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ABSTRACT 

 
A Turbo iterative method for signal processing is proposed. 
This method is a kind of multi-systems collaborative signal 
processing through iteration: several independent systems 
work in rotation, and each system takes feedback 
information from the other systems as a priori condition. We 
have applied such a Turbo iterative signal processing (TISP) 
method on speech signal enhancement, and on SAR 
(synthetic aperture radar) image filtering, segmentation and 
fusion. Some practical results presented in this article show 
that the Turbo iterative algorithm converges after 5-10 
iterations and it improve greatly the signal processing 
performance. The TISP also shows an effective machine-
learning method, that is making a discussion between 
several independent systems through Turbo iteration. 
 

Index Terms— Iterative signal processing method, 
Turbo iteration, machine learning, image processing, speech 
processing 
 

1. INTRODUCTION 
 
Turbo Code was proposed by Berrou et al. in 1993 [1], and 
it is attention-getting in the field of coding theory for its 
performance rather impressive. We have seen that, Turbo 
code not only is an excellent error-correcting code for a 
very noisy channel, but also it tells us a collaborative signal 
processing approach in complex cases. 

We proposed to employ the Turbo iterative approach to 
synthetic aperture radar (SAR) image processing in 2000 [2]. 
And in these years, we are successful in applying the Turbo 
iterative method on SAR image filtering [3], segmentation 
[4], fusion [5], feature extraction [6] and speech signal 
enhancement [7], improving greatly the performance of 
signal processing. 

A unified principle of Turbo iterative signal processing 
(TISP) method is presented in this article, and the 
effectiveness of this method is demonstrated by several 
examples of its applications on image processing and speech 
processing. In addition, the TISP method reveals us a kind 
of a machine learning approach: several independent 
systems discuss together and learn from each other, so that 
the performance will be greatly improved. 

The remainder of this article is organized as follows. In 
Section 2, the basic principle of Turbo iterative signal 

processing is presented; In Section 3 and Section 4, the 
principle of SAR image filtering and of speech enhancement 
based on Turbo iteration method is discussed and some 
results are shown; In Section 5, some techniques of Turbo 
iterative image processing, including image segmentation 
and fusion, are briefly studied; Finally, section 6 is our 
concluding discussion. 
 

2. PRINCIPLE OF TURBO ITERATIVE SIGNAL 
PROCESSING 

 
2.1. Turbo Iterative Signal Processing (TISP) 
 
Turbo iterative signal processing (TISP) is a multi-systems 
collaborative working method. We describe this method by 
a block diagram in Fig.1 with two systems without loss of 
generality. 
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Fig.1. Turbo iteration method of signal processing 

 
All systems (a “signal estimator” in Fig.1 denotes a 

system) work independently, and they get their own results 
yi, i=I and II, where x is the observation signal, Μ the signal 
model, and θ the model parameter vector. The performance 
of each system is often very restricted, it is because signal 
models and signal environments, in general, are complex, 
such as, some signal model parameters are unknown or the 
signal is incomplete, or all important parameters of signal 
model can not be taken into account in a single system when 
the signal is of a mixture model, or the signal model dose 
not work with a very low signal to noise ratio, and so on. 



In order to improve the signal processing performance, 
the TISP extracts relevant information from each output of 
the corresponding system through a “feature extractor” in 
Fig.1, and the information is exchanged between systems. 
We call it extrinsic information, since it is a feedback from 
external systems. 

Then, each system works again taking received 
extrinsic information as new references, generally as a prior 
condition, and then updates its result. 

Thus, the TISP works in such a way of Turbo iteration. 
As a result, all system’s outputs tend to be consistent, and 
the performance will be continuously improved, just as 
Turbo Code. 
 
