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Abstract. We study here the application of a metaheuristic, issued from the noising methods and that we
call “descent with mutations”, to a problem arising in the field of the aggregation of symmetric relations:
the clique partitioning of a weighted graph. This local search metaheuristic, of which the design is very
simple, is compared with another very efficient metaheuristic, which is a simulated annealing improved
by the addition of some ingredients coming from the noising methods. The experiments show that
the descent with mutations is at least as efficient for the studied problem as this improved simulated
annealing, usually a little better, while, above all, it is much easier to design and toapply.

1 Introduction

Since 1993, when we published the first paper on the noising methods, many variants of them
have been tried (see [4], [7-8]). In this paper, we deal with ametaheuristic that we may consider
as a variant of the noising methods too: the descent with mutations (DWM) [9]. This method
looks like the usual descent, but with random elementary transformations which are performed,
from time to time, in a blind way, in the sense that they are accepted whatever their effects
on the functionf to optimize (such an elementary transformation performed without respect
to its effect onf will be called a mutation in the sequel). The density of performed mutations
decreases during the process, so that the process at its end is the same as a classic descent.

To experiment this new variant, we apply it to two problems: Régnier’s problem [12] and
Zahn’s problem [15]. These problems arise in the field of the aggregation and the approxima-
tion of symmetric relations. They are modelled by a problem arising in graph theory as a clique
partitioning of a weighted graph (though it is not the classic problem usually called “clique
partitioning problem”, see below). We intended first to compare it with a pure simulated an-
nealing, but our experiments led us to conclude that such a method is poorly efficient with
respect to DWM on the considered problems (notice that de Amorim et alii [1] compared the
applications of tabu search and of simulated annealing to this problem: their experiments show
that the results provided by these two metaheuristics are qualitatively quite similar: sometimes
the first is better, sometimes the second). So, we preferred to compare DWM with a hybridized
method with the probability of accepting an elementary transformation issued from simulated
annealing but with other improving ingredients coming fromthe noising methods (as we did in
[5] and in [6] for the Travelling Salesman Problem).

2 Principle of the descent with mutations

As the other metaheuristics, DWM is not designed to be applicable to only one combinatorial
problem, but to many of them. Such a problem can be stated as follows:

Minimize f(s) for s ∈ S,



whereS is a finite set andf is a function defined onS; the elementss of S will be called
solutions. As many other heuristics, DWM is based on elementary transformations. A trans-
formation is any operation changing a solution into anothersolution. A transformation will be
considered as elementary (or local) if, when applied to a solution s, it changes one feature of
s without modifying its global structure much. For instance,if s is a binary string, a possible
elementary transformation would be to change one bit ofs into its complement.

Thanks to the elementary transformations, we may define the neighbourhoodN(s) of a
solutions: N(s) is the set of all the solutions that we can get froms by applying an elementary
transformation tos. Then, we may define an iterative improvement method, or descent for a
minimization problem (it is the case for the problems considered here), as follows. A descent
starts with an initial solutions0 (which can be for instance randomly computed, or found by a
heuristic) and then generates a series of solutions1, s2, ...,si, ...,sq such that:

1. for anyi ≥ 1, si is a neighbour ofsi−1: si ∈ N(si−1);

2. for anyi ≥ 1, si is better thansi−1 with respect tof : f(si) < f(si−1);

3. no neighbour ofsq is better thansq: ∀s ∈ N(sq), f(s) ≥ f(sq).

Thensq is the solution returned by the descent. The descent is over and the final solutionsq

provided by the descent is (at least) a local minimum off with respect to the adopted elementary
transformation. The whole method may stop here, or restartsa new descent from a new initial
solution (to get repeated descents).

In such a descent, the process is not blind in the sense that the elementary transformations are
adopted only if they fulfil the following acceptance criterion: they must involve an improvement
of the value taken byf . In DWM, we also apply the basic process of a descent but, from time to
time, instead of applying the previous acceptance criterion, we apply and accept the considered
elementary transformation, whatever its effect onf : we say that we have a blind elementary
transformation, or simply a mutation (see Figure 1, which describes DWM in general). Thus,
the only thing to specify in order to apply DWM (in addition to what must be defined to apply a
descent, like the elementary transformation) is when a mutation is adopted. It is what we show
in the next section, for the problems studied in this paper.

• Repeat:

– with a certain probability, apply an arbitrary elementary transformation (irrespective
improvement or worsening: this is a mutation)

– otherwise, apply an elementary transformation which brings an improvement

• until a given condition is fulfilled.

Figure 1. General description of DWM.

