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ABSTRACT

We propose a new method to address the problem of stereo matching under varying illumination conditions.
First, a spatially varying multiplicative model is developed to account for photometric changes induced between
both images in the stereo pair. The stereo matching problem based on this model is then formulated as a
constrained optimization problem in which an appropriate convex objective function is minimized under convex
constraints. These constraints arise from prior knowledge and rely on various properties of both disparity and
illumination fields. In order to obtain a smooth disparity field while preserving discontinuities around object
edges, we consider an appropriate wavelet-based regularization constraint. The resulting multi-constrained
optimization problem is solved via an efficient block iterative algorithm which offers great flexibility in the
incorporation of several constraints. Experimental results demonstrate the efficiency of the proposed method
to recover illumination changes and disparity map simultaneously, making stereo matching very robust w.r.t.
such changes.

Keywords: Stereovision, Illumination variations, Joint estimation, Convex optimization, Convex constraints,
Wavelets, Regularization.

1. INTRODUCTION

Stereo matching is a basic task in computer vision with many interesting applications including video coding,
view synthesis, robot navigation and object recognition. The main goal of stereo matching is to recover the
depth information of a scene from a pair of left and right images taken from two different locations. It involves
finding corresponding pixels, i.e. pixels resulting from the projection of the same 3D point onto the two image
planes. The difference in location between corresponding pixels forms the so-called disparity map. In most
of the classical disparity estimation techniques,1 the scene is assumed to be Lambertian and, more generally,
corresponding pixels in different views are assumed to have identical intensity values. However, in the presence
of illumination changes often encountered in practice, this assumption, commonly referred to as the brightness
constancy assumption, is violated which may largely reduce the efficiency of disparity estimation.

Photometric variations between the left and right images of a stereo pair can be caused by the presence of
non-Lambertian surfaces, differences in cameras responses, shadows, image noise, etc. In order to compensate
for the effects of these variations, a simple and commonly used approach is to pre-process the images before
stereo matching. Indeed, techniques such as gradient filters, luminance balancing or histogram transform can
be performed to reduce noise and enhance the contrast in the images. Based on the observation that two
images of a stereo pair are statistically similar, the idea of the method proposed in2 is to equalize their mean
and their variance by a simple linear transformation applied to the luminance of one of the two images. As a
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pre-processing step, the histogram specification technique, which consists of mapping one image histogram to
the other, have also been used to obtain images that are illumination independent. This step yields a new pair
of stereo images, with identical intensity histograms, to which the disparity estimation is applied. Cox et al.3

proposed a dynamic histogram warping that consists of directly matching histogram values and performing
a global optimization via dynamic programming. Other approaches combine traditional stereo algorithms
with robust correlation measures such as normalized cross-correlation and rank transform. Recently, mutual
information (MI) has also been used as a stereo similarity measure, due to its robustness to many complex
intensity transformations. Originally proposed for use in image registration,4 MI has attracted much interest
in the field of stereo vision for matching images affected by photometric changes. However, used with a local
method,5 the performance of MI degrades in the presence of Gaussian noise due to the small statistical power
of the matching windows. This problem can be overcome by incorporating MI into a global algorithm and
using an energy minimization framework,6.7

An alternative approach to cope with the illumination inconsistency problem is to model illumination
variations, so extending the brightness constancy assumption to account for brightness changes. In,8 lighting
changes were modelled by constant multiplicative and additive factors. The analysis performed in3 on the
JISCT stereo database through histogram examination reveals, however, that the affine model is not always
accurate. Gennert9 provided a more reliable model, showing that the intensities of two corresponding points
are related by a spatially varying multiplicative term that is a function of surface orientation and reflectance
models. Using this model, he developed a stereo algorithm based on a nonconvex cost function consisting
of a linear combination of a brightness matching error, and of smoothness penalties on the disparity and
the multiplication field. However, minimizing this functional based on solving the associated Euler-Lagrange
equations is difficult and computationally expensive. Very recently, Zhang et al.10 modelled illumination
changes using an illumination ratio map where the intensity ratio of corresponding points in an image pair
is computed. They formulated the problem using a Markov network and employed an iterative optimization
method based on belief propagation to recover the illumination ratio map and disparity image at the same
time. Although this approach achieves good results validating the efficiency of the multiplicative illumination
model, the optimization method adopted in this work is computationally intensive.