2.2. Iterative Signal Processing Method 
 
From Fig.1, we can see that the TISP is an iterative method. 
But it is not a self-iteration method as the traditional 
iterative signal processing method [8] illustrated by Fig.2. 
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Fig.2. Self-iteration method of signal processing 

 
In a self-iterative algorithm, a set of parameters of 

signal model or a prior condition of the signal processing 
system is guessed as the initial step, and then it is updated 
with last system output. Such a self-iteration with intrinsic 
feedback information within a system implies a positive 
feedback, so that the output result falls generally into a local 
optimum and it is strongly dependent on the initials. For 
example, the iteration-based non-causal Wiener speech 
enhancement proposed by Lim and Oppenheim [9], and 
iterated despeckling for SAR images presented by Oliver 
[10], and so on, all those are typical self-iterative algorithms. 

On the contrary, the Turbo iterative signal processing 
(Fig.1) is to update a prior condition of a system by the 
extrinsic information from external system, so that the result 
tends to seek the global optimum rapidly. 
 
2.3. Multi-Systems Collaborative Method 
 
Another point we can see from Fig.1 is that, Turbo iterative 
signal processing is a multi-system collaborative working 
method. However, it is different from the fusion methods 
for multiple systems. 

Fig.3 could describe the decision-level fusion method. 
In fusion method [11], a proper decision-making is adopted 

to combine all results of multiple systems in order to 
improve the performance of decision. Under normal 
circumstances, there are some limits in each system, so it is 
difficult to improve the performance in a large extent 
through a fusion of all these results with defects. 
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Fig.3. Decision-level fusion method of signal processing 

 
Differently, the Turbo iterative approach (Fig.1) is to 

allow each system to consult the results of the other systems, 
and to re-work with the extrinsic references, so that to 
improve the performance of every system. In comparison 
with a way of human working in group, decision-level 
fusion is a "vote" method, while Turbo iterative signal 
processing is a "discussion" method. The latter, a consensus 
through discussions, will experientially be much more 
superior to the former, a judgment through voting. 

 
2.4. Definition of the TISP 

 
To sum up, the method of Turbo-iteration-based signal 
processing we proposed can be defined as follows. 
Turbo iterative signal processing (TISP): In order to 
improve performance, multiple signal processing systems 
work in rotation with extrinsic feedback information. 

 
3. TURBO ITERATIVE SAR IMAGE FILTERING 

 
In radar image (such as Synthetic Aperture Radar - SAR 
image) analysis, it is necessary to reduce multiplicative 
correlated noise, also called speckle noise. Two global types 
of speckle analysis have been developed: statistical analysis 
and wavelet-based space-frequency analysis. 

It is much harder to be analyzed and filtered for a 
multiplicatively noised signal than an additively noised 
signal. For speckled signals, both statistical filters and 
wavelet-based filters have some different advantage and 
also some different intrinsic limitations. That is because 
each filter imposes some or other signal models (features), 
and we have no way to take all important signal features 
into one kind of filter. 

 



3.1. Iterative MAP Estimation 
 

The MAP (maximum a posteriori) estimation takes the 
probability model of signals into account. From the Bayes’ 
rule the posterior probability density function (PDF) 

( )R Yf r y  of the parameter vector r given an observation 

vector y can be expressed as 
( )( ) ( ) (R YR Y Y R )p r y p y r p r p y= . 

For a given observation vector y, fY(y) is a constant, 
hence the MAP estimate of the parameter vector r is 
obtained from a maximization of the posterior function: 

( ) ( ) ( )ˆ arg max arg maxMAP RR Y Y R
R R

r p r y p y r p⎡ ⎤= = ⎣ r ⎦ . 

