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Abstract

Let G be a simple, undirected, connected graph with vertex set V (G) and C ⊆ V (G)
be a set of vertices whose elements are called codewords. For v ∈ V (G) and r ≥ 1,
let us denote by ICr (v) the set of codewords c ∈ C such that d(v, c) ≤ r, where
the distance d(v, c) is defined as the length of a shortest path between v and c.
More generally, for A ⊆ V (G), we define ICr (A) = ∪v∈AICr (v), which is the set
of codewords whose minimum distance to an element of A is at most r. If r

and l are positive integers, C is said to be an (r,≤ l)-identifying code if one has
ICr (A) 6= ICr (A′) whenever A and A′ are distinct subsets of V (G) with at most
l elements. We consider the problem of finding the minimum size of an (r,≤ l)-
identifying code in a given graph. It is already known that this problem is NP -hard
in the class of all graphs when l = 1 and r ≥ 1. We show that it is also NP -hard
in the class of planar graphs with maximum degree at most three for all (r, l) with
r ≥ 1 and l ∈ {1, 2}. This shows, in particular, that the problem of computing the
minimum size of an (r,≤ 2)-identifying code in a given graph is NP -hard.

Keywords: graph theory; identifying codes; planar graphs; complexity; NP-completeness;

NP-hardness.
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1 Notation and definitions

By graph we mean an undirected graph without loops nor multiple edges. If
G is a graph, we denote respectively by V (G) and E(G) the sets of vertices
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and edges of G. An edge {x, y} ∈ E(G) with x, y ∈ V (G) will be simply
denoted by xy. We refer to [3] for basic notions such as adjacent vertices,
paths, cycles or the neighbourhood of a vertex. Let us recall the distinction
between a subgraph and an induced subgraph: a subgraph of G is a graph H

with V (H) ⊆ V (G) and E(H) ⊆ E(G), whereas if W ⊆ V (G), the subgraph
induced by G on W is the graph G[W ] whose vertex set is W , and whose
edges are all the edges xy ∈ E(G) with x and y in W .
From now on, we consider only connected graphs; for v ∈ V and r ∈ N, the
ball of radius r centered at v is the set

B(v, r) = {w ∈ V (G) : d(v, w) ≤ r}

where d(v, w) denotes the number of edges in any shortest path between v

and w, i.e. the length of any shortest path between v and w. Whenever
d(v, w) ≤ r, we say that v and w r-cover each other (or simply cover if
there is no ambiguity). A vertex c ∈ V (G) is said to r-separate (or simply
separate) vertices x and y if c r-covers one of them and does not r-cover the
other.
In this paper, what we call a code is simply a set of vertices C ⊆ V (G), and
we refer to its elements as codewords. A code C is said to be r-covering (or
r-distance-dominating) if every vertex v ∈ V (G) is r-covered by at least one
codeword c ∈ C. A code C is said to be r-separating if for every pair of
distinct vertices x 6= y of G there exists a codeword c ∈ C which r-separates
x and y.
An r-identifying code is a code which is both r-covering and r-separating.
Equivalently, C ⊆ V (G) is an r-identifying code if all the sets

ICr (v) = B(v, r) ∩ C

for v ∈ V (G) are non-empty and different.
More generally, if C is a code and A is a subset of V (G) we denote by ICr (A)
the set of codewords which r-cover at least one element of A, i.e.

ICr (A) =
⋃

v∈A

B(v, r) ∩ C.

If r and l are positive integers, an (r,≤ l)-identifying code is a code C such
that the sets ICr (A) for all A ⊆ V (G) with |A| ≤ l are different. Note
that, in this case, as ICr (∅) = ∅, then ICr (A) 6= ∅ for 1 ≤ |A| ≤ l; thus an
(r,≤ 1)-identifying code is simply an r-identifying code.
We recall that the degree of a vertex v ∈ V (G) is the number δ(v) of vertices
w ∈ V (G) such that vw ∈ E(G). The maximum degree of G is defined as

∆(G) = max
v∈V (G)

δ(v).

Finally, a graph is planar if it can be drawn in the plane in such a way that
its edges do not cross. For precise definitions and additional background
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about graphs, we refer once again to [3]. The reader will also need basic
knowledge in algorithmic complexity such as polynomial reduction and NP -
completeness; for these notions we refer to [5].

2 Introduction and main results

The problem of finding an identifying code of minimum size in a graph
has been introduced and studied in [10]; the original motivation was fault
detection in processor systems. It was shown in [2] that the computation of
the minimum size of an r-identifying code in a given graph is NP -hard for
any r ≥ 1; furthermore it was proved in [6] that this problem is APX-hard
for r = 1. In particular, this implies if P 6= NP that there exists a constant
c > 1 such that no polynomial algorithm gives an efficiency ratio better
than c. Indeed there is, for all r ≥ 1, a polynomial approximation algorithm
which computes an r-identifying code with efficiency ratio O(log |V (G)|), but
sublogarithmic ratios are intractable (see [15]). For a nearly comprehensive
bibliography about identifying codes, see [13].
In this paper we prove NP -hardness results for the restriction of this same
problem to the class of planar graphs with maximum degree at most three;
this class is quite restrictive, as connected graphs with maximum degree at
most two are paths and cycles where the size of a minimum r-identifying
code is known exactly in most cases (see [1], [8], [14] and [16]). We also study
the problem of finding the minimum size of an (r,≤ 2)-identifying code and
prove its NP -hardness in the class of planar graphs with maximum degree
at most three for all r ≥ 1, which of course implies its NP -hardness in the
class of all graphs. These codes have been investigated in [12], [7] and [11],
but to our knowledge at this day no complexity result is known about them:
our results show, in particular, that the problem of computing the minimum
size of an (r,≤ 2)-identifying code in a given graph is NP -hard.