In this paper, we propose a new method that extends our previous work,11 to address the problem of
stereo matching under varying illumination conditions. To deal with illumination variations, we replace the
assumption of brightness constancy with a more realistic model that is close to the one used in.9 The stereo
matching problem based on this model is then formulated as a constrained optimization problem in which an
appropriate convex objective function is minimized under convex constraints. These constraints arise from
prior knowledge and rely on various properties of both disparity and illumination fields. To maintain the
spatial smoothness in homogeneous regions while preserving discontinuities around contours of the disparity
image, we use a regularizing constraint based on image transformed coefficients. Since wavelets provide a
simple characterization of a wide class of regular function spaces, the regularization constraint is defined as a
semi-norm of the disparity field in such an image space. This regularization is appropriate for modelling fields
exhibiting both sharp discontinuities and homogeneous areas. The resulting multi-constrained optimization
problem is solved via an efficient block iterative algorithm which allows to combine both wavelet and spatial
domain constraints.12 In addition, this algorithm is well suited for an implementation on parallel processors
which helps in reducing the computational time.

The paper is structured as follows. Section 2 focuses on the modelling of photometric variations and
describes the set theoretic formulation of the stereo problem. Section 3 addresses the construction of constraint
sets exploiting available information on both disparity and illumination fields. In Section 4, we review the
parallel block-iterative algorithm that will be employed to solve the convex programming problem. Section 5
presents results and comparisons and, finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION

2.1 Modelling of photometric variations
The standard mathematical model used to compute the disparity map from a pair of stereo images is based on
the brightness constancy assumption : two homologous points in the left and right views have identical intensity



values. To take into account possible illumination change, we replace this assumption with the multiplicative
model proposed by Gennert.9 The intensities of two corresponding points are then related by a spatially varying
multiplicative factor as follows :

Ir(x− u(s), y) = v(s) Il(s) , (1)

where Il and Ir are the left and right images of a stereo pair, respectively, s = (x, y) is a spatial position in
either image, u denotes the horizontal disparity and v represents the multiplicative coefficient of the intensity
illumination change. Based on this model, we can compute u and v by minimizing the following cost function
based on the Sum of Squared Differences (SSD) metric:

J̃(u, v) =
∑
s∈D

[v(s) Il(s)− Ir(x− u(s), y)]2 , (2)

where D ⊂ N2 is the image support. This expression is non-convex with respect to the displacement field u.
Thus, to avoid a non-convex minimization, we consider a Taylor expansion of the non-linear term Ir(x− ū, y)
around an initial estimate ū as follows :

Ir(x− u, y) ' Ir(x− ū, y)− (u− ū) ∇Ixr (x− ū, y) , (3)

where Ixr (x − ū, y) is the horizontal gradient of the warped right image. Note that the initial value ū may
be obtained from a correlation based method or from previous iteration within an iterative process. This
linearization leads to the following convex quadratic criterion:

J̃(u, v) '
∑
s∈D

[L1(s) u(s) + L2(s) v(s)− r(s)]2 , (4)

where
L1(s) = ∇Ixr (x− ū(s), y),
L2(s) = Il(s),
r(s) = Ir(x− ū(s), y) + ū(s) L1(s).

Setting w = (u, v)> and L = [L1, L2], we end up with the following quadratic criterion to be minimized:

JD(w) =
∑
s∈D

[L(s) w(s)− r(s)]2 . (5)

2.2 Set theoretic formulation
Minimizing the objective function (5) is an ill-posed inverse problem due to the fact that two variables u(s)
and v(s) have to be determined for each pixel s and that the components of L may locally vanish. Thus,
to convert this problem to a well-posed one, it is useful to incorporate additional constraints modelling prior
knowledge and available information on the solution. In the field of computer vision, such constraints were
most commonly formulated as additional penalty terms in the objective function. In this work, the problem is
addressed from a set theoretic formulation, where each constraint is represented by a convex set in the solution
space and the intersection of these sets constitutes the family of admissible solutions. The aim then is to find
an admissible solution minimizing the given objective function. A formulation of this problem in a Hilbert
image space H is therefore

Find w ∈ S =
m⋂
i=1

Si such that J(w) = inf J(S) , (6)

where J : H →] −∞,+∞] is a convex function and (Si)1≤i≤m are closed convex sets of H. Without loss of
generality, constraint sets can be represented as level sets :

∀i ∈ {1, . . . ,m}, Si = {w ∈ H | fi(w) ≤ δi} , (7)

where, for all i ∈ {1, . . . ,m}, fi : H → R is a continuous convex function and (δi)1≤i≤m are real-valued
parameters.



