣

∣

∣

∣

∣

∣

≤ |f̄ |V β

N−1
∑

j=0

(1−a)j+1 sup
D×Θ

‖P j
θ (x, ·)−π(·)‖V β ≤ |f̄ |V β Nǫ

by (7). On the other hand, P
(l)
x,θ − a.s.,

∣

∣

∣

∣

∣

∣

E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 {f̄(Xj)− f̄(X̃j)}1Ec
N





∣

∣

∣

∣

∣

∣

≤ |f̄ |V β E
(τk+l)
Z

τk ,Z
τk





N−1
∑

j=0

(1− a)j+1 {V β(Xj) + V β(X̃j)}1Ec
N





≤ |f̄ |V β E
(τk+l)
Z

τk ,Z
τk











N−1
∑

j=0

(1− a)j+1
{

V β(Xj) + V β(X̃j)
}





β−1






β

(

P
(τk+l)
Z

τk ,Z
τk

(Ec
N )
)1−β

by using the Jensen’s inequality (β < 1). By the Minkowski inequality, by Proposi-

tion 4.6(i), and by iterating the drift inequality A4

E
(τk+l)
Z

τk ,Z
τk











N−1
∑

j=0

(1− a)j+1
{

V β(Xj) + V β(X̃j)
}





β−1






β

≤
N−1
∑

j=0

(1− a)j+1

{

E
(τk+l)
Z

τk ,Z
τk

[V (Xj)]
β + E

(τk+l)
Z

τk ,Z
τk

[

V (X̃j)
]β
}

≤
N−1
∑

j=0

(1− a)j+1

{

sup
l,D×Θ

(

E
(l)
x,θ [V (Xj)]

)β
+

(

sup
D×Θ

P j
θ V (x)

)β
}

≤ 2

N−1
∑

j=0

(1− a)j+1

(

sup
D

V + jb̄

)β

≤ 2N



sup
D

V β + b̄N−1
N−1
∑

j=1

jβ



 .

Finally,

E
(l)
x,θ

[

(

P
(τk+l)
Z

τk ,Z
τk

(Ec
N )
)1−β

]

≤
(

E
(l)
x,θ

[

P
(τk+l)
Z

τk ,Z
τk

(Ec
N )
])1−β

≤
(

N2ǫN

)1−β

where we used (9) in the last inequality. To conclude the proof, use the definition of ǫN .

�
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4.2. Proof of Theorem 2.1. Let ǫ > 0. We prove that there exists nǫ such that for any

n ≥ nǫ, sup{f,|f |1≤1}

∣

∣Eξ1,ξ2

[

f̄(Xn)
]∣

∣ ≤ ǫ. To that goal, let us introduce the sequence of

random times {τk, k ≥ 0} as defined in Section 4.1.3 for (D,N, n⋆) defined as follows.

4.2.1. Definition of D, N , Q and n⋆. There exists a level set D of V large enough such

that ν(D) > 0 and π(D) ≥ 1− ǫ.

By A3, choose N ≥ 2 such that supD×Θ ‖PN
θ (x, ·)− π(·)‖TV ≤ ǫ. This implies that

sup
n≥N

sup
D×Θ

Pn
θ (x,Dc) ≤ 2ǫ . (11)

Choose Q ≥ N such that

sup
l≥0

sup
D×Θ

P
(l)
x,θ

(

τD ◦ θN ≥ Q
)

≤ ǫ/N , (12)

the existence of which is given by the Markov inequality, the Markov property, Proposi-

tions 4.6(i) and 4.8. Finally, by B1, choose n⋆ such that for any n ≥ n⋆,

Pξ1,ξ2

(

D(θn, θn−1) ≥ ǫ/(2(2N + Q)2(Q + N))
)

≤ ǫ

4(2N + Q)2(Q + N)
. (13)

4.2.2. Optimal coupling. Let us define the sequence of variables {dn, n ≥ 0} on (Ω,F) as

follows : dn = −1 for 0 ≤ n < τ1 and

dτk = 0 k ≥ 1 , dn+1 = dn + 1 otherwise .

We apply Proposition 4.3 with l = 0 and N ← 2N + Q. Set E2N+Q
def
= {Xk = X̃k, 0 ≤

k < 2N + Q}. By definition of n⋆ (see Eq. (13)) and of the random variables {dn, n ≥ 0},
it holds for any r ≥ n⋆,

Eξ1,ξ2

[1dr=0 P
(r)
Zr,Zr

(

Ec
2N+Q

)

]

≤
2N+Q
∑

j=1

j
∑

i=1

Eξ1,ξ2

[1dr=0 E
(r)
Zr

[D(θi, θi−1)]
]

≤
2N+Q
∑

j=1

j
∑

i=1

Eξ1,ξ2 [D(θi+r, θi+r−1)] ≤ ǫ(Q + N)−1 . (14)

4.2.3. Proof. We write

Eξ1,ξ2

[

f̄(Xn)
]

= Eξ1,ξ2

[

f̄(Xn)
{1n≤τ2 + 1n>τ2 (10≤dn≤N−1 + 1N≤dn≤N+Q + 1dn>N+Q)

}]

,

and consider each term in turn. We use the notation {Xn:m /∈ D} as a shorthand notation

for
⋂m

l=n{Xl /∈ D}.
Convergence of Term 1. By Proposition 4.8, there exists a constant C such that Eξ1,ξ2

[

τ2
]

≤
2C + V (x) which implies

lim
n

∣

∣Eξ1,ξ2

[

f̄(Xn)1n≤τ2

]∣

∣ ≤ |f̄ |1 n−1
Eξ1,ξ2

[

τ2
]

