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Abstract. We study here the application of a metaheuristic, issued from the noising reethdthat we
call “descent with mutations”, to a problem arising in the field of the aggregafisymmetric relations:
the clique partitioning of a weighted graph. This local search metaheuristidjioh the design is very
simple, is compared with another very efficient metaheuristic, which is a simulateing improved
by the addition of some ingredients coming from the noising methods. Theimqres show that
the descent with mutations is at least as efficient for the studied problenisamfiroved simulated
annealing, usually a little better, while, above all, it is much easier to design auphp

1 Introduction

Since 1993, when we published the first paper on the noisirtgads, many variants of them
have been tried (see [4], [7-8]). In this paper, we deal withediaheuristic that we may consider
as a variant of the noising methods too: the descent with tioas&a(DWM) [9]. This method
looks like the usual descent, but with random elementansfaamations which are performed,
from time to time, in a blind way, in the sense that they areeptad whatever their effects
on the functionf to optimize (such an elementary transformation performébout respect
to its effect onf will be called a mutation in the sequel). The density of perfed mutations
decreases during the process, so that the process at its #ngdsame as a classic descent.

To experiment this new variant, we apply it to two problem&gRier's problem [12] and
Zahn’s problem [15]. These problems arise in the field of thygregation and the approxima-
tion of symmetric relations. They are modelled by a probleisirzg in graph theory as a clique
partitioning of a weighted graph (though it is not the clagsioblem usually called “clique
partitioning problem”, see below). We intended first to camgpit with a pure simulated an-
nealing, but our experiments led us to conclude that suchtaadds poorly efficient with
respect to DWM on the considered problems (notice that de Amet alii [1] compared the
applications of tabu search and of simulated annealingsgtioblem: their experiments show
that the results provided by these two metaheuristics aabtgtively quite similar: sometimes
the first is better, sometimes the second). So, we prefesredrpare DWM with a hybridized
method with the probability of accepting an elementarytfanmation issued from simulated
annealing but with other improving ingredients coming frtira noising methods (as we did in
[5] and in [6] for the Travelling Salesman Problem).

2 Principle of the descent with mutations

As the other metaheuristics, DWM is not designed to be appkda only one combinatorial
problem, but to many of them. Such a problem can be statedlag$o

Minimize f(s) for s € S,



where S is a finite set andf is a function defined orp; the elements; of S will be called
solutions. As many other heuristics, DWM is based on elemgntansformations. A trans-
formation is any operation changing a solution into ano#iwdution. A transformation will be
considered as elementary (or local) if, when applied to at&wi s, it changes one feature of
s without modifying its global structure much. For instandes is a binary string, a possible
elementary transformation would be to change one hitiofo its complement.

Thanks to the elementary transformations, we may define ¢ighbourhoodN (s) of a
solutions: N (s) is the set of all the solutions that we can get fretvy applying an elementary
transformation tos. Then, we may define an iterative improvement method, orededor a
minimization problem (it is the case for the problems coesd here), as follows. A descent
starts with an initial solutior, (which can be for instance randomly computed, or found by a
heuristic) and then generates a series of solutjoR,, ..., s;, ..., s, such that:

1. foranyi > 1, s; is a neighbour 0§;_;: s; € N(s;_1);
2. foranyi > 1, s; is better thary;_; with respect tof: f(s;) < f(si—1);
3. no neighbour 0§, is better thars,: Vs € N(s,), f(s) > f(sq)-

Thens, is the solution returned by the descent. The descent is ekt final solutiors,
provided by the descent s (at least) a local minimuryi with respect to the adopted elementary
transformation. The whole method may stop here, or restam=sy descent from a new initial
solution (to get repeated descents).

In such a descent, the process is not blind in the sense thaldmentary transformations are
adopted only if they fulfil the following acceptance critari they must involve an improvement
of the value taken by. In DWM, we also apply the basic process of a descent but, fioe to
time, instead of applying the previous acceptance criteme apply and accept the considered
elementary transformation, whatever its effect fornwve say that we have a blind elementary
transformation, or simply a mutation (see Figure 1, whickctibes DWM in general). Thus,
the only thing to specify in order to apply DWM (in addition tdhat must be defined to apply a
descent, like the elementary transformation) is when a toutés adopted. It is what we show
in the next section, for the problems studied in this paper.

e Repeat:

— with a certain probability, apply an arbitrary elementagnsformation (irrespective
improvement or worsening: this is a mutation)

— otherwise, apply an elementary transformation which lsrigug improvement

¢ until a given condition is fulfilled.
Figure 1. General description of DWM.