The advantage of the convex program (6) is that a wide range of constraints modelling prior information
can be explicitly incorporated to the problem. In,13 it was shown that many spatial and spectral constraints
commonly used in image recovery problems can be modelled as closed convex sets of the form (7). Recently,
there have been several attempts in formulating constraints in the wavelet domain. Indeed, as shown in,12

convex wavelet constraints can be constructed and used with various spatial constraints to refine the feasibility
set S in (6), yielding improved results for many image processing applications. A further advantage of the set
theoretic formulation is to benefit from the availability of powerful optimization algorithms, e.g. the constrained
quadratic minimization method developed in,14 which allows the combination of constraints arising in both the
spatial and the wavelet domain.

3. ROBUST STEREO MATCHING

In this section, we introduce the objective function to be minimized as well as the considered convex constraints
on both fields to be estimated, namely the disparity u and the illumination field v.

3.1 Global objective function

The objective function to be minimized is the quadratic measure derived from the data model (1) linearized
around an initial disparity estimate ū. In order to guarantee that the linearization in (3) is valid, it is important
to deal with a consistent initial disparity field. As an alternative to the classical initialization that consists of
using a pyramidal strategy to refine the initial field at each level of an image pyramid, we use, in this paper, a
simpler block matching method with an affine illumination variation factor, which allows to estimate an initial
illumination field v̄ and an initial disparity estimate ū. More precisely, we compute

ū(x, y) = arg min
u∈U

∑
(i,j)∈B

[βx,y(u) Il(x+ i, y + j)− Ir(x+ i− u, y + j)]2 , (8)

where U ⊂ N is the search disparity set, B corresponds to a matching block centered at the pixel (x, y) and
βx,y(u) is the following least squares estimate of the illumination factor for block B:

βx,y(u) =

∑
(i,j)∈B Il(x+ i, y + j)Ir(x+ i− u, y + j)∑

(i,j)∈B Il(x+ i, y + j)2
. (9)

The estimate of the initial illumination variation constant is then given by:

v̄(x, y) = βx,y
(
ū(x, y)

)
. (10)

Furthermore, to cope with large deviations from the data model, occlusion points which are pixels only
visible from one view of the stereo images have been detected and discarded in the expression of the similarity
criterion. Occluded image areas are one of the biggest challenges in stereovision since they yield very large
disparity errors. Egnal and Wildes15 have provided comparisons of various approaches for finding occlusions.
For the results in this paper, occlusion points are detected by enforcing the uniqueness and ordering constraints.
Denoting by O the occlusion field, the objective function to be minimized becomes

JD\O(w) =
∑

s∈D\O

[L(s) w(s)− r(s)]2. (11)

According to the conditions of convergence of the algorithm we use (see Section 4), the objective function
J must be strictly convex. However, since the components of L may vanish in (11) and O is usually nonempty,
JD\O is not secured to be strictly convex. We therefore introduce an additional strictly convex term as follows
:

J(w) =
∑

s∈D\O

[L(s)w(s)− r(s)]2 + α
∑
s∈D
|w(s)− w̄(s)|22 , (12)



where w̄ = (ū, v̄) is an initial estimate as described above, | · |2 denotes the Euclidean norm in R2 and α
is a positive constant that weights the second term relatively to the first in the right-hand side of (12). We
emphasize that the primary role of the latter term is not to regularize the solution but to make J strictly
convex, in compliance with the assumption required to guarantee the convergence of the proposed algorithm.
We also note that we iteratively refine the initial estimate w̄ by choosing the result from a previous estimate
as the initial value of the next step. This allows an improvement of the quality of the solution while reducing
the dependence of the final solution on the initial estimate.