The MAP estimator can benefit from using any prior 
knowledge about r. For instance, SAR images are assumed 
as a rather realistic gamma distribution [12]: 
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where  denotes Gamma function, ( )Γ ⋅ µ  is the local mean 
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A SAR image with multiplicative noise model is a 
process modeled by y r , where y is the observed 
intensity, r is the underlying reflectivity of ground, u is the 
unitary-mean speckle contribution uncorrelated with r. 
Under these hypotheses, the likelihood function of a SAR 
image can be given by 

u= ⋅
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where L denotes the equivalent number of looks (ENL) of 
image data. So, the MAP estimate is given by [10] : 
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0y ≠          (3) 
A MAP filter is to minimize the local Gibbs energy, 

and the corresponding resolution trends to the local mean μ. 
In fact, MAP resolution usually stays at a balanced point 
between μ and y, and the parameter ν indicates the degree 
of trending to μ: 

µ
ν

=
∞→ MAPrlim ; 

0
lim

1MAP
Lr y

Lν→
=

−
y≈ , when  1L >>

Since the parameters of signal model μ and ν are 
estimated based on speckled signal y within a very limited 
window N (equations (1) and (2)), an auto-iterative 
processing in the framework of Fig.2 is applied to improve 
despeckling performance [10]. Using this nonlinear iterated 
processing, the MAP algorithm, equations (1), (2) and (3), 
will be recursive with time k as follows: 

( ) ( ) ( ) ( 1) ( 1) ( 1), ,k k k k k k
MAP MAPr rµ ν µ ν+ + +→ → → →

with an initial: 
(0)

MAPr y=  

As a result, the image sequence { }( )k
MAPr  tends to be 

smooth, which means that the noise is reduced while the 
textures are lost. We take a synthetic speckled intensity 
image affected by 4-look speckle noise as shown in Fig.4 in 
out experiments. The results of restoration by iterative MAP 
estimation are shown in Fig.5. Ultimately, the final result 
will become a flat image after some hundred iterations [10]. 

 
3.2. Iterative Wavelet Shrinkage 

 
Wavelet shrinkage as proposed by Donoho and Johnstone in 
1992 [13] has been developed for signals with additive 
noise, and it has been proved to give good de-noising results. 
For multiplicative noise a log intensity image is often 
treaded. The basic idea of wavelet shrinkage is that the large 
wavelet coefficients usually correspond to textural 
information, while low coefficients concentrate noise. 
Therefore a threshold can be applied to wavelet coefficients 
to distinguish noise from signal. 

Within the wavelet decomposition framework, an 
image data  at pixel position ( ,  is seen as the 
sampling at 0 level of the image 

(0; , )c i j )i j
( , )f x y . It is obtained by 

scalar product (< >) of the image and a scaling function 
( ),x yφ : 

( )0; , ( , ), ( , )c i j f x y x i y jφ= − −  

At scale (1, )a A∈ , the image approximation is: 

( ) 1; , ( , ), ( , )
2 2 2a a a

x i y jc a i j f x y φ − −
=  

The wavelet transform is defined as the difference 
between two successive approximations: 

( ) ( ) ( )1; , ; , 1; ,w a i j c a i j c a i j+ = − +  

Wavelet shrinkage replaces  by ( ; , )w a i j
ˆ ( ; , ) [ ( ; , )]w a i j Threshold w a i j= , 

where Threshold[w] denotes taking the large wavelet 
coefficient w, and then we have the result of the wavelet-
based shrinkage filter: 
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Since SAR images are modeled by multiplicative 
noised signal y, the wavelet shrinkage should be applied to 
the log signal, that is: ( ) 00; , log ( , )kc i j y i j= = . 

 Note that the parameter of the threshold in the wavelet 
shrinkage filter is dependent on r. In this case, an auto-
iterative processing in the framework of Fig.2 based on 
wavelet shrinkage using à-trous algorithm can be employed:  

( ) ( )ˆlog log logk k
WTu y= − r

k ⎤⎦
kr

                    (4) 
( ) ( )ˆlog logkr Shrinkage u⎡∆ = ⎣                (5) 
( 1) ( ) ( )log log logk k

WT WTr r+ = + ∆                  (6) 
with an initial: 

[ ](0) ( , ) ( , )WTr i j average y i j=  

where average[ ] denotes a simple moving average filter. 
The above auto-iterative algorithm, equations (4)-(6), 

converges usually in just k=5-10 iterations. Fig.6 shows the 
results of the synthesis speckled image restoration by 
iterative wavelet shrinkage, which indicates that the image 
features are well reserved but the capability of denoising is 
rather weak, and the estimates are far from the real 
reflectivity value r. 

