
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— This paper presents an energy aware middleware

to support collaborative applications on small scale Mobile Ad-
hoc Networks (MANets) made of handheld terminals. This
middleware provides a set of communication facilities including a
publish-subscribe event system robust to transient
disconnections, security features and energy management. The
paper gives an overview of the middleware architecture, presents
its main functionalities and explains how the middleware is made
energy-aware. It presents measurements and actual experiments
that were conducted to validate the middleware. The middleware
is distributed under LGPL licence on SourceForge.

Index Terms— MANets, middleware, energy management,
security , event system.

I. INTRODUCTION
This paper presents Transhumance, an energy-aware
middleware to support collaborative applications on small
scale Mobile Ad-hoc Networks made of handheld terminals.
A Mobile Ad hoc Network (MANet) is a self-configuring
network of mobile nodes connected by wireless links [1]. In a
MANet, the nodes may act both as terminals and routers. In
Transhumance, we target small networks of up to 20 handheld
nodes, which correspond to manageable human size groups.
We assume that nodes move at pedestrian speed. The
handheld terminals are characterized by their limited
capacities in terms of energy (since the mobility implies
battery-operated devices), memory and CPU.

Transhumance targets spontaneous collaborative services

Manuscript received September 12, 2008. This work was partly supported

by the French National Research Agency (ANR) Transhumance project and
by a contract with Orange Labs.

I. Demeure is with TELECOM ParisTech, Institut TELECOM, 46, rue
Barrault, 75634 Paris Cedex 13, France. (phone: +33.1.45.81.72.86; fax:
+33.1.45.81.31.19; e-mail: isabelle.demeure@telecom-paristech.fr).

G. Paroux is with TELECOM ParisTech, Institut TELECOM, 46, rue
Barrault, 75634 Paris Cedex 13, France. (e-mail: guilhem.paroux@telecom-
paristech.fr)..

J. Hernando-Ureta was with TELECOM ParisTech, Institut TELECOM,
46, rue Barrault, 75634 Paris Cedex 13, France. His current e-mail: is
javier.hernando@gmail.com.

A. R. Khakpour was with TELECOM ParisTech, Institut TELECOM, 46,
rue Barrault, 75634 Paris Cedex 13, France. He is now a PhD student at
Michigan State University (e-mail: khakpour@msu.edu).

J. Nowalczyk is with Thales Communications, 160, bd de Valmy - BP 82,
92704 Colombes Cedex, France. (e-mail :
julien.nowalczyk@fr.thalesgroup.com).

such as the “Team Exploration” treasure hunting game that
was used for the final project experiments [2]. Other examples
are services allowing users to discover their neighbourhood
and to share their profiles in order to meet other people.

MANets bring new constraints: in particular, since nodes
act both as end-user terminals and as routers and since they
are mobile, they may become out of reach (for a short or long
period of time, or even permanently). This must be addressed
by the middleware in order to ease the development and the
deployment of applications. The middleware must also
provide applications with common features such as
communication mechanisms, resources discovery and security
management. Energy management is also a crucial issue for
battery operated mobile devices [3].

We conducted a bibliographical study of existing
middleware systems [4] in which we analyzed systems such as
Proem [5], JMobiPeer [6] and Steam [7]. The study showed
the existence of a common set of functionalities in the studied
systems: communication protocols, group structure and
service discovery. It also showed that security and energy
management were often identified as key issues, but were
never completely addressed in a fully integrated and
operational solution.

Transhumance is designed to meet this requirement. It
provides the applications with full functionalities for
communication (transport protocol, event service), group
management, service discovery and management and
additional high-level services such as vote and chat.
Transhumance also provides security mechanisms based on
groups. Concerning the energy awareness, Transhumance
middleware is designed to be adaptable to the energy level.

As we shall see later in this article, the experiments
conducted with groups of users running a game application
showed the interest of using a middleware such as
Transhumance when the ad-hoc communications are not
stable. The measurements performed also showed the ability
of the middleware to significantly reduce energy consumption
thanks to the energy management. The middleware is
distributed under LGPL licence on SourceForge [8].

The remainder of this paper is organized as follows. Section
2 gives an overview of Transhumance and describes its
architecture. Section 3 focuses on the communications in
Transhumance. Section 4 presents the security mechanisms.
Section 5 is dedicated to the power management in
Transhumance. Section 6 presents the first experiments
performed. We conclude in Section 7.

An Energy-Aware Middleware for collaboration
on small scale MANets

Isabelle Demeure, Guilhem Paroux, Javier Hernando-Ureta, Amir R. Khakpour, Julien Nowalczyk.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. TRANSHUMANCE ARCHITECTURE
This section gives an overview of the Transhumance
middleware architecture and functionalities. Note that an
earlier description of Transhumance can be found in [20]. It
was done when we were in the process of developing the
middleware. Since then, we finalized the implementation,
tested validated and integrated the Transhumance
functionalities. In this process some of the functionalities were
reviewed, completed and refined.