3.2 Wavelet regularization constraint
Smoothness has received a great deal of attention in recent years not only in the field of stereo matching but
also in image restoration, tomography, segmentation and optical flow estimation. The concept of regularization
by a smoothing function was initially introduced by Tikhonov.16 However, the Tikhonov regularization, by
considering a quadratic function, tends to oversmooth discontinuities. In disparity estimation, discontinuities
are steep transitions between smoothly varying regions and typically coincides with occluding contours of
objects lying at different depths. In order to smooth isotropically inside homogeneous areas and preserve
discontinuities around object edges, Total Variation (TV), which we have considered in a previous work,17

has proven to be a very powerful feature. Initially introduced by Rudin, Osher and Fatemi,18 this regularity
measure has emerged as an effective tool to recover smooth images in variational image recovery,19 which
naturally motivates its extension to the field of variational stereo methods.17,20

In the present work, we adopt an alternative wavelet domain approach to construct a regularization con-
straint in the transformed domain. The key idea of this regularization is to suppose that the semi-norm of the
disparity image u, expressed in terms of the wavelet coefficients of u in a smoothness space X , is bounded. The
convex constraint modelling this prior information assumes the following general form:

S1 = {(u, v) ∈ H | ‖u‖X ≤ κ}, (13)

where κ > 0 and ‖ . ‖X is a semi-norm in the space X . In order to deal with a regularization process that avoids
smoothing across discontinuities, we have to consider a function space X that possesses particular smoothness
characteristics. We consider here Besov spaces Bσp,q (0 < σ < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) as they are
appropriate to model images that contain discontinuities. Moreover, norms in these spaces are equivalent to
sequence norms for the image wavelet coefficients. Regularization in Besov spaces has been used with great
success in the area of image denoising12,21,22 and has been shown to guarantee the requested smoothness
properties. In this work, by defining a convex set based on an orthonormal wavelet basis, we investigate a new
wavelet regularization constraint which is useful in disparity estimation.

Let WB be the 2-D wavelet transform in a separable wavelet basis B. The wavelet coefficients of u ∈ H are
denoted by (cBj,o,k(u))j∈Z,k∈Z2,o∈{1,2,3}, where j ∈ Z is the resolution level and o ∈ {1, 2, 3} is the orientation
parameter. The maximum resolution level is denoted by l.

If the wavelet function possesses N > σ vanishing moments, the norm in a Besov space Bσp,q of an image u ∈ H
is equivalent to the following norm of its wavelet coefficients:

‖u‖Bσp,q '
(∑
j∈Z

(
∑

k∈Z2,o∈{1,2,3}

2−j(σp+p−2)|cBj,k,o(u)|p)q/p
)1/q

. (14)

Roughly speaking, the space Bσp,q, mainly determined by the regularity index σ and the tolerance index p,
contains functions with σ derivatives in Lp(R2). The third index q, providing a finer distinction in smoothness,
may appear of secondary importance. One particular Besov space which plays an important role in image
processing is the space Bσp,p with p = q and 1/p = σ/2 + 1/2. The norm in this space reduces to a simple
weighted p-norm of the wavelet coefficients and, by further discarding the diagonal coefficients where noise
often dominates, the semi-norm in this space is given by:

‖u‖Bσp,p '
(∑
j∈Z

∑
k∈Z2,o∈{1,2}

|cBj,k,o(u)|p
)1/p

. (15)



Motivated by the success of the space of functions of Bounded Variation (BV), the space of minimal smoothness
B1

1,1, by taking p = σ = 1, have also been widely considered. Indeed, this space is very close to the space BV,
since B1

1,1 ⊂ BV, and thus it is so appropriate to model images with sharp discontinuities. We propose here to
use another semi-norm which is mathematically equivalent to a semi-norm in B1

1,1, but which has been shown
to yield better results.11 Imposing an upper bound κ1 > 0 on this semi-norm, expressed in terms of the wavelet
coefficients of the image, restricts the solutions to the following convex set

S
(0,0)
1 = {(u, v) ∈ H |

∑
j∈Z,k∈Z2

(
∑

o∈{1,2}

|cBj,k,o(u)|2)1/2 ≤ κ1}. (16)

Note that the upper bound κ1 can be estimated from experiments on available databases.