 
3.3. Turbo Iterative Processing 
 
If we make a fusion in the framework of Fig.3 with the 
result by the MAP estimation shown as Fig.5 and the result 
by the wavelet shrinkage shown as Fig.6, the performance 
for the image restoration becomes better than Fig.5 but 
worse than Fig.6 at the feature preservation; in the other 
hand, better than Fig.6 but worse than Fig.5 at noise 
reduction. 

Now, our Turbo iterative processing method in the 
framework of Fig.1 is employed, where we take: 
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The Turbo iterative despeckling algorithm can be 
described as 
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( ) ( ) ( ) ( 1)ˆ ˆ, , ,k k k k
MAP WTr y v rµ −⎡ ⎤⎣ ⎦  

( ) ( )ˆlog log logk
MAPu y= − r
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                      (8) 
( ) ( )ˆlog k kr Shrinkage u⎡ ⎤∆ = ⎣ ⎦  

( ) ( ) ( )ˆ ˆlog log logk k
WT MAPr r= + ∆                     (9) 

This TISP algorithm propagates the information of 
FilterⅡ (wavelet shrinkage) to FilterⅠ (MAP estimator) as 
a part of a priori knowledge in MAP algorithm through (7), 

and in the other way, it propagates the information of Filter
Ⅰ to FilterⅡ as the reference image in shrinking algorithm 
through (8) and (9). This information exchange is of prime 
importance for the efficiency of TISP denoising. Our 
experimental results have shown that, in fact, the auto-
iterative MAP algorithm tends to provide a too smooth 
image ( )ˆ k

MAPr  while losing so much texture in the image y 
(Fig.5); on the contrary, the auto-iterative wavelet shrinkage 
tends to preserve texture but to leave a lot of noise in the 
estimated image  (Fig.6). The Turbo iterative algorithm 
balances well these two trends (Fig.7). 
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Fig.4 (a) Synthesis image; (b) Synthesis speckled image 
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Fig.5 Restoration of Iterative MAP Estimation 
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Fig.6 Restoration of Iterativ  Filter 
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(a) 1  iteration;   (b) 5  iteration;   (c) 10th iteration 

Fig.7 Turbo Iterative Restoration 
 

4. TURBO ITERATIVE SPEECH ENHANCEMENT 
 
No f 
the

st th

w, we consider speech enhancement in the framework o
 TISP. 



 
Fig.8 (a) Clean utterance in time and frequency domains; 

 
Speech enhancement approaches are often used in the 

complex environments, such as high levels of ambient noise, 
or lack of model parameters, etc. We have a variety of 
different speech enhancement methods based on different 
speech models developed over the past several decades, 
which have their own advantages and different limitations. 
Under the same principle of the Turbo iterative image 
restoration presented in the last section, we can use a 
Kalman filter with the voice generation model and the 
wavelet threshold filter with the short-term spectrum model 
for speech enhancement. Both filters work in rotation and 
each one takes some feedback information from the other 
filter as a priori condition. In the TISP framework of Fig.1, 
we have 
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The Turbo iterative speech enhancement can be described 
as: 
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( ) ( )

ˆ ˆ ˆ

ˆ ˆ

k k k
KF KF WT

k k
WT KF

s KalmanFilter s s

s WaveletShrinkage y s

− −⎡ ⎤= + ∆

= =

⎣ ⎦
⎡ ⎤∆ = −⎣ ⎦

        (10) 

where s denotes clean speech signal, y denotes observation 
of noised speech signal; 

( ) ( 1)k k
KF KFx KalmanFilter x −⎡ ⎤= ⎣ ⎦  

denotes the output ( )k
KFx  of the Kalman filter at k  with the 

output ( 1)k
KFx −  at  and 1k − ;