M
O
N
I
T
O
R
I
N
G

 D
E
C
I
S
I
O
N

Terminal Managt User Managt

Routing
Augmented routing

Transport

Event service

Presence

Group

Managt

Identifi er

Services
Chat, Vote ...

File
Transfer

S
E
C
U
R
I
T
Y

Applications

Hardware &
software
profiles

Policies User

Preferences
Security
Profile

Service

Announce/discovery

Common Services

Communications

Identity, presence, hw,
mana gement ...

Energy
Managt

Fig. 1 - Transhumance Node Architecture

Figure 1 presents the architecture of Transhumance. It is
organized into five functionality blocks: energy management,
communications, “identity, presence & hardware
management”, common services and security.

The energy management block involves a monitoring
module and a decision module. The decision module decides,
based on a policy and on the information about the energy
collected by the monitor, of the adaptation actions to be
executed. The possible actions are implemented in middleware
modules and consist in adaptations of their behaviour that
reduces the energy consumptions (e.g. stopping messages
acknowledgements in the transport protocol). Energy
management is detailed in Section 5.

The communication block relies on the OLSR routing
protocol [9]. This choice will be discussed in Section 3.
Transhumance “augments” the routing protocol with
additional functions provided by the augmented routing
module. The Transport module is a UDP-based transport
protocol that supports message fragmentation,
acknowledgment (optional) and message encryption
(optional). Transhumance also supports a publish-subscribe
event-based system that enforces message persistency
(“guaranteed” message delivery). In addition, this event
system provides basic point-to-point and group message
passing in push-pull mode. Finally the communication block
includes a group management module that is in charge of
managing communities of users sharing common interest.
Services and security are offered within groups.

The “identity, presence & hardware management” block
includes 4 modules: user management, terminal management,
identifier and presence. Users of Transhumance do not need
any preliminary knowledge such as security certificates or a
list of resources; they must, however, define their profile
(name, address, points of interest, etc) and their preferences
(privacy, Transhumance and service configuration parameters,
etc). This is supported by the user management module.
Terminal management abstracts some useful functionalities of
the underlying operating system and hardware, such as file
system calls and interface to battery. It therefore acts as an
adaptor. The identifier module manages 3 types of identifiers:
terminal hardware identifier, communication identifier (in
practice an IP address chosen within an interval) and user
identifier.. The presence module indicates who is present in
the MANet and within how many hops.

The advanced services block regroups high-level services
such as chat service, file transfer service and voting service. It
also provides an announcement / discovery service to
advertise existing services.

The security component looks after security of the node
resources, groups and communications. It is managed in a
fully distributed way. It comprises ciphering and a certificate
manager. It will be discussed in more details in Section 4.

In the following sections we provide details on the
communication block, the security block and the energy
management block.

III. COMMUNICATIONS
In this Section, we come back on the Transhumance
communication stack introduced before.

A. Routing Protocol and Augmented Routing
Transhumance relies on a multihop ad-hoc routing protocol.
We evaluated different solutions and chose OLSR (Optimized
Link State Routing) [9]. More specifically we chose to use the
“UniK” implementation [10] in particular because it is
operational and supports plug-ins, which make it easy to
enhance the protocol functionalities. OLSR is often said to be
limited in terms of scaling but it turns out to perform well in
Transhumance that targets small scale networks of up to 20
nodes. The knowledge concerning the network topology
acquired at the routing layer is forwarded through a plug-in to
the upper layers in a cross-layer spirit, to improve the
middleware efficiency. The topology information is used in
particular by the event system.

B. Transport Protocol
In MANETs, it is difficult to ensure stable connections, due to
the changes in the network topology. We therefore chose a
non-connected UDP based solution. We extended UDP with
fragmentation, acknowledgement and encryption facilities. In
order to be adaptable to the energy level, we chose to enforce
three modes of communication: simple, acknowledged and
secured.

The simple mode is UDP in which the packets are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

transmitted to the destination without any other
communication control and thus packet delivery is not
guaranteed. In the acknowledged mode, the receiver must
acknowledge the packets received. The retransmission and
acknowledgement model are designed in a way to resist
transient nodes disconnections (of less than 10 seconds
according to the measurements conducted, see [12]).

The secured mode is an acknowledged mode with
encrypted messages. The keys used to cipher the messages are
generated by the security block. The secured mode is mainly
used to send confidential data.

The transport protocol provides a socket interface that is
available to the other middleware components. It supports
point-to-point as well as group message-passing.