The above constraint satisfies the properties of edge-preserving regularization. However, it suffers from
the shift variance of the wavelet basis decomposition that arises due to the decimation of a factor 2 in the
decomposition process. Shift invariance ensures that, when the image is translated in space, its wavelet coeffi-
cients are translated as well. For stereo matching, this property is essential because stereo image pairs can be
considered as the shifted versions of each other. The shifted value with respect to each pixel is the disparity,
which depends heavily on the position of the pixel in the image. In order to deal with translation variance,
the continuous wavelet transform can be used. However, its high redundancy increases the computational cost.
The shift invariant wavelet representation that we consider in this work amounts to computing the wavelet
coefficients of 22l circular shifts of the original image.23 In order to limit the computational complexity, rather
than using a global smoothness constraint on the wavelet frame coefficients, we split this constraint into several
constraints involving the semi-norm of the shifted image. In other words, we consider the following constraint

S1 =
⋂

d∈{0,...,2l−1}2
S

(d)
1 , (17)

where

S
(d)
1 = {(u, v) ∈ H |

l∑
j=1

∑
k∈Z2

(
∑

o∈{1,2}

|cBj,k,o(u(d))|2)1/2 ≤ κ1}. (18)

where u(d) is the shifted-by-d image. Obviously, for d = (0, 0), u(d) is the original image u and S
(d)
1 simply

reduces to the convex set given in (16).

3.3 Spatial constraints
The employed optimization method can handle constraints arising in both the spatial and the wavelet domains.
The wavelet regularization constraint being described above, we will now introduce spatial constraints as convex
sets modelling prior knowledge on disparity and illumination change.

3.3.1 Disparity range constraint

The most common constraint on disparity is the knowledge of its range of possible values. Indeed, disparity
values are nonnegative and often have known minimal and maximal amplitudes, denoted respectively by umin ≥
0 and umax. The associated set is

S2 = {(u, v) ∈ H | umin ≤ u ≤ umax} . (19)

3.3.2 Tikhonov based regularization

In most scenes, brightness changes have slow variations in space. A constraint should therefore be imposed
on the illumination coefficient v which is consistent with this behavior. A Tikhonov-like quadratic term is
appropriate to recover this kind of locally smooth field. Hence, we impose an upper bound on the quadratic
norm of the discrete gradient ∇̂v of v, so restricting the solution to the convex set

S3 = {(u, v) ∈ H | |∇̂v|22 ≤ τv} , (20)

where τv > 0.



3.3.3 Illumination range constraint

It has been shown in,9 through experiments with real images, that the illumination change v usually ranges
between vmin and vmax where typical values are vmin = 0.8 and vmax = 1.2. The constraint set arising from
this knowledge is

S4 = {(u, v) ∈ H | vmin ≤ v ≤ vmax} . (21)

In summary, the problem of stereo matching robust to photometric variations can be formulated as jointly esti-
mating the disparity and illumination fields which minimize the energy function (12) subject to the constraints
(Si)1≤i≤4.

4. OPTIMIZATION ALGORITHM

The objective of this section is to develop a numerical solution to the stereo matching problem which has
been formulated as a convex optimization problem. A parallel block iterative algorithm will be employed to
efficiently minimize the quadratic objective function (12) over the feasibility set S = ∩4

i=1Si.

Let Nr × Nc be the size of the considered images. The solution space is the real Hilbert space H =
RNr×Nc × RNr×Nc , endowed with the standard scalar product 〈. | .〉 and the associated Euclidean norm ‖ . ‖.
Let Si be the nonempty closed and convex subset of H given by (7), where fi is a continuous and convex
function. For every w ∈ H, fi possesses at least one subgradient at w, i.e., a vector gi ∈ H such that

∀ z ∈ H, 〈z − w | gi〉+ fi(w) ≤ fi(z) . (22)

The set of all subgradients of fi at w is the subdifferential of fi at w and is denoted by ∂fi(w). If fi is
differentiable at w, then ∂fi(w) = {∇fi(w)}. Fix w ∈ H and a subgradient gi ∈ ∂fi(w), the subgradient
projection Giw of w onto Si is given by:

Giw =

 w − fi(w)− δi
‖gi‖2

gi, if fi(w) > δi;

w, if fi(w) ≤ δi.
(23)

The proposed algorithm activates the constraints by means of subgradient projections rather than exact pro-
jections. The former are much easier to compute than the latter, as they require only the availability of a
subgradient (i.e. the gradient in the differentiable case). However, when the projection is simple to compute,
one can use it as a subgradient projection. In our case, exact projections onto S2 and S4 are straightfor-
wardly obtained whereas a subgradient projection onto S3 can be easily calculated. For the constraint S1, the
expression of a subgradient projection can be deduced from the following proposition.12

Proposition 4.1. Let f and ϕ be two convex functions from H to ]−∞,+∞], such that

f = ϕ ◦ WB . (24)

Suppose that there exist a point w ∈ H such that ϕ is continuous at WB(w), then

∂f(w) = (WB)∗∂ϕ(WB(w)) , (25)

where (WB)∗ = (WB)−1 due to the orthonormality of the basis B.