= 0 .
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Convergence of Term 2. Let n ≥ 2N + Q + n⋆. On the set {dn = q}, there exists k ≥ 2

such that τk = dn−q. We decompose the event {dn = q} based on the length between τk−1

and τk. We write

|f̄ |−1
1

∣

∣Eξ1,ξ2

[

f̄(Xn)10≤dn<N,n>τ2

]∣

∣ ≤

∣

∣

∣

∣

∣

∣

N−1
∑

q=0

∑

l≤n−q−(N+Q)

Pξ1,ξ2 (dn = q, dl = 0,Xl+N+1:n−q−1 /∈ D)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N−1
∑

q=0

n−q−N−2
∑

l=n−q−(N+Q)+1

Pξ1,ξ2 (dn = q, dl = 0,Xl+N+1:n−q−1 /∈ D)

∣

∣

∣

∣

∣

∣

+ |f̄ |−1
1

N−1
∑

q=0

∣

∣

∣
Eξ1,ξ2

[

f̄(Xn)1dn=q1dn−q−(N+1)=0

]∣

∣

∣
.

For the first term, we have

N−1
∑

q=0

∑

l≤n−q−(N+Q)

Pξ1,ξ2 (dn = q, dl = 0,Xl+N+1:n−q−1 /∈ D)

≤
N−1
∑

q=0

∑

l≤n−q−(N+Q)

Eξ1,ξ2

[1dl=0 P
(l)
Zl

(dn−l = q,XN+1:n−q−1−l /∈ D)
]

≤
N−1
∑

q=0

∑

l≤n−q−(N+Q)

Eξ1,ξ2

[1dl=0 P
(l)
Zl

(dn−l = q,XN+1:N+Q−1 /∈ D)
]

≤
N−1
∑

q=0

∑

l≤n−q−(N+Q)

Eξ1,ξ2

[1dl=0 P
(l)
Zl

(

τD ◦ θN ≥ Q
)

]

≤
N−1
∑

q=0

Pξ1,ξ2

(

∃j ≥ 1, τ j ≤ n− q − (N + Q)
)

sup
l≥0,D×Θ

P
(l)
z

(

τD ◦ θN ≥ Q
)

≤ ǫ ,
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by definition of Q (see Eq. (12)). For the second term, we have

N−1
∑

q=0

n−q−N−2
∑

l=n−q−(N+Q)

Pξ1,ξ2 (dn = q, dl = 0,Xl+N+1:n−q−1 /∈ D)

≤
n−N−Q−1
∑

l=n−2N−Q+1

N−1
∑

q=n−N−Q−l

Pξ1,ξ2 (dl = 0, dn = q,Xl+N+1:n−q−1 /∈ D)

+

n−2N−1
∑

l=n−N−Q

N−1
∑

q=0

Pξ1,ξ2 (dl = 0, dn = q,Xl+N+1:n−q−1 /∈ D)

+
n−N−2
∑

l=n−2N

n−N−l−2
∑

q=0

Pξ1,ξ2 (dl = 0, dn = q,Xl+N+1:n−q−1 /∈ D)

≤
n−N−2
∑

l=n−2N−Q+1

Pξ1,ξ2 (dl = 0,Xl+N+1 /∈ D) =
n−N−2
∑

l=n−2N−Q+1

Eξ1,ξ2

[1dl=0 P
(l)
Zl

(XN+1 /∈ D)
]

≤
n−N−2
∑

l=n−2N−Q+1

{

Eξ1,ξ2

[1dl=0 P
(l)
Zl,Zl

(

X̃N+1 /∈ D
)]

+ Eξ1,ξ2

[1dl=0 P
(l)
Zl,Zl

(

Ec
2N+Q

)

]}

≤ sup
D×Θ

PN
θ (x,Dc) + (N + Q) sup

r≥n⋆

Eξ1,ξ2

[1dr=0 P
(r)
Zr ,Zr

(

Ec
2N+Q

)

]

≤ 2ǫ + ǫ ,

by Eqs. (11) and (14). For the third term, we have for any 0 ≤ q ≤ N − 1,

∣

∣

∣
Eξ1,ξ2

[

f̄(Xn)1dn=q1dn−q−(N+1)=0

]∣

∣

∣
=
∣

∣

∣
Eξ1,ξ2

[1dn−q−(N+1)=01Xn−q∈Df̄(Xn)
]∣

∣

∣

≤ Eξ1,ξ2

[1dn−q−(N+1)=0

∣

∣

∣E
(n−q−(N+1))
Zn−q−(N+1)

[1XN+1∈Df̄(Xq+N+1)
]

∣

∣

∣

]

≤ Eξ1,ξ2

[1dn−q−(N+1)=0

∣

∣

∣
E

(n−q−(N+1))
Zn−q−(N+1),Zn−q−(N+1)

[

f̄(X̃q+N+1)
]∣

∣

∣

]

+ |f̄ |1 Eξ1,ξ2

[1dn−q−(N+1)=0 P
(n−q−(N+1))
Zn−q−(N+1),Zn−q−(N+1)

(

X̃N+1 ∈ Dc
)]

+ |f̄ |1 sup
r≥n⋆

Eξ1,ξ2

[1dr=0 P
(r)
Zr ,Zr

(

Ec
2N+Q

)

]

≤ Pξ1,ξ2

(

dn−q−(N+1) = 0
)

|f̄ |1
{

sup
D×Θ

‖PN
θ (x, ·) − π(·)‖TV + sup

D×Θ
PN+1

θ (x,Dc)

}

+|f̄ |1 ǫ(N+Q)−1 ,

by Eq. (14). The rhs is lower than 5ǫ|f̄ |1 by definition of N and Eq. (11).