We said at the beginning that DWM can be considered as a variantof the noising methods.
Remember that the most general scheme of the noising methods (see [7]) consists in computing
a noised variation∆fnoised(s, s

′) of f when a neighbours′ of the current solutions is consid-
ered:∆fnoised(s, s

′) = f(s′) − f(s) + ρ , whereρ is a random number depending on different
things (likes, s′, the iteration number, the scheme of the noising method, theadopted proba-
bility law, and so on); then the acceptance criterion becomes the following: the transformation



of s into s′ is accepted if∆fnoised(s, s
′) is negative. So, indeed, it is not difficult to design the

characteristics of the law followed byρ in order to show that DWM constitutes a special case
of the noising methods: it is sufficient to choose a very negative value forρ (that is, a negative
value with a great absolute value) when we decide to perform amutation, or 0 otherwise; details
are left to the interested reader.

3 The clique partitioning problem and the descent with mutations

3.1 Aggregation and approximation of symmetric relations;the clique partitioning prob-
lem

The problems that we consider deal with the aggregation and the approximation of symmetric
relations. The first one, set by S. Régnier [12], consists in the aggregation of equivalence
relations into a unique equivalence relation summarizing the initial equivalence relations as
accurately as possible; the second one, set by C.T. Zahn [15],consists in the approximation of
a symmetric relation by an equivalence relation at minimum distance.

Both can be modelled by a clique partitioning problem.
Régnier’s problem arises for example in cluster analysis. Inthis problem, we consider a

setX of n objects and a set ofm criteria; each criterion is assumed to define an equivalence
relation onX; the aim is to find a unique equivalence relation defined onX which summarizes
them criteria as accurately as possible by minimizing the total number of disagreements with
respect to the givenm criteria. This problem is NP-hard whenm is not fixed [2] (its complexity
is unknown in the general case whenm is fixed).

Zahn’s problem, which arises in social sciences, consists in approximating a given symmetric
relation R defined on a setX by an equivalence relationE defined also onX which is at
minimum distance fromR with respect to the symmetric difference distance (which measures
the number of disagreements betweenR andE, see [3]). This problem is NP-hard too, as shown
by M. Krivanek and J. Moravek [11].

These two problems can be represented (see for instance [13]) by the following clique parti-
tioning problem (CPP in what follows). In this CPP, we considera weighted undirected graph
G = (X,U,w) with n vertices;G is complete; an integer (which can be positive, or negative,
or equal to 0)w(x, y) = w(y, x) is associated with each edge{x, y} ∈ U(x 6= y); our CPP
consists in finding a partition ofX into k(G) disjoint cliquesC1, C2 , ...,Ck(G) (hence the num-
berk(G) of cliques is not fixed a priori and depends onG, or more precisely onn andw; for
this reason and because of the signs of the weights, CPP is not the famous clique partitioning
problem sometimes known as thek-cut problem, though the formulations of the two problems
are near each other) in order to minimize the sum of the weights of the edges with their two
extremities in a same clique, i.e., in order to minimize the functionf defined for any partition
(C1, C2, ..., Ck) of X by:

f(C1, C2, ..., Ck) =
1

2

k∑

i=1

∑

(x,y)∈C2

i
,x 6=y

w(x, y).

This CPP is also NP-hard [13-14]. To formulate Régnier’s problem and Zahn’s problem as
instances of CPP, we build a weighted complete graph as follows. The vertex set will be the set
X of Régnier’s or Zahn’s problems. For Régnier’s problem, the weight of an edge{x, y} (with
x 6= y) is given by the differencem − 2mxy, wheremxy denotes the number of equivalence
relations for whichx and y are together in a same class (this weight is also the difference



between the number, equal tom − mxy, of equivalence relations for whichx andy are not
together in a same class, andmxy). For Zahn’s problem, letR be the symmetric relation of
the instance; the weight of an edge{x, y} (with x 6= y) is −1 if x andy are in relation with
respect toR and +1 otherwise. Then the search of an equivalence relationwhich is a solution
of Régnier’s or Zahn’s problems consists in both cases in partitioning the weighted complete
graph into disjoint cliques in order to minimize the sum of the weights of the edges with their
two extremities in a same clique; hence our clique partitioning problem.

Conversely, it is trivial to associate an instance of Zahn’s problem (a symmetric relation)
with any instance of CPP in which all the weights belong to{−1, 1}. On the other hand, B.
Debord [10] showed that it is possible to associate an instance of Ŕegnier’s problem (a set of
equivalence relations) with any instance of CPP if all the edge-weights have the same parity.
As it is always possible to double the weightsw(x, y) of the edges{x, y} without changing the
structure of an optimal solution, it appears that it is equivalent to solve Ŕegnier’s problem or
to solve CPP. And similarly, it is equivalent to solve Zahn’s problem or the instances of CPP
in which all the weights belong to{−1, 1}. In the following, we refer to Ŕegnier’s problem
for instances of CPP with any integer weights, and to Zahn’s problem for instances of CPP in
which all the weights belong to{−1, 1}.