We now proceed to the description of the proposed block iterative algorithm to simultaneously estimate the
disparity u and illumination v.

Algorithm 4.1.

À Set n = 0. Compute w0 as

w0(s) =

{
(L(s)>L(s) + α I2,2)−1(L(s)>r(s) + α w̄(s)) if s ∈ D \ O,
w̄(s) otherwise.

(26)



Á Take a nonempty index set Kn ⊆ {1, . . . ,m}.

Â For every i ∈ Kn, set ai,n = Gi,n − wn where Gi,n is a subgradient projection of wn onto Si as in (23).

Ã Set zn = |Kn|−1
∑
i∈Kn ai,n and κn = |Kn|−1

∑
i∈Kn ‖ai,n‖

2, where |Kn| denotes the number of elements
in Kn.

Ä If κn = 0, exit iteration. Otherwise, set

• bn = w0 − wn,
• cn such that

cn(s) =

{
(L(s)>L(s) + α I2,2)bn(s) if s ∈ D \ O,
α bn(s) otherwise,

(27)

• dn such that

dn(s) =

{
(L(s)>L(s) + α I2,2)−1zn(s) if s ∈ D \ O,
α−1zn(s) otherwise,

(28)

• λn = κn/〈dn, zn〉.

Å Set d̃n = λndn, πn = −〈cn, d̃n〉, µn = 〈bn, cn〉, νn = λn〈d̃n, zn〉 and ρn = µnνn − π2
n.

Æ Set

wn+1 =


wn + d̃n, if ρn = 0, πn ≥ 0;
w0 + (1 + πn

νn
)d̃n, if ρn > 0, πnνn ≥ ρn;

wn + νn
ρn

(πnbn + µnd̃n), if ρn > 0, πnνn < ρn.

(29)

Ç Increment n and go to step Á.

This algorithm is well adapted to our need since it allows the combination of constraints arising in both the
spatial and the wavelet domain. In addition, it has been shown in14 that, due to its block iterative structure,
this algorithm offers a lot of flexibility in terms of parallel implementation. In particular, several processors
can be used in parallel to compute the subgradient projections on the different constraint sets (Si)1≤i≤m. For
instance, if 22l parallel processors are available, wavelet based constraints with respect to all possible circular
shifts s in (18) can be processed simultaneously, leading to improved results while reducing the computational
time. We finally note that the constraints considered in this work are separable in the sense that either u
or v is constrained for each of them. This means that the associated subgradient projections will remain the
other field (v or u) unchanged. This can be exploited to limit the memory load in the implementation of the
algorithm, in particular in Step Â.

5. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method using both synthetic and real data sets
with varying illumination. We also compare our results with those obtained using the SSD block matching
method with an affine illumination variation model, the standard normalized cross-correlation method (NCC)
and the Semi-Global Matching (SGM) algorithm of Hirschmller.7 To parameterize our method, the constant
α in equation (12) was set to 50 and bounds on the constraint sets (Si)1≤i≤4 were fixed by calculating first the
values of the associated convex functions on the initial disparity and illumination estimates and then choosing
the appropriate bounds as a fixed ratio (40 %) of these values. If true disparity and illumination fields are
available, exact bounds on the constraint sets can be computed directly from these known fields. For the
choice of the wavelet basis, different families have been tested and it appeared that, when translation-invariant
representations are used, Haar wavelets are well-suited for disparity map images with sharp discontinuities.
Notice finally that three cycles of iterations were performed, for the considered stereo images, to refine the
initial disparity and illumination fields as described in Section 3.1.



(a) (b) (c)

(d) (e) (f)
Figure 1. Results for the Corridor stereo pair. (a) Left image. (b) SSD with affine model. (c) Normalized cross-
correlation. (d) SGM algorithm. (e) Our approach. (f) Ground truth.

Table 1. Comparative results on the Corridor and Dolls stereo pairs.