Let us denote by Π3 the class of planar graphs with maximum degree at
most three, and let r and l be positive integers. The problem that we study
is precisely the following one:

Min (r,≤ l)-ID-code in Π3

• Instance: a graph G ∈ Π3 and an integer k;
• Question: is there an (r,≤ l)-identifying code C of G with |C| ≤ k ?

Our results can be summarized in the following theorem:

Theorem 1. The problem Min (r,≤ l)-ID-code in Π3 is NP-complete for
l ∈ {1, 2} and all r ≥ 1.
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3 Proofs of the complexity results

3.1 The vertex cover problem

Let G be a graph. An edge e = xy ∈ E(G) is said to be covered by a vertex
v ∈ V (G) if v and e are incident, i.e. if v = x or v = y. A vertex cover in G

is a code C ⊆ V (G) such that every edge of G is covered by a at least one
codeword c ∈ C. Equivalently, C is a vertex cover if

∀e = xy ∈ E(G), x ∈ C or y ∈ C.

It is well known that the problem of finding the minimum cardinality of a
vertex cover in a given graph is NP -hard ([9]); furthermore, it was proved
in [4] that this problem remains NP -hard in the class of planar graphs whose
maximum degree is at most three. More precisely, the following problem is
NP -complete:

Min Vertex Cover in Π3

• Instance: a graph G ∈ Π3 and an integer k;
• Question: is there a vertex cover C of G with |C| ≤ k ?

If r and l are fixed and a code C is given in a graph G, as all distances
between vertices of G can be computed in polynomial time, we can also
compute all the sets ICr (A) for A ⊆ V (G) with |A| ≤ l and compare them
in polynomial time, and thus check that C is an (r,≤ l)-identifying code:
therefore the problem Min (r,≤ l)-ID-code in Π3 belongs to NP . We will
complete the proof of Theorem 1 by showing that Min Vertex Cover

in Π3 polynomialy reduces to the problem Min (r,≤ l)-ID-code in Π3 for
all r ≥ 1 and l ∈ {1, 2}; we will consider four cases depending on the values
of r and l: r = 1, l = 1 (Section 3.2), r = 2, l = 1 (Section 3.3), r ≥ 3, l = 1
(Section 3.4), and r ≥ 1, l = 2 (Section 3.5).

3.2 Reduction for r = 1 and l = 1

In this section, we set r = 1 and l = 1. Let us consider an instance of Min

Vertex Cover in Π3, i.e. a planar graph G with maximum degree at most
three and an integer k. We construct a graph G′ by replacing every edge
e = xy of G by the structure Ce counting 9 vertices and 11 edges specified by
Fig. 1. Note that we do not consider x and y as elements of the structure Ce;
thus Ce is not a graph (since it contains edges without containing their ends),
but we will denote by V (Ce) the set of its nine vertices as we would have
done if it were one. See also Fig. 2 for an example of transformation.
If G has n vertices and m edges, then G′ has n+9m vertices and 11m edges;
thus G′ can be constructed from G in polynomial time. It is easy to check
that G′ is also planar and has maximum degree three. The key-result for
the reduction is the following:
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Figure 1: The structure Ce which replaces an edge e = xy of G in G′ .
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Figure 2: A graph G and the graph G′ obtained through our transformation.

Proposition 2. With notation above, G admits a vertex cover C with |C| ≤ k

if and only if G′ admits a 1-identifying code C′ with |C′| ≤ k + 5m.

Proof. Let us fix our notation first: if G is the original graph and G′ is the
transformed one, we consider the vertex set V (G) of G as a subset of V (G′).
Therefore V (G′) can be partitioned in |E(G)| + 1 sets:

V (G′) = V (G) ∪
⋃

e∈E(G)

V (Ce).

Let C be a vertex cover for G with |C| ≤ k; we construct an identifying code
C′ for G′ by adding to C five vertices in each set V (Ce) for all e ∈ E(G); thus
the code C′ will have cardinality |C′| = |C| + 5m ≤ k + 5m as stated in the
proposition. For each edge e = xy ∈ E(G), the choice of the set C′

e of five
vertices in V (Ce) added to C will depend on the case x ∈ C or y ∈ C; recall
that as we have requested C to be a vertex cover of G, we have at least one
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of x and y in C. As the structure is symmetric, without loss of generality
let us assume that x ∈ C. Then we define (see Fig. 3)

C′
e = {s1, s2, s5, s6, s9}.

When this is done for all e ∈ E(G), the code C′ is defined as

C′ = C ∪
⋃

e∈E(G)

C′
e.

b b bb
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s6

s7 s8

s9

x y

Figure 3: The code C′ in Ce if x ∈ C. Codewords are in black, non-codewords in
white, with the exception of y which may be a codeword or not.