Our solution is most similar to TPA (Transport Protocol for
Ad hoc Networks) an efficient transport protocol for MANets
[12]. Both are based on UDP and provide fragmentation and
acknowledgement. However, our transport protocol was
designed to be adaptable to the energy level; besides, at the
time we were developing Transhumance no TPA source code
was available.

C. Event-based Communication
The event service provides functionalities to create and filter
events. An event can be seen as a structured message,
composed of the following fields:

• Type of the event: advertisement, data, query, answer,
undefined.

• Identifier is a unique ID to identify the event in the
network.

• Subject of the event is a free character string.

• Content represents the data contained in the event.

• SenderID represents the sender of the event.

• Lifetime in minutes.

• Persistence indicates if the event is persistent (with
delivery guarantee) or not.

• Range indicates if the event is internal (for the local
system) or external (for the network)

The event service follows the publish/subscribe model. A
device interested in receiving particular events must subscribe.
The event service proposes filtering facilities. An application
can create filters on the event subject, the sender, the content,
etc. When an event is received, it goes through the different
filters and the event is notified to the corresponding
subscribers. Otherwise, the event is dropped. In order to
address transient disconnections and network partitioning the
event system supports event persistency (an event may be kept
for a given time or until it is delivered to all its subscribers).

Events are also supported in other middleware for
MANETs such as Steam [7] and Emma [13]. Contrary to
Steam, we do not take into consideration the distance between
the sender and the receiver. Our approach is more similar to
that of Emma (e.g. every device can communicate with all

other devices). However, the events do not use a
dissemination (epidemic) algorithm to reach their destination.
Transhumance employs Chapar, a novel event system that
uses the underlying routing protocol for event dissemination
[16]. Contrary to other event systems that rely on a single
broker to handle event publications and subscriptions [14, 15],
Chapar replicates the event brokers on the Multipoint Relays
(MPRs) defined in OLSR. This choice is made to avoid
having a single point of failure and a performance bottleneck.
The event brokers are responsible for subscription and for
leading the published events to their corresponding
subscribers. Thus, we may consider Chapar as a self-
configured overlay network using cross-layer information to
store and forward the events from publisher(s) to
subscriber(s). Using the underlying routing layer enables us to
constitute the multicast trees to deliver events instead of using
expensive unicast communication and flooding which is not
scalable. Moreover, the OLSR routing information empowers
us to handle node mobility in the network and cope with
network transient topology changes.

The event system supports both real-time event
dissemination and storing events in the brokers until their
lifetime elapses. This functionality helps the event system to
deal with network partitioning which is likely to happen in
actual mobile ad-hoc networks. For instance, if the network is
portioned into two partitions, the events published in one
partition cannot be notified to subscribers connected to the
other partition. However, using memorized events, the
published events are stored in the broker nodes and as
network topology changes over time, any subscriber that joins
the network within the event lifetime period is notified of the
event.

In Chapar, the subscription and the notification are one-hop
communications since each node has at least one broker in its
neighborhood. Thus, for real-time event forwarding to
subscribers, the intermediate brokers that constitute the
overlay network lead the published event to the right broker
nodes, so it will be delivered to the subscriber. For memorized
events, a copy of the published event is stored in every single
broker in the network. The subscribers who are present at the
publication time are notified of the event, and those who are
disconnected from the network will be notified when they
connect to the network.

In [16], we show that the event system yields good
performance in particular because it causes less network
overhead than other solutions. All Chapar calculations and
algorithms are based on simple hash functions and logical
operations which makes it very light in terms of computation
and resource consumption.

D. Groups
The notion of group is very often used in existing middleware
for MANETs. Two approaches are distinguished: proximity
groups and groups of interest. Proximity groups imply that the
group members are located in the same area. They are mainly
used in Steam where they play a central role. Members of a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

group of interest share a common interest. There is no location
condition. This is the basic approach in JMobiPeer and Proem.
The groups provide various functionalities: membership
management, communication mechanisms and resource
sharing are the most widespread.

In Transhumance, the group of interest approach is
preferred. Since we target small networks, proximity is a less
important factor than in a bigger network. When a user enters
the MANet, he or she is automatically registered in the
Transhumance base group. A user may belong to as many
groups as he or she wishes provided he or she is granted
access (see Section 5). We assume that group members trust
each other. By accepting to be part of a group users accept to
share their resources as required by the services attached to
the group.

Group management is implemented in a decentralized way.
It provides the functionalities for creating a new group,
discovering an existing group, joining a group, leaving a
group and listing members of groups we belong to.