Convergence of Term 3. Let n ≥ N + Q + n⋆. We write

Eξ1,ξ2

[

f̄(Xn)1N≤dn≤N+Q,n>τ2

]

=

N+Q
∑

l=N

Eξ1,ξ2

[

f̄(Xn)1dn=l,n>τ2

]

= Eξ1,ξ2

[

f̄(Xn)1dn−N =0,n>τ2

]

+

N+Q
∑

l=N+1

Eξ1,ξ2

[

f̄(Xn)1dn−l=0,n>τ21Xn−l+N+1:n /∈D

]

.
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We have

∣

∣Eξ1,ξ2

[

f̄(Xn)1dn−N=0,n>τ2

]∣

∣ ≤ Eξ1,ξ2

[1dn−N=0,n−N≥τ2

∣

∣

∣
E

(n−N)
Zn−N ,Zn−N

[

f̄(XN )
]

∣

∣

∣

]

≤ Eξ1,ξ2

[1dn−N=0,n−N≥τ2

∣

∣

∣
E

(n−N)
Zn−N ,Zn−N

[

f̄(X̃N )
]

+ 2 |f̄ |1 P
(n−N)
Zn−N ,Zn−N

(

Ec
2N+Q

)

∣

∣

∣

]

≤ |f̄ |1 sup
D×Θ

‖PN
θ (x, ·) − π(·)‖TV + 2|f̄ |1 sup

r≥n⋆

Eξ1,ξ2

[1dr=0 P
(r)
Zr,Zr

(

Ec
2N+Q

)

]

≤ |f̄ |1 2ǫ ,

by definition of N and Eq. (14). Furthermore, for any N + 1 ≤ l ≤ N + Q,

|f̄ |−1
1

∣

∣

∣Eξ1,ξ2

[

f̄(Xn)1dn−l=0,n>τ21Xn−l+N+1:n /∈D

]∣

∣

∣ ≤ Eξ1,ξ2

[1dn−l=01Xn−l+N+1:n /∈D

]

≤ Eξ1,ξ2

[1dn−l=0 E
(n−l)
Zn−l

[1XN+1 /∈D

]

]

≤ Eξ1,ξ2

[1dn−l=0 P
(n−l)
Zn−l,Zn−l

(

X̃N+1 /∈ D
)]

+ Eξ1,ξ2

[1dn−l=0 Ē
(n−l)
Zn−l,Zn−l

[∣

∣

∣
1XN+1 /∈D − 1X̃N+1 /∈D

∣

∣

∣
1Ec

2N+Q

]]

≤ sup
D×Θ

PN+1
θ (x,Dc) Pξ1,ξ2 (dn−l = 0) + sup

r≥n⋆

Eξ1,ξ2

[1dr=0 P̄
(r)
Zr,Zr

(

Ec
2N+Q

)

]

.

Hence,

|f̄ |−1
1

N+Q
∑

l=N+1

∣

∣

∣Eξ1,ξ2

[

f̄(Xn)1dn−l=0,n>τ21Xn−l+N+1:n /∈D

]∣

∣

∣ ≤ 3ǫ ,

by Eqs. (11) and (14).

Convergence of Term 4. Let n ≥ N + Q + 1. We write (upon noting that Pξ1,ξ2(dn ≤
n) = 1)

Eξ1,ξ2

[

f̄(Xn)1N+Q<dn,n>τ2

]

=

n
∑

l=N+Q+1

Eξ1,ξ2

[

f̄(Xn)1dn=l,n>τ2

]

=
n
∑

l=N+Q+1

Eξ1,ξ2

[

f̄(Xn)1dn−l=0,n>τ21Xn−l+N+1:n /∈D

]

.

Furthermore, for any N + Q + 1 ≤ l ≤ n,

|f̄ |−1
1

∣

∣

∣Eξ1,ξ2

[

f̄(Xn)1dn−l=0,n>τ21Xn−l+N+1:n /∈D

]∣

∣

∣

≤ Eξ1,ξ2

[1dn−l=0 E
(n−l)
Zn−l

[1XN+1:l /∈D

]

]

≤ Eξ1,ξ2

[1dn−l=0 E
(n−l)
Zn−l

[1XN+1:N+1+Q /∈D

]]

≤ Eξ1,ξ2

[1dn−l=0 P
(n−l)
Zn−l

(

τD ◦ θN > Q
)

]

≤ ǫN−1
Pξ1,ξ2 (dn−l = 0) ,

by Eq. (12). This concludes the proof upon noting that
∑n

l=N+Q+1 Pξ1,ξ2 (dn−l = 0) ≤ 1.

4.3. Proof of Proposition 2.2. We only give the sketch of the proof since the proof is

very similar to the proof of Theorem 2.1. In the present case, D = X. Let ǫ > 0. Choose

N,Q = 2, n⋆ as in the proof of Theorem 2.1. Since D = X, the sequence {τk, k ≥ 0} is

deterministic and for any k ≥ 1, τk+1 = τk +N +1. Finally, the bell variables {dn, n ≥ 0}
take the values {0, · · · , N}. The proof is then similar to that of Theorem 2.1 upon noting

that (i) Term 1 is similar ; (ii) Term 2 reduces to the third part only i.e. the term relative
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to
⋃N−1

q=0 {dn = q, dn−q−(N+1) = 0}; (iii) Term 3 reduces to the first part i.e. the term

relative to {dn−N = 0}; (iv) Term 4 does not exist when D = X.