It remains to prove that C′ is a 1-identifying code; since for each edge
e = xy ∈ E(G) the set of vertices covered by {s1, s2, s5, s6, s9} is precisely
V (Ce) ∪ {x, y}, it is easily seen that it suffices to check that for every edge
e = xy of G, all vertices in

V (Ce) ∪ {x, y}

are covered and pairwise separated by C′. We summarize in the following
table which codewords cover the different vertices. Note that in Ce both x

and y may belong to C; this has no consequence since containing an identi-
fying code is a sufficient condition for a set of vertices to be an identifying
code.
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vertices /codewords x s1 s2 s5 s6 s9

x • •

y •

s1 • • •

s2 • •

s3 •

s4 •

s5 • • •

s6 • •

s7 •

s8 •

s9 • •

Conversely, suppose that there exists a 1-identifying code C′ for G′ with
|C′| ≤ k + 5m. First we prove:
If neither x nor y belongs to C′, then |V (Ce) ∩ C′| ≥ 6. (1)
We just have to recall why a 1-identifying code on a cycle on 9 vertices
must have at least 6 codewords. To simplify notation, let us consider that
our vertices are integers modulo 9. If a is a vertex of the cycle, then a + 1
and a + 2 must be separated by a codeword, therefore a or a + 3 must be
codewords. The same argument proves that there must be a codeword in
{a + 3, a + 6}, and another in {a + 6, a}. So there must be at least two
codewords in {a, a+3, a+6} for each vertex a. Applied to a ∈ {1, 2, 3}, this
argument shows that there are at least two codewords in each of the sets
{1, 4, 7}, {2, 5, 8} and {3, 6, 9}, therefore |V (Ce) ∩ C′| ≥ 6.

Regardless of the fact that x or y belong to C′, we have |V (Ce) ∩ C′| ≥ 5. (2)
As in the previous case, there must be a codeword in {a, a + 3} for every a

except in the cases when x or y can be used to separate a+1 from a+2, i.e.
except for a ∈ {3, 4, 8, 9}. So there must be at least one codeword in each
of the pairs:

{s1, s4} {s2, s5} {s5, s8} {s6, s9} and {s7, s1}.

We consider three cases:

− if neither s1 nor s5 are codewords, then s4, s2, s8 and s7 must be,
as well as one of the pair {s6, s9}, so we need five codewords at least
in V (Ce);

− if s1 and s5 are both codewords: as at least one vertex in the pair
{s6, s9} is a codeword we can suppose by symmetry that s6 ∈ C′; but
s3 and s8 are not covered by s1, s5, s6, x nor y; therefore we need at
least two other codewords in V (Ce);
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− if s1 is a codeword but s5 is not (the other case being the same by
symmetry), then s2 and s8 are codewords as well as one of the pair
{s6, s9}. In both cases we still need to cover s4 with a codeword
in V (Ce).

Let us define C as the trace of C′ on V (G), i.e.

C = C′ ∩ V (G).

Recall that V (G) is a subset of V (G′) and so C is a code in G. We would
like to use C in order to build a vertex cover of G. It may happen for an
edge e = xy ∈ E(G) that in G′ neither x nor y belongs to C′, and in this
case the edge xy of G is not covered by the code C. Let p be the number of
edges e ∈ E(G) which are not covered by C. From (1) and (2) we have

|C| ≤
∣

∣C′
∣

∣ − 6p − 5(m − p) =
∣

∣C′
∣

∣ − 5m − p ≤ k − p.

As there are p uncovered edges, if we add to C one codeword on each edge
uncovered by C, we get a vertex cover of G with at most k codewords. �

3.3 Reduction for r = 2 and l = 1

For r = 2, we use a different strategy for the reduction. The basic idea is to
replace every edge e = xy ∈ E(G) by a chain on 4 vertices and 5 edges: see
Fig. 4. Consider the central vertices a and b on the chain; as a 2-identifying
code has to separate a from b, we deduce that x or y must be a codeword.
Hence the trace on G of a 2-identifying code of G′ will be a vertex cover
of G.

b bb bb bb b b bb b

x ya b

d(x, a) = 2 d(b, y) = 2

Figure 4: A 2-identifying code will have to contain x or y to separate a from b.

Clearly, this reduction is not entirely satisfactory because we cannot control
the total number of codewords in the identifying code. In order to do so, we
will add other devices around the chain.
Let G ∈ Π3 and k be an integer. We construct from G a graph G′ by
replacing every edge e = xy in E(G) by a structure Ce counting 11 vertices
and 14 edges: see Fig. 5, where the chain xv5v7v8v6y plays the role of the
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Figure 5: The structure Ce which replaces an edge e = xy of G for r = 2.

chain in Fig. 4. As in the previous case we do not consider x and y as
elements of V (Ce).
Clearly, G′ can be constructed in polynomial time from G, and G′ ∈ Π3.
Let m = |E(G)|. We will prove:

Proposition 3. G admits a vertex cover C with |C| ≤ k if and only if G′

admits a 2-identifying code C′ with |C′| ≤ k + 5m.