Groups may be created as time-limited, persistent or
undefined (default). If undefined, the group exists as long as at
least one user belongs to it. In the time-limited mode, a timer
is associated with the group. When there are no more users in
the group or when the timer runs out, the group disappears
automatically (even if users still belong to it). However, it is
possible to extend its lifetime if a user requests it. Finally, a
persistent group never disappears completely, even when it
has no members. Each former member of the group keeps
minimal information (security, services, etc) to rebuild it
quickly.

On each node, a group monitor component manages the
information related to groups. In particular, it knows:

• groups features (description, persistency, and list of
available services) and

• groups members (only for groups that the user belongs
to).

Note that each node may not have the most up-to-date
information. A notification mechanism is provided for
warning Transhumance components when groups are
modified.

IV. SECURITY
One of Transhumance challenges is to provide a decentralized
security model for services and applications in mobile ad hoc
networks. The proposed security mechanisms must therefore
be able to work in a fully autonomous way and should not rely
on a server that could become out of reach during the ad-hoc
network life. This precludes the use of traditional solutions
that rely on servers either to distribute certificates or to
authenticate users.

Most of the existing middleware such as Steam and Emma
do not integrate any security features. Others, such as
JMobiPeer, adopt a common certificate-based approach that
implies the use of a centralized infrastructure during an
initialization phase. Proem introduces a decentralized

reputation model, but trust model are not adapted to our
context because they introduce a strong dependency to the
network environment (obtaining a consistent trust value is
related to the number of successful relationships with the
other networks members).

Existing systems such as [17] answer authentication and
confidentiality requirements thanks to an initialization phase
allowing to recover a certificate from a fixed architecture. The
Transhumance security model is based on a group approach.
This approach fits most of the ad-hoc applications
architectures [18] and facilitates the integration of security.
Existing group security studies concentrate on contributory
key agreement protocols [19], but these protocols cause a lot
of computational and bandwidth costs which can not be
afforded in pocket-PC based MANETs.

Our security model is composed of the following functional
blocks: authentication, key management and encryption.

The Authentication block deals with the admission of new
members in a security group. A security group is a set of peers
with no hierarchical structure. It is identified thanks to a
shared secret: the group public key. This group public key is
distributed in the shared space and can be attached to different
levels of trust. The admission process consists in the
transmission of the group key from a group member to a
requester. The requester may ask any member of a given
group to let him enter the group. By co-opting the requester,
the group member acts as a trust authority. Once in a group, a
member is considered as trustful as the other members and
may in turn act as an admission authority. Finally, different
admission modes are available: Diffie-Hellman keys
exchange, proximity channels (i.e. set up a private auxiliary
transmission channel for example using Bluetooth), or
unencrypted keys exchange in clear text. These various
admission modes aim at providing flexibility to the user by
using contextual authentication during the bootstrapping
phase.

The Key Management block is a central point. It maintains
the overall secrets necessary to apply the proposed security
model and it deals with the distribution of the keys within the
group.

The Encryption functional block offers a set of security
functions to encrypt, decrypt and sign applicative data,
ensuring confidentiality and integrity. This block relies on the
key management block which provides the right cryptographic
keys. We use asymmetric key pairs. Our group approach
reduces cryptographic costs.

V. ENERGY MANAGEMENT

A. Motivations
Transhumance is designed to run on handheld terminals that
have limited power resources. Energy management is usually
well addressed in hardware design (such as low-power CPU
or wireless network card) and in the operating system (switch
to idle mode when unused, adjust screen brightness) [3, 21]. It
is also well addressed in the design of MANet specific energy-

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

aware routing protocols [22, 23]. However, little is done
regarding energy management at the middleware layer in spite
of the fact the middleware services (communication or
discovery mechanism, for instance) constitute an important
source of energy consumption. SANDMAN proposes a
solution for an energy-aware middleware for MANET [28].
SANDMAN periodically turns the wireless card of the nodes
to sleep mode in order to save energy. Service discovery and
message transport relies on network clustering: cluster heads
are responsible for gathering the messages and for waiting for
destination nodes to wake up. This approach is very efficient
thanks to the low power consumption of nodes in sleep mode.
However, it implies to constitute and to maintain cluster in the
network. Moreover, the cluster heads support heavier trafic
than the other nodes and in case the users adopt selfish
behaviours, the system becomes inefficient. Our approach
does not distinguish particular roles and is designed to adapt
its behaviour to the users needs. It does not suffer from
potential user selfish behaviour that may block the power
management.

B. Adaptability principles
Our approach is therefore complementary to the energy
management performed by the hardware and the operating
system. In order to adapt the middleware behaviour to the
available energy, each module of the middleware is designed
to be adaptable. When the energy level is high, the
middleware provides all functionalities with the best quality of
service. When the energy level decreases, the functionalities
are degraded step-by-step (several intermediate energy levels
are specified) in order to preserve the battery. The adaptations
result in a compromise between extended battery lifetime and
quality of service.