We said at the beginning that DWM can be considered as a varidhé noising methods.
Remember that the most general scheme of the noising metbeel§7(]) consists in computing
a noised variation\ f,,,;sca(s, s') of f when a neighbous’ of the current solutior is consid-
ered: A froisea(s, ') = f(s') — f(s) + p, wherep is a random number depending on different
things (likes, s, the iteration number, the scheme of the noising methodadopted proba-
bility law, and so on); then the acceptance criterion be®the following: the transformation



of s into s" is accepted ifA f,..isea(s, s') IS negative. So, indeed, it is not difficult to design the
characteristics of the law followed hyin order to show that DWM constitutes a special case
of the noising methods: it is sufficient to choose a very negatalue forp (that is, a negative
value with a great absolute value) when we decide to perfamatation, or O otherwise; details
are left to the interested reader.

3 The clique partitioning problem and the descent with mutatons

3.1 Aggregation and approximation of symmetric relations;the clique partitioning prob-
lem

The problems that we consider deal with the aggregationfandgproximation of symmetric
relations. The first one, set by Sé@nier [12], consists in the aggregation of equivalence
relations into a unique equivalence relation summarizhginitial equivalence relations as
accurately as possible; the second one, set by C.T. Zahndd5gjsts in the approximation of
a symmetric relation by an equivalence relation at minimistedce.

Both can be modelled by a clique partitioning problem.

Régnier’s problem arises for example in cluster analysisthis problem, we consider a
set.X of n objects and a set of: criteria; each criterion is assumed to define an equivalence
relation onX; the aim is to find a unique equivalence relation definedowhich summarizes
them criteria as accurately as possible by minimizing the totathber of disagreements with
respect to the givem criteria. This problem is NP-hard whemis not fixed [2] (its complexity
is unknown in the general case whenis fixed).

Zahn’s problem, which arises in social sciences, consigipproximating a given symmetric
relation R defined on a seX by an equivalence relatio”’ defined also onX which is at
minimum distance fronRk with respect to the symmetric difference distance (whiclasoees
the number of disagreements betwéeandE, see [3]). This problem is NP-hard too, as shown
by M. Krivanek and J. Moravek [11].

These two problems can be represented (see for instangebjiBje following clique parti-
tioning problem (CPP in what follows). In this CPP, we consiaeveighted undirected graph
G = (X,U,w) with n vertices;G is complete; an integer (which can be positive, or negative,
or equal to O)w(z,y) = w(y, r) is associated with each edge,y} € U(x # y); our CPP
consists in finding a partition ot into k() disjoint cliquesC;, C, , ..., C() (hence the num-
berk(G) of cliques is not fixed a priori and depends @nor more precisely om andw; for
this reason and because of the signs of the weights, CPP ikentdrhous clique partitioning
problem sometimes known as thecut problem, though the formulations of the two problems
are near each other) in order to minimize the sum of the weighthe edges with their two
extremities in a same clique, i.e., in order to minimize tinection f defined for any partition
(Cy,Cy, ..., Cy) of X by:

f(Cl,Cg,...,Ck) = %Z Z w(m,y)

=1 (z,9)eC} xy

This CPP is also NP-hard [13-14]. To formulatédrier’s problem and Zahn's problem as
instances of CPP, we build a weighted complete graph as felldWe vertex set will be the set
X of Régnier’s or Zahn’s problems. Foégnier’s problem, the weight of an edge, y} (with
x # y) Is given by the differencen — 2m,,, wherem,, denotes the number of equivalence
relations for whichx and y are together in a same class (this weight is also the difteren



between the number, equal to — m,,, of equivalence relations for which andy are not
together in a same class, and,). For Zahn’s problem, lef? be the symmetric relation of
the instance; the weight of an ed@e, y} (with x # y) is —1 if x andy are in relation with
respect tok and +1 otherwise. Then the search of an equivalence relatich is a solution
of Régnier’'s or Zahn’s problems consists in both cases in pantitg the weighted complete
graph into disjoint cliques in order to minimize the sum df theights of the edges with their
two extremities in a same clique; hence our clique partitigmproblem.

Conversely, it is trivial to associate an instance of Zahm@bfem (a symmetric relation)
with any instance of CPP in which all the weights belond tel,1}. On the other hand, B.
Debord [10] showed that it is possible to associate an iostaf Regnier’s problem (a set of
equivalence relations) with any instance of CPP if all theeedgights have the same patrity.
As it is always possible to double the weighigr, y) of the edged z, y} without changing the
structure of an optimal solution, it appears that it is egl@at to solve Rgnier’s problem or
to solve CPP. And similarly, it is equivalent to solve Zahn'slgem or the instances of CPP
in which all the weights belong t¢—1,1}. In the following, we refer to Bgnier's problem
for instances of CPP with any integer weights, and to Zahrgblpm for instances of CPP in
which all the weights belong tp—1,1}.