Proof. Once again, V (G) is a subset of V (G′); so if we consider a vertex
cover C of G with |C| ≤ k, we can add codewords to C in order to construct a
2-identifying code for G′. We do this in the following way: if e = xy ∈ E(G),
then x or y is in C. Suppose without loss of generality that x ∈ C. We add
to C the 5 codewords v3, v4, v6, v8 and v9 on the structure Ce (see Fig. 6).
When this is done for all e ∈ E(G), we get a code C′ on G′ with |C′| =
|C| + 5m, hence |C′| ≤ k + 5m. To check that C′ is a 2-identifying code on
G′, we just have to see that for every e = xy ∈ E(G), the vertices x, y and
the 11 vertices of Ce are covered by different subsets of {x, v3, v4, v6, v8, v9}.
This is clearly sufficient because for a given e = xy ∈ E(G), a vertex belongs
to V (Ce) ∪ {x, y} if and only if it is 2-covered by v3, v4 or v9. It remains to
check the following table:

9



vertices /codewords x v3 v4 v6 v8 v9

x • •

y • • •

v1 •

v2 • •

v3 • • •

v4 • • • • •

v5 • • • • • •

v6 • • • • •

v7 • • • • •

v8 • • • •

v9 • • •

v10 • •

v11 •
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b

b

b

x y

v1

v2

v3

v4

v5 v6

v7 v8

v9

v10

v11

Figure 6: The codewords in Ce for r = 2.

Conversely, suppose that C′ is a 2-identifying code of G′ with |C′| ≤ k + 5m.
Then if e = xy ∈ E(G), consider the codewords on Ce:

− v1 and v2 must be separated by C′ so v4 ∈ C′;

− v1 must be covered by C′ so C′ ∩ {v1, v2, v3} 6= ∅;

− v2 and v3 must be separated by C′ so C′ ∩ {v5, v6} 6= ∅;
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− v10 and v11 must be separated by C′ so C′ ∩ {v7, v8} 6= ∅;

− v11 must be covered by C′ so C′ ∩ {v9, v10, v11} 6= ∅.

These five facts show that in each structure Ce, we have |C′ ∩ V (Ce)| ≥ 5,
therefore the trace of C′ on V (G)

C = C′ ∩ V (G)

has cardinality at most

|C| ≤
∣

∣C′
∣

∣ − 5m ≤ k.

Moreover, in each struture Ce, v7 and v8, which play the same role as a

and b in Fig. 4, must be separated by C′, so x or y must belong to C′, hence
to C. Thus C is a vertex cover of G′. �

3.4 Reduction for r ≥ 3 and l = 1

For r ≥ 3 our reduction uses the same idea as for r = 2, but the structure is
slightly different. It is easier to present the proof for r = 3, but the general
case is essentially the same.
Fix r = 3 and let G ∈ Π3. We replace every edge e = xy of E(G) by the
structure specified by Fig. 7. In particular, there are 5 cycles with attached
paths on this structure that we call suns. A single sun is displayed on
Fig. 8. There are, in Fig. 7, 189 vertices, not counting x and y, and our
transformation is polynomial; moreover, the new graph G′ is clearly in Π3.
Now we will prove the following proposition, where m = |E(G)|:

Proposition 4. G admits a vertex cover C with |C| ≤ k if and only if G′

admits a 3-identifying code C′ with |C′| ≤ k + 70m.

Proof. First suppose that we have a vertex cover C of G with |C| ≤ k.
Then we construct a 3-identifying code C′ on G′ by adding 70 codewords
to C on each structure Ce; these codewords correspond to 14 codewords
on each sun, as in Fig. 8, thus |C′| ≤ k + 70m. We leave the readers to
convince themselves that this defines a 3-identifying code on G′; just note
that as in the case r = 2, the central vertices a and b are separated because
x or y belongs to C and therefore is a codeword of C′. Once again, it will
be sufficient to check that C′ 3-separates and 3-covers vertices inside each
structure Ce if we first observe that C′ enables us, for any vertex v ∈ V (G′),
just by looking at the set IC

′

r (v), to know if v belongs to V (G) or to identify
the structure Ce to which v belongs.
Conversely, if C′ is a 3-identifying code on G′ with |C′| ≤ k + 70m, then
consider a single sun of a structure Ce (see Fig. 9). In order to separate
vertices v4 and v5, v1 must be a codeword. In order to cover v5, we must
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Figure 7: The structure Ce which replaces an edge e = xy of G for r = 3. Squared
vertices belong to B(a, 3)∆B(b, 3).

b
b
b
b
b

b

b

b

b b b b bb b b

b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

bbbbb bbb

b
b

b
b

b

b

b

b

bb

Figure 8: A sun and its codewords for r = 3.

b
b
b
b
b

b

b

b

b

b

b b b b bb b b b b

b
b
b
b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

bbbbb bbbbb

b
b

b
b

b

b

b

b

b

b

bb

v1 v2 v3 v4 v5

b

Figure 9: Necessary codewords in a 3-identifying code in a sun.

12



have C′ ∩ {v2, v3, v4, v5} 6= ∅. The same argument holds for every ray of the
sun, therefore we need at least 2 × 7 = 14 codewords in it; as there are five
suns in Ce we need at least 70 codewords on Ce.
The code C′ being 3-identifying on G′, it necessarily separates the vertices
a and b, i.e. there is at least one codeword in the symmetric difference
B(a, 3)∆B(b, 3). This set is composed of six vertices (see Fig. 7): x, y

and four vertices belonging to Ce. Note that none of these six vertices was
counted above in the 70 codewords. Hence we have (recall that x and y do
not belong to Ce):

− if x or y belong to C′ then |C′ ∩ V (Ce)| ≥ 70;

− if neither x nor y belongs to C′ then |C′ ∩ V (Ce)| ≥ 71.