The adaptation actions may consist in the adjustment of a
parameter or the use of an alternative algorithm. Examples of
possible adaptations in Transhumance are:

• the use of alternative ciphering algorithm, less secured
but lighter,

• The use of a non-acknowledged transport protocol
(resulting in possible loss of data but reduced network
activity),

Let us consider the transport protocol as an example. When
the energy level is high, the transport protocol may be secured
and acknowledged. When the energy level decreases (e.g. less
than 75% of the full battery), a first adaptation consists in
providing a less secured ciphering algorithm at a lower cost. A
second adaptation (e.g. energy level lower than 50% of the
full battery) consists in providing a non-secured
communication. When the energy is lower (e.g. less than 25%
of the full battery), the messages are not acknowledged
anymore. The adaptations progressively reduce the
middleware energy consumption by limiting the CPU activity
and by reducing the amount of communication.

C. Energy management operation
Figure 2 describes the architecture of the energy management

mechanisms integrated in every mobile node supporting
Transhumance. The two main elements are the monitoring
module and the resource manager.

Adaptation
Policy

Applications

Resource
Manager

Monitoring

Local system Network – Distant nodes

Other
Blocks
Of the

Middleware

Adaptation
Interface

Fig. 2 – Node energy management architecture

The resource manager of each node uses an adaptation
policy to decide which adaptations must be taken. The
decisions are guided by information gathered from all
participating nodes. The local battery level is regularly
monitored to evaluate the local energy consumption. This
information is sent to the local resource manager and to
remote nodes. The different resource managers gather energy
levels received from other nodes in order to compute the
average energy level in the network that we term “global
energy level”. Consequently, the different nodes in the
network share the same information. Since the network size is
small, the computation of the global energy level does not
induce an important latency. In case a node does not receive
one or more of the messages, the event manager sends them
again. The average energy level in the network is used by the
resource manager of the different nodes in order to determine
if global adaptations have to be performed.

When the decision to adapt the middleware behaviour is
taken, the resource manager sends adaptation orders to all
concerned modules via the adaptation interface implemented
by every module. The middleware modules then modify their
behaviour according to the resource manager’s request. The
resource manager also communicates with the applications in
order to warn them about changes in the middleware
behaviour. We see this issue in more details in the section
devoted to the interaction with the applications.

The adaptations may consist in the adjustment of a
parameter or the use of an alternative algorithm. For example,
as mentioned before, in the security module, an adaptation
may consist in using an alternative ciphering algorithm, less
secured but lighter. In the transport module an adaptation
would be to use a non-acknowledged protocol (possible loss
of data but reduced network activity).

D. Adaptation Policy
The policy defines the middleware behaviour for different

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

thresholds of energy level. Each threshold maps to a set of
adaptations to modify the middleware behaviour. The policy is
used by the resource manager to send adaptation orders to the
middleware modules when the energy thresholds are reached.

We distinguish between two types of adaptations: local and
global. Local adaptations only impact the local system: for
example, the decrease in the frequency of system monitoring.
Local adaptations are decided separately by each node, based
on their local energy level. Since there is no interaction
between the local adaptations of the different nodes, each
node is responsible for its local policy. Global adaptations
have an impact on the whole network and must therefore be
shared by all the nodes (in the communication range). In order
to do so, the global policy is common to all the nodes in the
network. In a same way, all the nodes must agree on the
decision to take a global adaptation. The decision not to
encrypt messages (or no longer acknowledge them) is an
example of global adaptation that must be taken by all nodes.
If it was not the case, communication could be disrupted,
some nodes continuing to encrypt while the corresponding
receivers do not decrypt anymore.

IF (100>LOCAL-ENERGY>75) THEN

• No_adaptation

IF (75> LOCAL-ENERGY >45) THEN

• Neighborhood :: maximum_discovery_range = 4 hops
• Advertisement :: maximum_response_per_query = 25

IF (45> LOCAL-ENERGY >20) THEN

• Advertisement :: maximum_response_per_query = 10
• Groups :: create_group_allowed = FALSE

IF (20> LOCAL-ENERGY >0) THEN

• Monitoring :: monitoring_frequency = 30s

IF (100>GLOBAL-ENERGY>75) THEN
• No_adaptation

IF (75> GLOBAL-ENERGY >45) THEN

• Transport :: ciphering_enabled = FALSE
• Data :: lazy_propagation = TRUE

IF (45> GLOBAL-ENERGY >20) THEN
• Transport :: no_ack = TRUE
• File_Transfer :: max_file_size = 512 kB

IF (20> GLOBAL-ENERGY >0) THEN
• Data :: last_modification_propagation = FALSE

Fig. 3 - Adaptation Policy

Fig. 3 shows an example of policy. The first part of the
policy concerns local adaptations (based on the energy level
of the node). The second part concerns the global adaptations
(based on the average level of energy in the network). We
may notice the progressive adaptation of the advertisement
module. At first, the module provides full functionality. It is
then degraded and the maximum response per query is set to
25 (for a local energy level lower than 75%). Then this
parameter is set to 10 when the energy level is under 45%.
Similarly, we can notice the progressive degradation of the
transport protocol. The encryption is not maintained for an

energy level lower than 75% and then the acknowledgments
are not used for an energy level lower than 45%.