4.4. Proof of Theorem 2.3. By using the function ĝ
(l)
a introduced in Section 4.1.4 and

by Proposition 4.9, we write Px,θ − a.s.

n−1
n
∑

k=1

f̄(Xk) = n−1
n
∑

k=1

(

(1− a)−1ĝ(k)
a (Xk, θk)− E

(k)
Xk,θk

[

ĝ(k+1)
a (X1, θ1)

])

= n−1(1− a)−1
n
∑

k=1

{

ĝ(k)
a (Xk, θk)− Ex,θ

[

ĝ(k)
a (Xk, θk)|Fk−1

]}

+ n−1(1− a)−1
n
∑

k=1

{

Ex,θ

[

ĝ(k)
a (Xk, θk)|Fk−1

]

− (1− a)Ex,θ

[

ĝ(k+1)
a (Xk+1, θk+1) |Fk

]}

= n−1(1− a)−1
n
∑

k=1

{

ĝ(k)
a (Xk, θk)− Ex,θ

[

ĝ(k)
a (Xk, θk)|Fk−1

]}

+ n−1(1− a)−1
{

Ex,θ

[

ĝ(1)
a (X1, θ1)|F0

]

− Ex,θ

[

ĝ(n+1)
a (Xn+1, θn+1)|Fn

]}

+ a n−1(1− a)−1
n
∑

k=1

Ex,θ

[

ĝ(k+1)
a (Xk+1, θk+1) |Fk

]

.

We apply the above inequalities with a = an and consider the different terms in turn.

We show that they tend Px,θ − a.s. to zero when the deterministic sequence {an, n ≥ 1}
satisfies conditions which are verified e.g. with an = (n + 1)−ζ for some ζ such that

ζ > 0 , ζ < 1−
(

0.5 ∨ β(1− α)−1
)

, ζ < 1− β(1 − α)−1 .

To prove that each term converges a.s. to zero, we use the following characterization

[

∀ǫ > 0 , lim
n→+∞

P

(

sup
m≥n
|Xm| ≥ ǫ

)]

⇐⇒ [{Xn, n ≥ 0} → 0 P− a.s.] .

Hereafter, we assume that |f |V β = 1.

Lp-martingale. By definition,
∑n

k=1

{

ĝ
(k)
an (Xk, θk)− Ex,θ

[

ĝ
(k)
an (Xk, θk)|Fk−1

]}

is a Fk-

martingale under Px,θ. Let p
def
= (1 − α)β−1 > 1. There exists a constant C such that for

any n large enough,

Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ C n[p/2∨1]

ap
n

V (x) . (15)

Indeed, the Burkholder’s inequality (Hall and Heyde, 1980, Theorem 2.10) yields

Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ c Ex,θ





(

n
∑

k=1

∣

∣

∣
ĝ(k)
an

(Xk, θk)
∣

∣

∣

2
)p/2



 ,
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where c (and below, c1, c2) is a constant the value of which may vary upon each appearance.

Assume first that 1 < p ≤ 2. By a convexity inequality,

Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ c

n
∑

k=1

Ex,θ

[∣

∣

∣ĝ(k)
an

(Xk, θk)
∣

∣

∣

p]

.

By Theorem 4.10 applied with q = +∞, there exists N such that for any n ≥ 1 and

(x, θ) ∈ X×Θ,

sup
k≥1
|ĝ(k)

an
|p(x, θ) ≤ ca−p

n V βp(x) +

(

N4ǫ

1− (1− an)N

)p

.

This implies

Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ ca−p
n Ex,θ

[

n
∑

k=1

V 1−α(Xk)

]

+ n c

(

4ǫN

1− (1− an)N

)p

≤ ca−p
n

(

V (x) + b̄n
)

+ n c

(

4ǫN

1− (1− an)N

)p

,

where we used in the last inequality, Proposition 4.6(ii) with a = 0, β = 1− α and l = 0.

As n→ +∞,

ca−p
n (V (x) + bn) + c n

(

4ǫN

1− (1− an)N

)p

∼ n

ap
n

(c1V (x) + c2) .

We now consider the case p ≥ 2. Applying the Minkowski’s inequality,

Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
a (Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ c

(

n
∑

k=1

Ex,θ

[∣

∣

∣ĝ(k)
an

(Xk, θk)
∣

∣

∣

p]2/p
)p/2

≤ c np/2−1
n
∑

k=1

Ex,θ

[∣

∣

∣
ĝ(k)
an

(Xk, θk)
∣

∣

∣

p]

.

Following the same lines as in the case 1 < p ≤ 2, we prove that there exists N such that

for any n ≥ 1 and (x, θ) ∈ X×Θ,

|f̄ |−p
V β Ex,θ

[∣

∣

∣

∣

∣

n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Ex,θ

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

p]

≤ ca−p
n np/2−1 (V (x) + bn) + c np/2

(

4ǫN

1− (1− an)N

)p

.

As n→ +∞, the rhs is equivalent to np/2/ap
n (c1V (x) + c2).
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Convergence of Term 1. We prove that

n−1(1− an)−1
n
∑

k=1

{

ĝ(k)
an

(Xk, θk)− Eξ1,ξ2

[

ĝ(k)
an

(Xk, θk)|Fk−1

]}

−→ 0 , Pξ1,ξ2 − a.s.

provided
∑

n n−1
(

n1−[0.5∨(β/(1−α))]an

)−(1−α)/β
< +∞, limn n1−[0.5∨(β/(1−α))]an = +∞

and limn an = 0.