The conclusion goes exactly like in the case r = 1: let us define

C = C′ ∩ V (G)

which is a code on G and let p be the number of edges e ∈ E(G) uncovered
by C. Then

|C| =
∣

∣C′ ∩ V (G)
∣

∣ ≤
∣

∣C′
∣

∣ − 71p − 70(m − p) ≤ k − p

because we supposed |C′| ≤ k + 70m. Thus if we add to C one codeword on
each of the p edges of G uncovered by C, we get a vertex cover of G, whose
cardinal is at most k. �

For r ≥ 4 our proof is exactly the same as in the case r = 3 but the structure
has to be adapted. If we consider an edge e = xy of G, we replace it by a
path on 2r extra vertices and attach five suns to the path as on Fig. 10. Each
sun is now a cycle on 2r + 2 vertices with 2r + 1 rays of length r + 1. With
this structure replacing every edge of G, we obtain a graph G′, satisfying
the same properties as in the case r = 3. One can prove the following
proposition exactly as it was done for r = 3.

Proposition 5. G admits a vertex cover C with |C| ≤ k if and only if G′

admits an r-identifying code C′ with |C′| ≤ k + 10(2r + 1)m.

3.5 Reduction for r ≥ 1 and l = 2

For our transformation we need to define a restriction of the Min Vertex

Cover in Π3 problem. Let Π′
3 be the class of graphs G such that:

− G belongs to Π3, i.e. G is planar and every vertex of G has degree at
most three;

− no vertex of G has degree one;
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Figure 10: The structure Ce in the general case r ≥ 3.

− if v1 and v2 are distinct vertices of G with degree 2, there exist vertices
v′1 and v′2, distinct from v1 and v2, such that v′1 is adjacent to v1 but
not to v2, and v′2 is adjacent to v2 but not to v1.

We define a problem Min Vertex Cover in Π′
3 by analogy with the prob-

lem Min Vertex Cover in Π3. We will prove the following result:

Lemma 6. The problem Min Vertex Cover in Π′
3 is NP -complete.

Before proving this lemma let us begin with three preliminary results.

Lemma 7. Let G be a graph and xy ∈ E(G) be an edge such that the degree
of the vertex x is 1, and let G′ = G[V (G) \ {x, y}] be the graph obtained
when we remove x, y and all their incident edges from G. Then the minimum
cardinality of a vertex cover in G equals the minimum cardinality of a vertex
cover in G′ plus 1 (see Fig. 11).

Proof. Suppose that C is a minimum vertex cover in G; then exactly one
of x and y belongs to C, because if we had x and y in C, then C \ {x} would
also be a vertex cover of G. Hence C′ = C \ {x, y} is a vertex cover of G′

and |C′| = |C| − 1. Conversely, if C′ is a (minimum) vertex cover of G′, then
C′ ∪ {y} is a (minimum) vertex cover of G. �

Lemma 8. Let G be a graph and x be a vertex of degree 2 whose neighbours
y and z are adjacent, and let G′ = G[V (G) \ {x, y, z}] be the graph obtained
when we remove x, y, z and all their incident edges from G. Then the
minimum cardinality of a vertex cover in G equals the minimum cardinality
of a vertex cover in G′ plus 2 (see Fig. 12).
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Figure 11: Illustration of Lemma 7.

Proof. Suppose that C is a minimum vertex cover in G; then exactly two
of the three vertices x, y and z belong to C, because we need at least two of
them to cover the edges xy, yz and zx, and if we had x, y and z in C then
C \ {x} would still be a vertex cover of G. So C′ = C \ {x, y, z} is a vertex
cover of G′ and |C′| = |C| − 2. Conversely, if C′ is a (minimum) vertex cover
of G′, then C′ ∪ {y, z} is a (minimum) vertex cover of G. �

b

b b

b b b

b

b b

b b b

x

y z

G′

Figure 12: Illustration of Lemma 8.

Note that the previous two lemmas could be generalized in the following
way: if x is a simplicial vertex in G, i.e. a vertex x with degree δ ≥ 1
whose δ neighbours induce a clique in G, then the minimum cardinality of
a vertex cover in G is equal to the mimimum cardinality of a vertex cover
in G[V \ B(x, 1)] plus δ. 1

Lemma 9. Let G be a graph and x, y be two distinct vertices of G with
degree 2, sharing the same neighbours z and z′ (in particular x and y are
non adjacent). Let G′ = G[V (G)\{x, y, z, z′}] be the graph obtained when we
remove x, y, z, z′ and all their incident edges from G. Then the minimum
cardinality of a vertex cover in G equals the minimum cardinality of a vertex
cover in G′ plus 2 (see Fig. 13).

Proof. If C is a minimum vertex cover in G, then exactly two of the four
vertices x, y, z and z′ belong to C; the fact that zz′ ∈ E(G) or not does not
matter. The conclusion follows as in the previous two lemmas. �

Proof of Lemma 6. Suppose that G belongs to Π3, but not to Π′
3. Then

either:

− there exists a vertex x of degree one in G, and we will apply Lemma 7;

1We thank the referee for this remark.
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Figure 13: Illustration of Lemma 9.

− there exist vertices x 6= y of degree two such that every neighbour of x

is either y or adjacent to y. Then:

– if x and y are adjacent, let z be their common neighbour. Then
we can apply Lemma 8;

– if x and y are non adjacent, let z and z′ be their (common)
neighbours; we can apply Lemma 9.