[ ]y WaveletShrinkage x=  

denotes the output y of the wavelet shrinkage filter with the 
input x. 
Our experiments take 10 speech utterances with three 
different speakers and 30 sec of speech. The 
sampled at 8 kHz and quantized to 16 bits. And C
generated stationary white Gaussian noise is artificially 

 size of 32 ms with 50% overlap is 
used. 

speech is 
omputer-

added at 0 dB SNR (Fig.8), its variance being assumed to be 
perfectly known. A frame
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Fig.8 (b) noisy utterance in time and frequency domains 
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Fig er .9 Speech enhancement by auto-iterative Kalman filt

 

 
Fig.10 Speech enhancement by auto-iterative wavelet 

shrinkage 
 

 
Fig.11 Speech enhancement by TISP method 

 



Fig.9 shows the result of enhancement of the noisy 
utterance in Fig8b by using auto-iterative Kalman filter and 
Fig.10 shows the result by using auto-iterative wavelet 
shrinkage filter. Fig.11 shows the result of enhancement by 
using the TISP method (10). 

We can see from the experiment results that the auto-
iterative Kalman filter tends to provide a too suppressed 
speech signal while some unvoiced speech signal is filtered 
as noise (Fig.9). On the contrary, the auto-iterative wavelet 
threshold tends to extract detail information but a lot of 
noise rest in the enhanced speech signal (Fig.10). The Turbo 
iterativ m the 
exampl  can 
effe

et-
bas  a 

ig.1) 
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 signal, extracted from the output of 
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 the noise space, 
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10 iterations. 
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e algorithm balances well these two trends. Fro
e spectrum in Fig.11, the TISP method

ctively suppress the noise, and it also helps preserve 
weak speech segment information (look at the highlighted 
rectangular areas in Fig.11). 

 
5. TURBO ITERATIVE IMAGE PROCESSING 

 
We have applied the Turbo iterative method to image 
processing, including SAR image segmentation, 
classification, pixel-level image fusion and so on. 

For SAR image segmentation, we used a Bayesian 
estimator with a Markov Random Field model and the 
Iterative Conditional Estimation algorithm with a Multi-
Level Logistic model. Both systems work in rotation and 
each one takes some feedback information from the other 
system as a priori condition. Using this TISP framework of 
Fig.1, we got a high quality of SAR image segmentation 
result [4]. 

For SAR pixel-level image fusion, we use a wavel
ed fusion algorithm with the spectrum model and 

model-based fusion method with the probability model. We 
make them work in the Turbo iterative way. The fusion 
results for SAR images show a good performance [5]. 
 

6. SUMMARY AND DISCUSSION 
 
Turbo iterative signal processing (TISP) we proposed is a 
multi-systems collaborative working method: each system 
works in rotation with the extrinsic feedback information 
extracted from the other systems. For complex signal 
processing problems, the TISP utilizes several simple 
algorithms to work collaboratively in the way of Turbo 
iteration, instead of a unique complex algorithm with a 
mixture signal model. 

We have presented several applications of the TISP on 
image processing and speech processing: 

SAR image filtering by the TISP: system 1 (ref. F
is  estimator using the probability mode

h the parameters, local mean and localim
extracted from the output of system 2; system 2 is a 
wavelet-based shrinking filter using the spectral model with 
the parameter, the speckle noise space, extracted from the 
output of system 1. 

Speech enhancement by the TISP: system 1 is a 
Kalman filter using a dynamic predictive model of a speech 
signal with the parameters, the coefficients of the state 
equation of the speech

em 2; system 2 is a wavelet-based filter using the short-
time spectral model with the parameter,

acted from the output of system 1. 
SAR image processing, considering image 

segmentation and fusion, by the TISP: two different signal 
models are used in two corresponding algorithms, and the 
two systems work in Turbo iteration. 

All application examples above show a very good 
performance after 5-

In fact, the TISP presents an effective machine-learning 
method: making a discussion between several independent 
systems through Turbo iteration. 
 
This work is done during H. Sun’s sabbatical period at 
Telecom-ParisTech. 
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