Corridor Dolls
Technique MAE Err MAE Err

SSD with affine illumination 1.58 28 2.65 23
Normalized cross-correlation 1.54 26 1.73 21
SGM7 0.47 13 0.67 11
Our approach 0.34 10 0.51 9

5.1 Synthetic data with artificial illumination variation

We first demonstrate our method using the synthetic Corridor stereo pair from the University of Bonn (see
Figure 1). To introduce a significant illumination variation in this stereo pair, we modified the right image
by multiplying it with the Gaussian profile shown in Figure 2(a). As both true disparity and illumination
fields are available for this data set, we evaluate the different results quantitatively by computing two error
measures: the Mean Absolute Error (MAE) between computed and ground truth fields and the percentage of
bad matching pixels (Err) with absolute error larger than 1.

(a) (b)
Figure 2. Illumination change maps for the modified Corridor stereo pair: (a) true map and (b) estimated map.

The computed disparity map and the ground truth are shown in Figure 1, along with the results from
other methods. As we can see, our method is not affected by illumination changes and provides an accurate
depth map. We also observe its robustness with respect to depth discontinuities. In particular, low textured
areas corresponding to objects, ceiling and floor are smoothly estimated while edges remain sharp. This is a
consequence of using the wavelet based regularization constraint. From the results in Table 1, it is clear that
Hirschmller’s approach7 and our method outperform the other ones. However, unlike SGM, our approach allows
us to estimate illumination changes. Figures 2(a) and 2(b) allow us to compare the recovered illumination field
using our method and the ground truth. The mean absolute error for the illumination field estimation is 0.015.

5.2 Real images with ground truth and real exposure changes

In this experiment, we evaluate our method on real stereo datasets with real illumination changes. These
datasets are available at the Middlebury stereo vision website∗. Each dataset consists of 7 rectified views taken
with three different exposures and from equidistant points along a line. Ground truth disparity maps, created
by using the structured lighting technique of,24 are provided for viewpoints 2 and 6 of each dataset. For the
results in this paper, we only consider the stereo pair shown in Figure 3, named Dolls. As left and right input
images, we use images 2 and 6 taken with exposure 2 and 1, respectively.

In Figure 3, the results provided by our method are presented and compared to those from other methods.
We notice that both SSD with affine illumination and NCC perform poorly and incur large errors in the illu-
mination incoherent regions. However NCC gives better results than SSD. Our approach gives more consistent
results than the other methods. As expected, severe matching errors are greatly reduced by using the proposed
illumination variation model. For the quantitative analysis, we see from the results reported in Table 1, that

∗http://cat.middlebury.edu/stereo/scenes2005/
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(d) (e) (f)
Figure 3. Results for the Dolls stereo pair. (a) Left image. (b) SSD with affine model. (c) Normalized cross-correlation.
(d) SGM algorithm. (e) Our approach. (f) Ground truth.

(a) (b) (c)

(d) (e) (f)

Figure 4. Results on the Shrub stereo pair. (a) Left image. (b) Right image. Estimated disparity map using (c) SSD
with affine model. (d) Normalized cross-correlation. (e) SGM algorithm. (f) Our approach.

the proposed method again leads to the best results. Its performance is however close to that of the SGM
algorithm.

5.3 Real data

For the real image case, we show the results provided by the considered methods for a real image pair taken
under real illumination variations. Figure 4 shows the left image of the Shrub stereo pair from the well-
known JISCT database. Examination of this stereo pair reveals that the left and right image pair violated
the constant image brightness assumption. Indeed, the noticed difference between corresponding intensity
histograms indicates that this stereo pair incorporates a real illumination change.

We display in Figure 4 the results obtained with the proposed method and we show comparison with
various methods. However, since no ground truth is available, the comparison is only visual. We notice that
local methods give noisy results and are very sensitive to illumination changes while the SGM algorithm and
our method allow to obtain a smooth disparity map with sharp depth discontinuities and they show good
performance in the illumination inconsistency regions.

6. CONCLUSION

We have proposed a convex programming approach for the problem of stereo matching in the presence of
photometric variations. To deal with these variations, we have developed a spatially varying multiplicative
model that accounts for brightness changes between both images in the stereo pair. Within a convex set
theoretic framework, a two-dimensional quadratic objective function was derived and efficiently minimized
subject to convex constraints. Based on wavelet frames, we have investigated an edge-preserving regularization
constraint on the disparity image. The resulting multi-constrained optimization problem is solved via a block
iterative method that allows to combine both wavelet and spatial domain constraints. The experimental results
reported in this paper on synthetic and real stereo pairs with variable illumination show that our method is
robust and reliable.
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