In the three cases, we obtain a ‘reduced’ graph G′ and we can trivially
compute the size of a minimum vertex cover in G if we know the size of a
minimum vertex cover in G′. Clearly, the reduced graph G′ is planar and
has maximum degree at most three. If this graph does not belong to Π′

3, we
can reduce it once again, and so on until we obtain an ‘irreducible’ graph G′′,
i.e. a graph which belongs to Π′

3. Thus we obtain by an algorithm which is
obviously polynomial a graph G′′ ∈ Π′

3 and an integer k such that the size of
a minimum vertex cover in G is equal to the size of a minimum vertex cover
in G′′ plus k. This proves that the problem Min Vertex Cover in Π′

3 is
algorithmically harder than Min Vertex Cover in Π3. As the converse
is obviously true and since Min Vertex Cover in Π3 is NP -complete, we
have proved Lemma 6. �

Let us now come back to (r,≤ 2)-identifying codes. Let G ∈ Π′
3; we replace

every edge e ∈ E(G) of G by a structure Ce which can be seen on Fig. 14.
The structure Ce is made of a cycle on 4r + 3 vertices, attached to x and y

by a path on 2r + 1 vertices. As before, we do not consider that x and y

belong to V (Ce).
Clearly, if G ∈ Π′

3 then G′ ∈ Π3, and G′ can be computed in polynomial
time from G. The reduction of the problem Min Vertex Cover in Π′

3 to
the problem Min (r,≤ 2)-ID-code in Π3 will be obtained if we prove:

Proposition 10. G admits a vertex cover C with |C| ≤ k if and only if G′

admits an (r,≤ 2)-identifying code C′ with |C′| ≤ k + (6r + 4)m.

In order to shorten the proof of Proposition 10, we need two other technical
lemmas:
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Figure 14: The structure Ce which replaces an edge e = xy of G in the case l = 2.

Lemma 11. Let r ≥ 1 and H be a graph consisting of a path on 3r + 1
vertices

p−r+1 p−r+2 · · · p−1 p0 p1 p2 · · · p2r+1,

a cycle on 4r + 3 vertices

c1 c2 · · · c4r+3 c1

and the edge p2r+1c1 which connects the path to the cycle (see Fig. 15). Let
W be the set of vertices

W = {p1, p2, · · · , p2r+1} ∪ {c1, c2, · · · , c4r+3}

and let C = V (H) be the code consisting of all vertices in H. Then all the
identifying sets ICr (A), for all A ⊂ W with |A| ≤ 2, are distinct.

Proof. The lemma is proved if we show that ICr (A1) 6= ICr (A2) in the 15
cases given by the Table below.

A1 = {pi1} {ci1} {pi1 , pi2} {ci1 , ci2} {pi1 , ci2}
(i1 < i2)

A2 = {pj1} 1 2 3 4 5
A2 = {cj1} 6 7 8 9

A2 = {pj1 , pj2} (j1 < j2) 10 11 12
A2 = {cj1 , cj2} 13 14
A2 = {pj1 , cj2} 15

The cases 2, 4, 7, 9, 11, 14 are easy to check: in cases 2, 4, 11, the codeword
pj1−r r-covers pj1 and neither ci1 nor ci2 , so ICr (A1) 6= ICr (A2); similarly, in
cases 7, 9, 14, pi1−r covers pi1 , and neither cj1 nor cj2 .
In case 1, assuming without loss of generality that j1 < i1, pj1−r covers pj1 ,
not pi1 .
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Figure 15: The graph H in Lemma 11.

In case 3, if j1 = i1, then either pi2+r, if it exists, or a codeword of type c

covers pi2 , not pj1 ; otherwise, set µ = min{i1, j1} and consider pµ−r.
In cases 5, 12, one of ci2±r mod 4r+3 covers ci2 , and neither pj1 nor pj2 .
Cases 6, 8 are also easy to handle.
In case 10, consider pmin{i1,j1}−r if i1 6= j1; if i1 = j1, then pmax{i2,j2}+r, if it
exists, or a codeword of type c will do.
Case 15 is easy, both if i1 = j1 and if i1 6= j1.
We are left with case 13, where, instead of showing that ICr ({ci1 , ci2}) 6=
ICr ({cj1 , cj2}), we equivalently show that, given ICr ({c1, c2}), we can uniquely
recover c1 and c2.
It is quite straightforward to observe that, with computations carried mod-
ulo 4r+3, the set ICr ({c1, c2}) is of the form {cα, cα+1, · · · , cα+β}, plus maybe
vertices of type p, where 2r+1 ≤ β ≤ 4r+1. Then {cα+r, cα+β−r} = {c1, c2}
mod 4r + 3. �

Lemma 12. Let r ≥ 1 and H be a graph consisting of a path on 2r + 1
vertices

p1 p2 · · · p2r+1,

a cycle on 4r + 3 vertices

c1 c2 · · · c4r+3 c1

and the edge p2r+1c1 which connects the path to the cycle (see Fig. 16). Let
C be the code on H defined by

C = {pr+1, pr+2, · · · , p2r+1} ∪ {c1, c2, · · · , c4r+3}.

Then C is an r-identifying code on H.
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Figure 16: The graph H in Lemma 12. Codewords are in black.