Proof.
∑n

k=1

{

ĝ
(k)
an (Xk, θk)− Eξ1,ξ2

[

ĝ
(k)
an (Xk, θk)|Fk−1

]}

is a martingale which possesses a

Lp-moment (see Eq. (15)) with p = (1 − α)β−1 > 1. By applying Lemma B.1 and (15),

there exists a constant C such that for any n large enough (i.e. such that 1− an ≥ 1/2)

Pξ1,ξ2

(

sup
m≥n

m−1(1− am)−1

∣

∣

∣

∣

∣

m
∑

k=1

{

ĝ(k)
am

(Xk, θk)− Eξ1,ξ2

[

ĝ(k)
am

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

≥ δ

)

≤ Pξ1,ξ2

(

sup
m≥n

m−1

∣

∣

∣

∣

∣

m
∑

k=1

{

ĝ(k)
am

(Xk, θk)− Eξ1,ξ2

[

ĝ(k)
am

(Xk, θk)|Fk−1

]}

∣

∣

∣

∣

∣

≥ δ/2

)

≤ Cξ1(V )
∑

m≥n

(

m−p − (m + 1)−p
) m[p/2∨1]

ap
m

+ Cξ1(V ) lim
n→+∞

1

np

n[p/2∨1]

ap
n

.

Under the stated assumptions, the rhs tends to zero. �

Convergence of Term 2. We prove that

n−1(1 − an)−1
Eξ1,ξ2

[

ĝ(1)
an

(X1, θ1)|F0

]

−→ 0 ,

provided limn nan = +∞ and limn an = 0.

Proof. By Theorem 4.10 applied with q = +∞, it may be proved that there exist constants

c,N such that

∣

∣

∣Eξ1,ξ2

[

ĝ(1)
an

(X1, θ1)|F0

]∣

∣

∣ ≤ ca−1
n ξ1(V ) + c

(

1− (1− an)N
)−1

N

Divided by n−1(1− an), the rhs tends to zero as n→ +∞. �

Convergence of Term 3. We prove that

n−1(1− an)−1
Eξ1,ξ2

[

ĝ(n+1)
an

(Xn+1, θn+1)|Fn

]

−→ 0 , Pξ1,ξ2 − a.s.

provided the sequence {n−1a−1
n , n ≥ 1} is non-increasing, limn n1−β(1−α)−1

an = +∞,
∑

n(nan)−(1−α)β−1
< +∞ and limn an = 0.
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Proof. There exist constants c1, c2, N such that for any n large enough (i.e. such that

1− an ≥ 1/2) and p
def
= (1− α)β−1 > 1

Pξ1,ξ2

(

sup
m≥n

m−1(1− am)−1
∣

∣

∣Eξ1,ξ2

[

ĝ(m+1)
am

(Xm+1, θm+1)|Fm

]∣

∣

∣ ≥ δ

)

≤ 2pδ−p
Eξ1,ξ2

[

sup
m≥n

m−p
∣

∣

∣
Eξ1,ξ2

[

ĝ(m+1)
am

(Xm+1, θm+1)|Fm

]∣

∣

∣

p
]

≤ 2pδ−p
∑

m≥n

m−p
Eξ1,ξ2

[∣

∣

∣Eξ1,ξ2

[

ĝ(m+1)
am

(Xm+1, θm+1)|Fm

]∣

∣

∣

p]

≤ 2pδ−p
∑

m≥n

m−p
Eξ1,ξ2

[∣

∣

∣
ĝ(m+1)
am

(Xm+1, θm+1)
∣

∣

∣

p]

≤ 22p−1 δ−p
∑

m≥n

m−p

{

c1

ap
m

Eξ1,ξ2

[

V βp(Xm+1)
]

+ c2

(

N

(1− (1− am)N )

)p}

where we used Theorem 4.10 with q = +∞. Furthermore by Propositions 4.6(i) and 4.7

and the drift inequality,

Pξ1,ξ2

(

sup
m≥n

m−1(1− am)−1
∣

∣

∣
Eξ1,ξ2

[

ĝ(n+1)
am

(Xm+1, θm+1)|Fm

]∣

∣

∣
≥ δ

)

≤ 2pc3

δp







n−pa−p
n Eξ1,ξ2[V (Xn)] +

∑

m≥n

m−pa−p
m +

∑

m≥n

m−p

(

N

(1− (1− am)N )

)p






≤ 2pc3

δp







n−pa−p
n

(

ξ1(V ) + nb̄
)

+ b̄
∑

m≥n

m−pa−p
m +

∑

m≥n

m−p

(

N

(1− (1− am)N )

)p






.

Under the stated conditions on {an, n ≥ 1}, the rhs tends to zero as n→ +∞. �

Convergence of Term 4. We prove that

ann−1(1− an)−1
n
∑

k=1

Eξ1,ξ2

[

ĝ(k+1)
an

(Xk+1, θk+1)|Fk

]

−→ 0 , Pξ1,ξ2 − a.s.

provided {a1∧[(1−α−β)/α]
n n−1, n ≥ 1} is non-increasing,

∑

n a
1∧[(1−α−β)/α]
n n−1 < +∞, and

limn an = 0.