E. Application adaptation
When the middleware adapts its behaviour, it degrades certain
features, and services expected by applications may no longer
be available. Applications should adapt their functioning in
harmony with the services provided by the middleware. For
example, when the middleware no longer provides the
acknowledged transport, an application waiting for an
acknowledgment is blocked. To avoid this situation, the
applications adapt their behaviour to the middleware.

The adaptations of the applications must be coordinated with
those of the middleware. The application adaptation operates
in two steps. The first takes place at the start of the
application. The application provides the middleware with an
adaptation profile specifying which middleware adaptations
are allowed by the application. The second step occurs during
the execution. When an energy threshold is reached, the
middleware adapts its behaviour and warns the application
that modifications were made. The application then knows the
features that are no longer available (as specified in its
profile), and can adapt its behaviour.

IF (HIGH-ENERGY) THEN
• No_adaptation

IF (MEDIUM) THEN

• File_Transfer :: max_file_size = 2048 kB
• Transport :: ciphering_enabled = FALSE

IF (LOW) THEN

• File_Transfer :: max_file_size = 512 kB

IF (VERY-LOW) THEN

• Transport :: no_ack = TRUE

Fig. 4-Application profile

Fig 4 represents an adaptation profile of a file sharing
application. At the highest energy level, the application does
not tolerate any adaptations. The application then agrees to
limit the maximum size of shared files, and does not support
message encryption. When the energy level is low, the
maximum size of shared data is decreased again. At the lowest
energy level the messages do not need to be acknowledged
anymore.

In a first approach, we consider that the nodes run only one
application at a time. As a consequence, there is no risk of
conflict between two applications requiring incompatible
adaptations. It is still possible to satisfy the adaptation
requirements of multiple applications. In such a case, the
adaptation policy would consider the less restrictive
adaptations in order to satisfy all the applications. However,
the adaptation policy will be less efficient.

VI. EXPERIMENTS
In this chapter, we present experiments that we conducted to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

test and validate Transhumance middleware. In Section A, we
describe an experiment conducted with eight users playing the
“Team Exploration” treasure hunting game [2]. Before this
“real life” experiment, we had conducted a number of tests on
various parts of the system using an emulator developed at
TELECOM ParisTech. The game experiment showed us that
Transhumance is a well integrated and operational middleware
exhibiting a set of functionalities that is of real help in ad-hoc
environments.

In Section B, we introduce measurements that were
performed to test and validate the energy management in
Transhumance.

Fig. 5 - Screenshot of the Team Exploration Game

A. Functional experiment
A full version of the middleware including the augmented
routing layer, the transport protocol, the event system, the
group management module, the identification module, the
security management as well as a multi-user chat service was
tested during real experiments conducted within the
Transhumance project. These experiments consisted in
sessions of the “Team Exploration” treasure hunting game.
The game involved 2 teams of 4 players each, who played for
half an hour. Each player was given a handheld terminal
equipped with a wifi card. The Transhumance platform and
the game ran on the handheld terminal. One of the sessions
was run in the historical Parisian area of “la Butte-aux-
Cailles”. Figure 5 shows a screen shot of this session. The
interface of the game is provided by a map of the area
partitioned in 20 rectangles. On the left of this map, 5 pictures
are displayed. The top one appears “blurred”; it is the place of
final meeting. The 4 pictures below correspond to photos that
were taken in the area. Players must find in which area (a
rectangle on the map) each of the 4 pictures was taken. There
is a limited time to localize the pictures and when a proposal
is made (using the event system) it must be approved by the
other members of the team through the game interface.

After a delay of 10 minutes, the set of photos changes. The
count down stops only if the player has validated an image
with the other members of the team. The “blurred” photo is
revealed when 4 other photos have been localized. Once a

team has all the photos, its members must rush and reunite on
the premises. The list of players displayed on the right of the
screen shows the connections to other players (and the number
of hops to a player). Player “G” is within one hop, players B,
C, D within two hops, players A, E, F within 3 hops. This was
done using the presence service.