Proof. The proof being much simpler than the proof of Lemma 11, we leave
it to the readers who will easily convince themselves that the sets ICr (v) are
all non-empty and distinct for all v ∈ V (H). �

Proof of Proposition 10. Consider a vertex cover C of G with |C| ≤ k.
As in the previous sections, V (G) is a subset of V (G′), and so C is a subset
of V (G′). We construct an (r,≤ 2)-identifying code C′ of G′ by adding to C
all the vertices in V (Ce) for each e ∈ E(G) (cf. Fig. 14). As each structure
Ce counts 6r + 4 vertices, the code C′ will have cardinality

∣

∣C′
∣

∣ = |C| + (6r + 4)m ≤ k + (6r + 4)m.

Before checking that C′ is an (r,≤ 2)-identifying code of G′, let us recall
that V (G′) is partitioned in the following way:

V (G′) = V (G) ∪
⋃

e∈E(G)

V (Ce).

Consider a set of vertices A ⊆ V (G′) with |A| ∈ {1, 2}; if we are given
IC

′

r (A), we want to identify A. If e ∈ E(G) let us define Je as the following
subset of V (Ce) (see Fig. 14):

Je = V (Ce) \ {p1, · · · , pr}.

We will repeatedly use the following obvious fact:

IC
′

r (A) ∩ Je 6= ∅ if and only if A ∩ V (Ce) 6= ∅. (3)

Consider three cases:

• First case: there exist two distinct edges e1, e2 in E(G) such that

IC
′

r (A) ∩ Jei
6= ∅ for i ∈ {1, 2}.
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By (3) we must have |A| = 2 and A consists of two vertices v1 and v2

respectively belonging to V (Ce1
) and V (Ce2

). Since e1 6= e2, we have
IC

′

r (v2) ∩ Je1
= ∅; if we denote by H be the graph induced by G′ on V (Ce1

)
(cf. Fig. 16), Lemma 12 implies that Je1

is an r-identifying code on H and
thus v1 can be identified. By the same argument v2, and thus A can be
identified.

• Second case: there is a single edge e1 ∈ E(G) such that IC
′

r (A) ∩ Je1
6= ∅.

In this case there are three possibilities:

− either |A| = 2 and A consists of two vertices x and v1, where x ∈ V (G)
and v1 ∈ V (Ce1

);

− or |A| = 2 and A consists of two vertices v1, v2 ∈ V (Ce1
);

− or |A| = 1 and A consists of a single vertex v1 ∈ V (Ce1
).

We can simply detect if a vertex x ∈ V (G) belongs to A: such a vertex x

is r-covered by the vertices pr in each structure Ce such that e is incident
with x in G. Suppose that x ∈ A. Since G ∈ Π′

3, x has a degree at least 2
in G, and so there must exist two vertices pr and p′r in two distinct structures
Ce and Ce′ such that pr and p′r belong to IC

′

r (A). If this happens, we easily
find x as the common endpoint of e and e′. Conversely, if A ∩ V (G) = ∅,
we know that A ⊂ V (Ce1

) and the vertices pr in structures Ce with e 6= e1

cannot belong to IC
′

r (A).
Thus we have proved that in the above three possibilities, we know if we
are in the first one and then we can identify x. It will remain to identify
the vertex v1 ∈ Ce1

; as x does not r-cover the vertices of Je1
, we know by

Lemma 12 that this can be done.

In the case A ∩ V (G) = ∅, we must determine if |A| = 1 or |A| = 2, and
then find A. Let e1 = xy, with x, y ∈ V (G); since C is a vertex cover of G

we know that x or y belong to C, and thus to C′. Let us suppose without
loss of generality that x ∈ C′. The degree of x in G is at least two, therefore
there must exist an edge e2 = xz incident with e1 in x. Let us denote by
p′1, p

′
2, · · · , p′r the vertices on the path of the structure Ce2

. If we consider the
union of the path p′r−1 · · · p

′
1 in Ce2

, with the vertex x and the set V (Ce1
)

(see Fig. 17), we find an (isometric) induced subgraph of G′ where every
vertex is a codeword. Since we know that A ⊂ V (Ce1

), Lemma 11 can be
applied, with x playing the role of p0, and thus A can be identified.
• Third case: for all e ∈ E(G) we have IC

′

r (A) ∩ Je = ∅.
Then by (3), A consists of one or two vertices which belong to V (G). Let us
denote by F the set of edges e = xy ∈ E(G) such that the vertex pr of Ce

belongs to IC
′

r (A). If e = xy ∈ F , with x, y ∈ V (G), we know that x ∈ A or
y ∈ A, and the converse is also true: thus F is precisely the set of edges of
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Figure 17: An induced subgraph where Lemma 11 can be applied.