Proof. Choose q ≥ 1 such that β + α/q ≤ 1 − α. Fix ǫ > 0. From Theorem 4.10, there

exist constants C,N such that for any n ≥ 1, l ≥ 0, (x, θ) ∈ X×Θ,

∣

∣

∣ĝ(l)
an

(x, θ)
∣

∣

∣ ≤ C a1/q−1
n V β+α/q(x) + 4ǫN(1− (1− an)N )−1 .
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Hence for n large enough such that (1− an) ≥ 1/2

∣

∣

∣

∣

∣

ann−1(1− an)−1
n
∑

k=1

Eξ1,ξ2

[

ĝ(k+1)
an

(Xk+1, θk+1)|Fk

]

∣

∣

∣

∣

∣

≤ 8anǫN(1− (1− an)N )−1 + 2C a1/q
n n−1

n
∑

k=1

Eξ1,ξ2

[

V β+α/q(Xk+1)|Fk

]

≤ 8anǫN(1− (1− an)N )−1 + 2C a1/q
n n−1

n
∑

k=1

V 1−α(Xk) + 2C a1/q
n b̄ ,

where we used β+α/q ≤ 1−α and Proposition 4.6(i) in the last inequality. Since limn an =

0 and limn anǫN(1−(1−an)N )−1 = ǫ, we only have to prove that a
1/q
n n−1

∑n
k=1 V 1−α(Xk)

converges to zero Pξ1,ξ2-a.s. By the Kronecker Lemma (see e.g (Hall and Heyde, 1980, Sec-

tion 2.6)), this amounts to prove that
∑

k≥1 a
1/q
k k−1 V 1−α(Xk) is finite a.s. This property

holds upon noting that by Proposition 4.7 and Proposition 4.6(i)

Eξ1,ξ2





∑

k≥n

a
1/q
k k−1 V 1−α(Xk)



 ≤ a1/q
n n−1

Eξ1,ξ2 [V (Xn)] +
∑

k≥n

a
1/q
k k−1

≤ a1/q
n n−1

(

ξ1(V ) + b̄n
)

+
∑

k≥n

a
1/q
k k−1,

and the rhs tends to zero under the stated assumptions. �

4.5. Proof of Proposition 2.4. We only give the sketch of the proof since the proof is

very similar to that of Theorem 2.3. We start with proving a result similar to Theorem 4.10.

Since D = X, the sequence {τk, k ≥ 0} is deterministic and τk+1 = τk+N +1. By adapting

the proof of Theorem 4.10 (f is bounded and D = X), we establish that for any ǫ > 0,

there exists an integer n ≥ 2 such that for any 0 < a < 1, any bounded function f , l ≥ 0,

(x, θ) ∈ X×Θ

(

|f̄ |1
)−1

∣

∣

∣
ĝ(l)
a (x, θ)

∣

∣

∣
≤ n + ǫ (1− (1− a)n)−1 n .

We then introduce the martingale decomposition as in the proof of Theorem 2.3 and follow

the same lines (with any p > 1).

Appendix A. Explicit control of convergence

We provide sufficient conditions for the assumptions A3 and A5. The technique relies

on the explicit control of convergence of a transition kernel P on a general state space

(T,B(T)) to its stationary distribution π.

Proposition A.1. Let P be a φ-irreducible and aperiodic transition kernel on (T,B(T)).
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(i) Assume that there exist a probability measure ν on T, positive constants ε, b, c, a

measurable set C, a measurable function V : T→ [1,+∞) and 0 < α ≤ 1 such that

P (x, ·) ≥ 1C(x) ε ν(·) , PV ≤ V − c V 1−α + b 1C . (16)

Then P possesses an invariant probability measure π and π(V 1−α) < +∞.

(ii) Assume in addition that c infCc V 1−α ≥ b, supC V < +∞ and ν(C) > 0. Then

there exists a constant C depending upon supC V , ν(C) and ε, α, b, c such that for any

0 ≤ β ≤ 1− α and 0 ≤ κ ≤ α−1(1− β),

(n + 1)κ ‖Pn(x, ·)− π(·)‖V β ≤ C V β+ακ(x). (17)

The proof of (i) can be found in (Meyn and Tweedie, 1993, Theorems 8.4.3., 10.0.1).

The proof of (ii) is given in e.g. Fort and Moulines (2003) (see also Andrieu and Fort

(2005); Douc et al. (2007)).

When b ≤ c, c infCc V 1−α ≥ b. Otherwise, it is easy to deduce the conditions of (ii)

from conditions of the form (i).

Corollary A.2. Let P be a phi-irreducible and aperiodic transition kernel on (T,B(T)).

Assume that there exist positive constants b, c, a measurable set C, an unbounded measur-

able function V : T→ [1,+∞) and 0 < α ≤ 1 such that PV ≤ V − cV 1−α + b1C. Assume

in addition that the level sets of V are 1-small. Then there exist a level set D of V , positive

constants εD, cD and a probability measure νD such that

P (x, ·) ≥ 1D(x) εD νD(·) , PV ≤ V − cD V 1−α + b 1D ,

and supD V < +∞, νD(D) > 0, and cD infDc V 1−α ≥ b.

Proof. For any 0 < γ < 1, PV ≤ V −γ c V 1−α+b 1Dγ with Dγ
def
= {V 1−α ≤ b[c(1−γ)]−1}.

Hence, supDγ
V < +∞; and for γ close to 1, we have γc infDc

γ
V 1−α ≥ b. Finally, the drift

condition (16) implies that the set {V < +∞} is full and absorbing and thus the level sets

{V ≤ d} are accessible for any d large enough. �

The 1-smallness assumption is usually done for convenience and is not restrictive. In

the case the level sets are petite (and thus m-small for some m ≥ 1), the explicit upper

bounds get intricate and are never detailed in the literature (at least in the polynomial

case). Nevertheless, it is a recognized fact that the bounds derived in the case m = 1 can

be extended to the case m > 1.