3.2 Application of the descent (without mutations) to the clique partitioning problem

To define a descent for CPP, we apply the following elementary transformation (defined by
S. Ŕegnier [12]): we choose a vertexv and we movev from its current clique into another clique
or alone in a new clique; in this last case, we say that we putv in the empty clique. To apply
a descent, we begin from a randomly chosen partition and we consider the vertices one after
the other in a cyclic way: the neighbours are ranked in a certain order (which is not necessarily
always the same) and they are all considered in this order once, before being considered for
a second time; a neighbour better than the current solution is accepted as soon as it has been
discovered. More precisely, for each vertexv and for each cliqueC (including the empty one
and the current clique ofv) of the current solutions, we compute the variation∆f(s, C) of f

whenv is moved from its current clique toC; the cliqueC∗ for which the variation∆f(s, C∗)
is minimum (since the current clique ofv is taken into account, we get∆f(s, C∗) ≤ 0, with
an equality ifC∗ is the current clique ofv) is called the best clique forv (with respect tos);
then, if movingv from its current clique to its best clique (with respect tos) involves a strict
improvement (that is, if∆f(s, C∗) < 0, we do movev from its current clique to its best clique
(with respect tos) and thus we get a new solutions′ from which we apply the same process,
starting from the vertex followingv in the prescribed order; otherwise, we keepv in its current
clique and we consider the next vertex. When all the vertices are successively considered and
that there is no vertex that can be moved towards a clique better than its current clique, the
descent is over.

3.3 Application of the descent with mutations to the clique partitioning problem

In DWM, we apply almost a descent but, from time to time, instead of moving the considered
vertex to its best clique, we move it to a clique chosen randomly. More precisely, when a vertex
v is considered, we have two possibilities: with a probability p, we choose a clique randomly,
with a uniform probability on the cliques (including the empty one) of the current solution; or,
with a probability1 − p, we compute the best clique forv; in both cases, we movev to the
chosen clique.



The method is utterly described by Figure 2, in which the vertices are assumed to be 1, 2,
..., n. It requires to choose only two parameters: a real number, called initialRate, between
0 and 1 and an integer calledtotNbCycles, which gives the total number of performed cycles.
We call cycle the operations that must be performed in order to compute the best clique for
each vertex of the graph (thentotNbCycles is linked to the total number of applied elementary
transformations that are performed during the method, but the explicit relation is not simple
because the number of disjoint cliques is not fixed and so may change during the process; it
involves thattotNbCycles is directly related to the CPU time that the user wishes to spend
to solve his or her problem: the highertotNbCycles, the longer the method). The parameter
initialRate gives the probability to perform a mutation at the beginningof the whole process.

• Choose a partition randomly: it is the current partitionP ;

• bestPartition = P ;

• numCycle = 0;

• while numCycle < totNbCycles, do:

– choose a real numberr between 0 and 1 randomly, with a uniform probability;

– p = r × initialRate × totNbCycles−numCycle

totNbCycles
;

– v = 1;

– while v ≤ n, do

∗ choose a real numberq between 0 and 1 randomly, with a uniform probability;

∗ if q < p, then choose a cliqueC∗ (which can be the empty clique) inP ran-
domly, with a uniform probability;

∗ else compute the best (with respect toP ) cliqueC∗ for v;

∗ updateP by movingv to C∗;

∗ if necessary, updatebestPartition;

∗ v = v + 1;

– numCycle = numCycle + 1;

• apply a descent toP ;

• if necessary, updatebestPartition;

• returnbestPartition andf(bestPartition).

Figure 2. Scheme of DWM for the clique partitioning problem.

We can see in Figure 2 that the probabilityinitialRate× totNbCycles−numCycle

totNbCycles
of performing a

mutation is computed at the beginning of each cycle and decreases arithmetically from one cycle
to the next one, down to 0 (it is also possible to apply a geometrical decrease, as in simulated
annealing, but then not down to 0). To improve the performances reached by the method, we
multiply this probability of applying mutations in a given cycle by a real number (r in Figure
2) chosen randomly between 0 and 1. Of course, we keep the bestsolution obtained during the
process in memory. To be sure to get at least a local minimum, we complete the process with a
descent.



4 Experiments

Experiments are not detailed here. They show that DWM may provide good results, with
about the same quality than the ones got by an improved and tuned version of simulated anneal-
ing, within the same CPU time (or less), while, above all, it isvery easy to design and to apply
DWM to problems like CPP, and usually easier to tune than SA.

Indeed, the main advantage of DWM with respect to standard metaheuristics like SA is that,
aside the CPU time, there is only one parameter to tune:initialRate. The sensibility analysis
shows that the tuning ofinitialRate is not a crucial point if the value ofinitialRate is not too
low. It is even possible to chooseinitialRate = 1, so that there is no parameter to tune !

Because of its simplicity (to design and then to tune), we hopethat DWM deserves interest.
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