G which are incident in G with the vertex, or the two vertices, in A. Can
we find A if F is given ?
Let us consider the graph G[F ] whose edge set is F and whose vertex set
consists of the elements of V (G) incident with at least one edge in F (this
is not always an induced subgraph of G). We claim that we can identify A

by looking at the degrees of its vertices in G and in G[F ].
Note that if z ∈ A, then z has the same degree in G[F ] as in G, and this
degree is two or three because G ∈ Π′

3; and if z ∈ V (G[F ]) \ A, then z, in
G[F ], can have neighbours only in A, so its degree is one or two.
Thus if |A| = 1, every vertex of G[F ] has degree one in G[F ] with the
exception of the vertex x such that A = {x}, whereas if |A| = 2 there must
exist at least two vertices in G[F ] with degree at least two. Therefore by
counting the number of vertices with degree at least two in G[F ], we can
tell if |A| is equal to 1 or 2, and identify A in the former case.
If |A| = 2, let A = {x, y}. Because G ∈ Π′

3, we have three cases:
(i) If there is no vertex of degree three in G[F ], we have δ(x) = δ(y) = 2;
then there must exist vertices z and z′, distinct from x and y, such that z

is adjacent to x and not to y and z′ is adjacent to y and not to x. Thus
z and z′ are vertices of G[F ] and have degree one in G[F ]: this enables us
to identify x and y as the only vertices adjacent to vertices of degree one
in G[F ].
(ii) If there are two vertices with degree three in G[F ], we have δ(x) = δ(y) =
3: these are precisely the only two vertices with degree three in G[F ], and
they can be identified as such.
(iii) We are left with the case when, without loss of generality, δ(x) = 3 and
δ(y) = 2; then x is identified as the only vertex with degree three in G[F ].
If at least one of the neighbours of y has degree one in G[F ], then, as in
case (i), y can be identified by the fact that it is adjacent to a vertex of
degree one in G[F ]. So now we assume that the two neighbours of y, z1

and z2, have degree two or three in G[F ]; note that if zi has degree two in
G[F ] then it is adjacent to x and y in G[F ], and if it has degree three in
G[F ] then zi = x.
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If x and y are non adjacent, then z1, z2 are adjacent to x, y, and y can be
identified as the only vertex in G[F ] not adjacent to x (which has already
been identified). And if x and y are adjacent, then we have the following
edges in G[F ]: yx = yz1, xz2, yz2, xz3. Now how to know whether it is y

or z2 which belongs to A? They cannot both have degree two in G, because
the characterization of Π′

3 states that they should have distinct neighbours.
So z2 has degree three in G, and y is identified by the fact that it has degree
two in G and in G[F ].

Given G and G[F ], let us recapitulate how we can determine the unknown
set A, where |A| ≤ 2. If there is no edge in G[F ], then A = ∅. If there
is only one vertex with degree at least two in G[F ], then this vertex is the
only element in A; otherwise, |A| = 2. If there are two vertices with degree
three in G[F ], then these vertices are the two elements in A. If there is no
vertex with degree three in G[F ], then the elements in A are the two vertices
adjacent to vertices of degree one in G[F ]. Finally, if there is exactly one
vertex with degree three in G[F ], this vertex belongs to A, and we name
it x. Then if there is one vertex which is not adjacent to x in G[F ], this
vertex is the second element in A; otherwise, the second element in A is the
vertex with degree two in G and in G[F ].

Conversely, consider an (r,≤ 2)-identifying code C′ of G′ with

∣

∣C′
∣

∣ ≤ k + (6r + 4)m.

First we will show that for every e ∈ E(G) we must have V (Ce) ⊂ C′. To do
this, note that since C′ is an (r,≤ 2)-identifying code, if we find in G′ two
distinct vertices a and b such that

(B(a, r) ∪ B(b, r)) ∆B(b, r) = {c}, (4)

where c ∈ V (G′) and ∆ stands for the symmetric difference of sets, then,
since we must have

IC
′

r ({a, b}) 6= IC
′

r (b),

we conclude that necessarily c ∈ C′. Let us write (a, b) −→ c if (4) is true for
three vertices a, b and c. The following facts are easily checked on Fig. 14.

(pr+1, pr+2) −→ p1

(pr+2, pr+3) −→ p2

· · ·

(p2r, p2r+1) −→ pr

(p2r+1, c1) −→ pr+1
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so we must have pi ∈ C′ for i ∈ {1, 2, · · · , r + 1}. Furthermore

(p2, p1) −→ pr+2

(p3, p2) −→ pr+3

· · ·

(pr+1, pr) −→ p2r+1

and so we also have pi ∈ C′ for i ∈ {r + 2, r + 3, · · · , 2r + 1}. The same
argument can be applied on the cycle:

(cr+1, cr+2) −→ c1

(cr+2, cr+3) −→ c2

· · ·

(c4r+2, c4r+3) −→ c3r+2

and in the other direction

(c2r+3, c2r+2) −→ c3r+3

· · ·

(c3r+3, c3r+2) −→ c4r+3.

Thus for every edge e ∈ E(G) we have V (Ce) ⊂ C′. Since |V (Ce)| = 6r + 4,
if we define C as the trace of C′ on V (G)

C = C′ ∩ V (G),

the cardinal of C is at most

|C| ≤
∣

∣C′
∣

∣ − (6r + 4)m ≤ k.

To conclude, note that for every edge xy ∈ E(G), we have in Ce

B(pr+1, r)∆ (B(pr, r) ∪ B(pr+1, r)) = {x, y}

and so we must have x ∈ C or y ∈ C; thus C is a vertex cover of G. This
ends the proof of Proposition 10. �

In conclusion, Propositions 2–5 together with Proposition 10 cover all the
cases in Theorem 1 and give a complete proof for it: we have therefore shown
that the problem Min (r,≤ l)-ID-code in Π3 is NP-complete for l ∈ {1, 2}
and all r ≥ 1.
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