Appendix B. Birnbaum-Marshall’s inequality

Lemma B.1 is a generalization of the Birnbaum-Marshall’s inequality, which can be

found in (Andrieu and Moulines, 2006, Proposition 22).
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Lemma B.1. Let {Sk, k ≥ 1} be a Fk-sub-martingale and {bk, k ≥ 1} be a non-increasing

real-valued sequence. If p ≥ 1 is such that E[|Sk|p] < +∞ for k ≤ N then for n ≤ N

P

(

sup
n≤m≤N

bm|Sm| ≥ 1

)

≤
N
∑

m=n

(bp
m − bp

m+1) E[|Sm|p] + bp
NE[|SN |p].

Appendix C. Proofs of Section 3.2

In the proofs, C will denote a generic finite constant whose actual value might change

from one appearance to the next. The proofs below differ from earlier works (see e.g.

Fort and Moulines (2000); Douc et al. (2004)) since q is not assumed to be compactly

supported.

C.1. Proof of Lemma 3.3.

Lemma C.1. Assume D1-2. For all x large enough and |z| ≤ η|x|υ, t 7→ Vs(x + tz) is

twice continuously differentiable on [0, 1]. There exist a constant C < +∞ and a positive

function ε such that lim|x|→∞ ε(x) = 0, such that for all x large enough, |z| ≤ η|x|υ and

s ≤ s⋆,

sup
t∈[0,1]

|∇2Vs(x + tz)| ≤ C sVs(x)|x|2(m−1) (s + ε(x)) .

Proof. |x + z| ≥ |x| − η|x|υ ≥ (1 − η)|x|υ so that t 7→ Vs(x + tz) is twice continuously

differentiable on [0, 1] for |x| large enough. We have

|∇2Vs(x + tz)| ≤ sVs(x)
Vs(x + tz)

Vs(x)
|∇ ln π(x + tz)∇ ln π(x + tz)T | · · ·

(

s +
|∇2 lnπ(x + tz)|

|∇ ln π(x + tz)∇ ln π(x + tz)T |

)

Under the stated assumptions, there exists a constant C such that for any x large enough

and |z| ≤ η|x|υ

sup
t∈[0,1]

(

s +
|∇2 lnπ(x + tz)|

|∇ ln π(x + tz)∇ ln π(x + tz)T |

)

≤ s +
D2

d2
1(1− η)

|x|−mυ ,

and

sup
t∈[0,1]

|∇ ln π(x + tz)∇ ln π(x + tz)T | ≤ |x|2(m−1)D2
1

(

1− η|x|υ−1
)2(m−1)

.

Finally,

sup
t∈[0,1],s≤s⋆

(

π(x + tz)

π(x)

)−s

≤ 1 + s⋆D1 |z| sup
t∈[0,1]

|x + tz|m−1 sup
t∈[0,1],s≤s⋆

(

π(x + tz)

π(x)

)−s

which yields the desired result upon noting that |z||x + tz|m−1 ≤ η|x|υ+m−1(1− η|x|υ−1)

is arbitrarily small for x large enough. �
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We now turn to the proof of Lemma 3.3. For x ∈ X, define R(x) := {y ∈ X : π(y) <

π(x)} and R(x)− x
def
= {y − x : y ∈ R(x)}. We have:

PθVs(x)− Vs(x) =

∫

(Vs(x + z)− Vs(x)) qθ(z) µLeb(dz)

+

∫

R(x)−x
(V (x + z)− V (x))

(

π(x + z)

π(x)
− 1

)

qθ(z) µLeb(dz) .

If x remains in a compact set C, using D2(ii) and the continuity of x 7→ Vs(x), we have

Vs(x + z) ≤ C(1 + exp(sD0|z|m)). It follows that

sup
θ∈Θ

sup
x∈C
{PθVs(x)− Vs(x)} ≤ C sup

θ∈Θ

∫

R(x)−x
(1 + exp(sD0|z|m)) qθ(z) µLeb(dz) < +∞ .

More generally, let x large enough. Define l(x)
def
= log π(x), RV (x, z)

def
= Vs(x + z) −

Vs(x)+sVs(x)〈z,∇l(x)〉, Rπ(x, z)
def
= π(x+z)(π(x))−1−1−〈z,∇l(x)〉. Using the fact that

the mean of qθ is zero, we can write: PθVs(x)− Vs(x) = I1(x, θ, s) + I2(x, θ, s) + I3(x, θ, s)

where

I1(x, θ, s)
def
= −sVs(x)

∫

R(x)−x
〈z,∇l(x)〉2 qθ(z) µLeb(dz) ,

I2(x, θ, s)
def
=

∫

RV (x, z) qθ(z) µLeb(dz)+

∫

R(x)−x
RV (x, z)

(

π(x + z)

π(x)
− 1

)

qθ(z) µLeb(dz) ,

and

I3(x, θ, s)
def
= −sVs(x)

∫

R(x)−x
Rπ(x, z)〈z,∇l(x)〉 qθ(z) µLeb(dz) .

C.1.1. First term. It follows from (Fort and Moulines, 2000, Lemma B.3. and proof of

Proposition 3) that, under D2(i), there exists b > 0, such that for all θ ∈ Θ,
∫

R(x)−x
〈z,∇l(x)〉2 qθ(z) µLeb(dz) ≥ b |∇l(x)|2 .