3.2 Application of the descent (without mutations) to the due partitioning problem

To define a descent for CPP, we apply the following elementansformation (defined by
S. Regnier [12]): we choose a vertexand we move from its current clique into another clique
or alone in a new clique; in this last case, we say that wevpntthe empty clique. To apply
a descent, we begin from a randomly chosen partition and wsider the vertices one after
the other in a cyclic way: the neighbours are ranked in a iceot@er (which is not necessarily
always the same) and they are all considered in this orde,drefore being considered for
a second time; a neighbour better than the current solutsi@ecepted as soon as it has been
discovered. More precisely, for each verteand for each cliqu€’ (including the empty one
and the current clique af) of the current solutios, we compute the variatioA f (s, C') of f
whenv is moved from its current clique 0; the cliqueC'x for which the variatiomA f (s, C'x)
is minimum (since the current clique ofis taken into account, we gétf(s, C'x) < 0, with
an equality ifCx is the current clique ob) is called the best clique far (with respect tos);
then, if movingv from its current clique to its best clique (with respectsjdnvolves a strict
improvement (that is, if\ f (s, C'x) < 0, we do movev from its current clique to its best clique
(with respect tos) and thus we get a new solutiehfrom which we apply the same process,
starting from the vertex following in the prescribed order; otherwise, we keeip its current
cligue and we consider the next vertex. When all the verticesaccessively considered and
that there is no vertex that can be moved towards a cliquerbitan its current clique, the
descent is over.

3.3 Application of the descent with mutations to the clique prtitioning problem

In DWM, we apply almost a descent but, from time to time, indtemoving the considered
vertex to its best clique, we move it to a clique chosen rarigamhore precisely, when a vertex
v is considered, we have two possibilities: with a probabjitwe choose a clique randomly,
with a uniform probability on the cliques (including the etypne) of the current solution; or,
with a probabilityl — p, we compute the best clique for in both cases, we move to the
chosen clique.



The method is utterly described by Figure 2, in which theigest are assumed to be 1, 2,
..., n. It requires to choose only two parameters: a real numb#edcaitial Rate, between
0 and 1 and an integer calledt NbC'ycles, which gives the total number of performed cycles.
We call cycle the operations that must be performed in ordexompute the best clique for
each vertex of the graph (theot NoC'ycles is linked to the total number of applied elementary
transformations that are performed during the method, Heitekplicit relation is not simple
because the number of disjoint cliques is not fixed and so rhanpge during the process; it
involves thattot NbC'ycles is directly related to the CPU time that the user wishes to dpen
to solve his or her problem: the higher NbCycles, the longer the method). The parameter
initial Rate gives the probability to perform a mutation at the beginrohthe whole process.

e Choose a partition randomly: it is the current partition
e bestPartition = P;
e numCycle = 0;
e while numCycle < tot NbC'ycles, do:
— choose a real numberbetween 0 and 1 randomly, with a uniform probability;

tot NbC'ycles—numCycle .
tot NbC'ycles !

— p =r X initial Rate x
—v=1;

while v < n, do

* choose a real numberbetween 0 and 1 randomly, with a uniform probability;

x if ¢ < p, then choose a cliqué€'* (which can be the empty clique) iR ran-
domly, with a uniform probability;

x else compute the best (with respeciipclique C'x for v;
x updateP by movingv to C'x;
x If necessary, update st Partition;
*x v=v+1;
— numCycle = numClycle + 1;

e apply a descent t&;
e if necessary, update:st Partition;

e returnbestPartition and f (best Partition).
Figure 2. Scheme of DWM for the clique partitioning problem.

We can see in Figure 2 that the probabilitytial Rate x ©NeCueeemumCude of performing a
mutation is computed at the beginning of each cycle and dsegearithmetically from one cycle
to the next one, down to O (it is also possible to apply a genoa¢tdecrease, as in simulated
annealing, but then not down to 0). To improve the perforreaneached by the method, we
multiply this probability of applying mutations in a giveyate by a real numbern-(in Figure
2) chosen randomly between 0 and 1. Of course, we keep thedlatibn obtained during the
process in memory. To be sure to get at least a local minimwergomplete the process with a

descent.




4 Experiments

Experiments are not detailed here. They show that DWM mayigeogood results, with
about the same quality than the ones got by an improved aed tarsion of simulated anneal-
ing, within the same CPU time (or less), while, above all, itesy easy to design and to apply
DWM to problems like CPP, and usually easier to tune than SA.

Indeed, the main advantage of DWM with respect to standardimeetistics like SA is that,
aside the CPU time, there is only one parameter to tum@ial Rate. The sensibility analysis
shows that the tuning ahitial Rate is not a crucial point if the value ahitial Rate is not too
low. It is even possible to chooseitial Rate = 1, so that there is no parameter to tune !

Because of its simplicity (to design and then to tune), we hbpeDWM deserves interest.
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