Through the game, the players were able to experience the
capacity of the middleware to operate properly in presence of
disconnections.

B. Energy management evaluation
We also conducted a set of measurements in order to evaluate
the gain in term of energy consumption thanks to middleware
adaptability. We measured the energy consumption of the
middleware activity when running a photo-sharing
application. The objective was to evaluate the reduction of
energy consumption thanks to the middleware adaptation.

In these experiments we adapted the transport protocol, by
suppressing the acknowledgements. In a first test, the
messages were not acknowledged by the receiver. In a second
test, each message was acknowledged by the receiver (the size
of an acknowledgment is 69 Bytes).

Table 1 shows the average current consumed before and
after adapting the transport protocol (i.e. with and without
acknowledgments). The current intensity is measured thanks
to an API available on Windows Mobile. Our results represent
the average current consumed on a period of 20 minutes of the
same activity.

TABLE I. EXPERIMENT RESULTS

Transport Average Current
consumed

Acknowledged 730 mA
Not acknowledged 580 mA

We notice an important difference in power consumption
between the acknowledged and the non-acknowledged
versions. Despite the fact that acknowledgments only
represent 6% of the traffic, the reduction of energy
consumption is of approximately 20% when
acknowledgments are suppressed [24]. Our analysis shows
that data sending is an important source of energy
consumption. These results are in line with the results relative
to the power consumption of a wireless card, studied in [25].
We also studied the cost of ciphering and we measured a
reduction of energy consumption of approximately 20% when
stopping this service.

The energy consumption due to adaptation mechanisms is
really negligible compared to the gain brought by adaptations.
The measurements show that the energy consumption
variation due to the system monitoring is almost null. The
number of monitoring messages sent between the nodes is also
negligible compared to the application-dependent traffic.
Their size is less than 100 bytes and they are sent only every
minute. For a network of 10 nodes, running the monitoring
service during 2 hours, only 10*120*0,1 = 120 kB are sent for

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

energy monitoring of the network. Compared to this, sending
a photo (which is frequent in the collaborative game scenario)
costs approximately 300 kB and the acknowledgement of
every packet costs 20 kB.

VII. CONCLUSION AND FUTURE WORK
We presented the Transhumance energy-aware middleware
for small scale MANets of up to 20 handheld nodes.
Transhumance is an integrated middleware solution including
a set of functionalities that perform well in an ad-hoc
environment where disconnections happen frequently and
there is no node that can be used as a central server. It
includes security features and is energy-aware, two aspects
that, to the best of our knowledge, are not found in publicly
available middleware. Both the middleware1 and the Team
Exploration game are available on SourceForge [8].

The experiments performed showed the usability of the
middleware in real conditions. They also showed that the
energy management significantly reduces energy
consumption.

We are currently pursuing the work on energy awareness
and more thoroughly evaluating the approach. The objective is
to measure the global decrease of energy consumption in the
network. We will also compare various adaptation policies.
Finally, we will more precisely measure the additional cost of
the energy management in order to conclude on the effective
gain of our approach.

We are also pursuing work on data sharing on MANets that
should later be integrated in Transhumance [26, 27].

VIII. REFERENCES
[1] I. Chlamtac, M. Conti, J. Liu: “Mobile ad hoc networking: imperatives

and challenges”. Ad Hoc Networks, Elsevier, Vol. 1, Issue 1, p. 13-64
(2003).

[2] I. Demeure, A. Gentès, J. Stuyck, A. Guyot-Mbodji, L. Martin:
“Transhumance: a Platform on a Mobile Ad hoc NETwork Challenging
Collaborative Gaming”. 1st International Workshop on Collaborative
Games (CoGames 2008), May 19-23, 2008. Irvine, California, USA

[3] R-N.Mayo, P. Ranganathan: “Energy consumption in mobile devices:
why future systems need requirements-aware energy scale-down”, HP
Laboratories Palo Alto, Technical Report, 2003.

[4] G. Paroux, I. Demeure, D. Baruch: “A survey of middleware for mobile
ad hoc networks”, Technical Report 2007D004, Ecole Nationale
Supérieure des Télécommunications, France, January 2007.

[5] G. Kortuem: “Proem: a middleware platform for mobile peer-to-peer
computing”. ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, no. 4, p. 62-64, 2002.

[6] M. Bisignano, G. Di Modica, O. Tomarchio: “JMobiPeer: a middleware
for mobile peer-to-peer computing in MANets”. First International
Workshop on Mobility in Peer-to-Peer Systems (MPPS) (ICDCSW'05)
pp. 785-791.

[7] R. Meier, V. Cahill: “STEAM: Event-Based Middleware for Wireless
Ad Hoc Network”. Proceedings of the International Workshop on
Distributed Event-Based Systems, Vienna, Austria, p. 639-644 (2002).