Hence, supθ∈Θ I1(x, θ, s) ≤ −s Vs(x) b d2
1|x|2(m−1).

C.1.2. Second term. For z ∈ R(x) − x, π(x + z) < π(x). Therefore |I2(x, θ, s)| ≤
2
∫

|RV (x, z)|qθ(z) µLeb(dz). By Lemma C.1, there exists C < +∞ - independent of s

for s ≤ s⋆- such that for any |z| ≤ η|x|υ ,

|RV (x, z)| ≤ C s Vs(x) |x|2(m−1) |z|2 (s + ε(x)) .

This implies that there exists a constant C < +∞ - independent of s for s ≤ s⋆ - such

that

∫

|RV (x, z)|qθ(z) µLeb(dz) ≤ C s Vs(x) |x|2(m−1) (s + ε(x))

∫

|z|2qθ(z)µLeb(dz)

+ Vs(x)

∫

{z,|z|≥η|x|υ}

Vs(x + z)

Vs(x)
qθ(z)µLeb(dz)

+ C Vs(x) |x|m−1

∫

{z,|z|≥η|x|υ}
|z| qθ(z)µLeb(dz) .
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There exists a constant C such that for θ ∈ Θ and s ≤ s⋆, the first term in the rhs is upper

bounded by C s Vs(x) |x|2(m−1) (s + ε(x)). Under D3, the second term is upper bounded

by Vs(x) |x|2(m−1) ε(x) with lim|x|→+∞ ε(x) = 0 uniformly in θ for θ ∈ Θ, and in s for

s ≤ s⋆. Since qθ is a multivariate Gaussian distribution, there exists λ⋆ > 0 such that

supθ∈Θ

∫

exp(λ⋆|z|2)qθ(z)µLeb(dz) < +∞. Under D3, the third term is upper bounded by

C Vs(x) |x|2(m−1) exp(−λη2|x|2υ) for some λ ∈ (0, λ⋆), uniformly in θ for θ ∈ Θ, and in s

for s ≤ s⋆. Hence, we proved that there exists C⋆ <∞ such that for any s ≤ s⋆,

sup
θ∈Θ
|I2(x, θ, s)| ≤ C⋆ Vs(x) |x|2(m−1)

(

s2 + ε(x)
)

,

for a positive function ε independent of s and such that lim|x|→+∞ ε(x) = 0.

C.1.3. Third term. Following the same lines as in the control of I2(x, θ, s), it may be

proved that

I3(x, θ, s) ≤ sVs(x)D1|x|m−1

∫

{z,|z|≥η|x|υ}
|z|
(

1 + D1|z||x|m−1
)

qθ(z)µLeb(dz)

+ C Vs(x)|x|3(m−1)

∫

{z,|z|≤η|x|υ}
|z|3 qθ(z)µLeb(dz) ≤ C Vs(x)|x|2(m−1)ε(x)

for a positive function ε independent of s, θ and such that lim|x|→+∞ ε(x) = 0.

C.1.4. Conclusion. Let α ∈ (0, 1). By combining the above calculations, we prove that by

choosing s small enough such that c⋆
def
= bd2

1 − C⋆s > 0, we have

sup
θ∈Θ

PθVs(x) ≤ Vs(x)− c⋆Vs(x)|x|2(m−1) + b⋆1C(x) (18)

≤ Vs(x)− 0.5c⋆V
1−α
s (x) + b⋆1C(x) (19)

for a compact set C. This proves A2 and A4. A3 and A5 follow from the results of

Appendix A.

C.2. Proof of Lemma 3.4. An easy modification in the proof of (Andrieu and Moulines,

2006, Proposition 11) (to adjust for the difference in the drift function) shows that

D(θ, θ′) ≤ 2
∫

X
|qecΣ(x)− qec′Σ′(x)|µLeb(dx). We then apply (Andrieu and Moulines, 2006,

Lemma 12) to obtain that

D(θ, θ′) ≤ 2p Λ−1
l

√
p|ecΣ− ec′Σ′|s ≤ 2p3/2 Λ−1

l eκu
(

|Σ− Σ′|s + Λu|c− c′|
)

.

For any l, n ≥ 0, ǫ > 0, x ∈ R
p and θ ∈ Θ, we have

P
(l)
x,θ (D(θn, θn+1) ≥ ǫ) ≤ ǫ−1

E
(l)
x,θ [D(θn, θn+1)]

≤ C0(l + n + 1)−1
(

2Λu + E
(l)
x,θ

[

|Xn+1|2
]

+ C2

+ 2C

√

E
(l)
x,θ [|Xn+1|2]

)

,
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where C0 = 2p3/2eκuΛ−1
l ǫ−1. D2(ii) implies that we can find C < ∞ such that |x|2 ≤

C φ(Vs(x)) for all x ∈ X where φ(t) = [ln t]2/m. From the drift condition (Lemma 3.3),

Proposition 4.6(i) and the concavity of φ, we deduce that there exists C such that

E
(l)
x,θ

[

|Xn|2
]

≤ C [ln Vs(x)]2/m [ln n]2/m. We conclude that for any probability ξ1 such

that ξ1([ln Vs]
2/m) < +∞, limn Pξ1,ξ2 (D(θn, θn+1) ≥ ǫ) = 0 and for any level set D of Vs,

lim
n→∞

sup
l≥0

sup
D×Θ

P
(l)
x,θ (D(θn, θn+1) ≥ ǫ) = 0 .
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