[8] Transhumance project on SourceForge
http://sourceforge.net/projects/transhumance.

[9] T. Clausen, P. Jacquet: “Optimized Link State Routing Protocol
(OLSR)" Technical Report RFC 3626, IETF, 2003.

1 The version available on SourceForge does include the monitoring and

adaptation mechanisms for energy awareness but does not yet include the
latest developments on energy-management.

[10] UniK OLSR implementation: http://www.olsr.org
[11] J. Hernando-Ureta: “Design of a transport service for Transhumance”,

University Rovira i Virgili (Tarragona), Security and Computer
Engineering Master’s Degree thesis, July 2008.

[12] G. Anastasi, E. Ancillotti, M. Conti, A. Passarella: “Experimental
Analysis of a Transport Protocol for Ad hoc Networks (TPA)”, in Proc.
of ACM international workshop on Performance evaluation of wireless
ad hoc, sensor and ubiquitous networks, Terromolinos, Spain, 2006, pp.
9-16.

[13] M. Musolesi, C. Mascolo, C. Hailes: “EMMA: Epidemic Messaging
Middleware for Ad hoc networks”. Jour. of Personal & Ubiquitous
Computing, Springer, Vol 10, No 1, Feb., 2006, p. 28-36.

[14] M. Hapner, R. Burridge, R. Sharma, J. Fiall, K. Stout: “ Java Message
Service,” Sun Microsystems Inc., Santa Clara, CA 2002.

[15] OMG. CORBA Notification Service Specification. Needham, MA. Aug.
2002.

[16] A. R. Khakpour, I. Demeure: “ Designing and Prototyping an Event-
based Communication System on Mobile Ad Hoc Network”, Technical
Report 2008D009, Ecole Nationale Supérieure des Télécommunications,
France, July 2008.

[17] M. Boulkenafed, V. Issarny: “AdHocFS: Sharing Files in WLANs”. In
proc. of the Second IEEE International Symposium on Network
Computing and Applications, p.156, April 16-18, 2003

[18] Y. Kim, D. Mazzocchi, G. Tsudik: “Admission Control in Peer Groups”.
Second IEEE International Symposium on Network Computing and
Applications, NCA 2003, April 2003, p. 131-139.

[19] R. Bashkar: “Group Key Agreement in Ad-Hoc Networks”. Technical
report RR-4832, INRIA-Rocquencourt, May 2003.
http://www.inria.fr/rrrt/rr-4832.html

[20] G. Paroux, L. Martin, J. Nowalczyk, I. Demeure. “Transhumance: A
power sensitive middleware for data sharing on mobile ad hoc
networks”. ASWN 2007 - Seventh international Workshop on
Applications and Services in Wireless Networks. Santander, Spain, May
2007.

[21] J-R. Lorch, A-J. Smith: “Software strategies for portable computer
energy management”, IEEE Personal Communications Magazine, vol. 5,
no. 3, p. 60-73, 1998.

[22] M. Tarique, K.E. Tepe, M. Naserian M.: “Energy Saving Dynamic
Source Routing for Ad Hoc Wireless Networks”, Third International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt'05), 2005.

[23] J-E. Garcia, A. Kallel, K. Kyamakya, K. Jobmann, J-C. Cano, P.
Manzoni: “A novel DSR-based energy-efficient routing algorithm for
mobile ad-hoc networks”, IEEE Vehicular Technology Conference Fall,
2003.

[24] G. Paroux, I. Demeure, L. Reynaud : “Un Intergiciel Adaptable à
l'Energie”, 8ème Conférence Internationale sur les NOuvelles
TEchnologies de la REpartition (NOTERE’08), Lyon, France, June
2008.

[25] L.M. Feeney, M. Nilsson: “Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment”,
Infocom 2001, pp. 1548-1557.

[26] J. Botia, H. Ha Duong, I. Demeure, A. Gómez-Skarmeta. “A
Context-aware Data Sharing Service over MANet to Enable
Spontaneous Collaboration”, 6th International Workshop on Distributed
and Mobile Collaboration (DMC 2008). WETICE", Rome, Italy, June
2008.

[27] H. Ha Duong, I. Demeure. “Partage de données sur réseau mobile ad
hoc”, CDUR 2008, Lyon, France, June 2008.

[28] Schiele, G., Handte, M., and Becker, C. 2008. Experiences in Designing
an Energy-Aware Middleware for Pervasive Computing. In Proceedings
of the 2008 Sixth Annual IEEE international Conference on Pervasive
Computing and Communications - Volume 00 (March 17 - 21, 2008).
IEEE Computer Society, Washington, DC, 504-508.

