
MicroRolls: Expanding Touch-Screen Input Vocabulary by
Distinguishing Rolls vs. Slides of the Thumb

Anne Roudaut1,2 Eric Lecolinet1 Yves Guiard1
 anne.roudaut@enst.fr eric.lecolinet@enst.fr yves.guiard@enst.fr

1TELECOM ParisTech – CNRS LTCI
46 rue Barrault

75013, Paris, France

2Alcatel-Lucent Bell Labs France
Centre de Villarceaux, Route de Villejust

91620, Nozay, France

ABSTRACT
The input vocabulary for touch--screen interaction on
handhelds is dramatically limited, especially when the thumb

must be used. To enrich that vocabulary we propose to
discriminate, among thumb gestures, those we call
MicroRolls, characterized by zero tangential velocity of the
skin relative to the screen surface. Combining four categories
of thumb gestures, Drags, Swipes, Rubbings and
MicroRolls, with other classification dimensions, we show
that at least 16 elemental gestures can be automatically
recognized. We also report the results of two experiments
showing that the roll vs. slide distinction facilitates thumb
input in a realistic copy and paste task, relative to existing
interaction techniques.

Author Keywords
Mobile devices, touch-screen, interaction, selection
techniques, gestures, one-handed, thumb interaction,
rolling/sliding gestures, MicroRoll, RollTap, RollMark.

ACM Classification Keywords
H.5.2. User Interfaces: Input Devices and Strategies,
Interaction Styles, Screen Design; D.2.2 User Interfaces

INTRODUCTION
The reduction in mass and size that has taken place in the
transition from the old desktop computer to the laptop,
along with the extension of communication networks, has
greatly increased the mobility of computer utilization.
Today one may read one’s mail virtually anywhere. That
change has been possible at essentially no cost from the
viewpoint of computer usability: leaving aside the
difference between a mouse and a touchpad, everything has
been miniaturized but the interface. A modern laptop looks
like a normal-sized keyboard attached to a normal-sized
screen, with all the rest occupying virtually no room.

With the next qualitative leap, from the laptop to the
handheld, computer users no longer need to be seated. This

Fig. 1. The six MicroRoll gestures used in this study.

new step in the direction of increased mobility has involved
a lot more miniaturization. But with handheld devices some
critical scale threshold has been passed as now interface
components are miniaturized, raising an unprecedented
challenge to interaction design.

In comparison with the interface of a standard laptop, those
of handheld terminals like smartphones or PDAs are
dramatically impoverished. Most familiar input devices
have been removed because, if scaled down to such an
extent, they would no longer match the size of the human
hand. The devices that are most noticeably missing are the
keyboard and the mouse, or any equivalent contrivance that
would deliver the functionalities of the two buttons and the
wheel of the standard mouse.

Combined with the very limited amount of screen real
estate, these limitations result in a dramatic reduction of
interaction bandwidth. We focus here on the fairly extreme
case of handheld devices that must be operated with just
one thumb [11,17], a restriction that arises quite naturally in
a variety of real world situations (e.g. the user is standing in
the metro, and one hand is busy full time to ensure upright
stance). In such a case not only must the input rely on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

single hand, but the hand that provides the input must also
hold the device. Given the anatomy of the human hand, in
such a case only the thumb can be used to cover the surface
area of the screen.

HANDHELD INPUT LIMITATIONS, RELATED WORK
Handheld design is all about compromising in the face of a
shrunk and impoverished interface. Smartphones with an
extended touch-screen are suitable for the display of images
or for Web browsing, but this is at the expense of the
physical keyboard. Tricky interaction design problems
result from combinations of the following factors: the

absence of a keyboard or physical buttons, the intrinsic
limitations of passive touch-screens, and the mediocre
precision of finger operation on touch-screens.

Hotkeys and Modifiers
The absence of a keyboard deprives the user, by the same
token, of hotkeys and modifiers. Although computer users
usually know a small number of hotkeys, they use them
often [7]. Recourse to hotkeys for the copy, cut, and paste

functions is an especially critical instance, considering their

high frequency of use. It is noteworthy that nothing
equivalent to that crucial resource exists on a sophisticated
device like the iPhone.

Interaction States
As often pointed out [3,4,13,14], graphical user interfaces
require several different interaction states. The interaction

model actually varies with the input technology [4], but

virtually all modern computers make it possible for users to
specify whether they want to move the cursor, drag an
object, activate an interactor, or open a context menu and
select one of its items. For instance, with the mouse or
touchpad buttons (possibly in combination with modifier
keys) one may discriminate tracking, activating/dragging,
and ‘menuing’. Active touch-screens provide similar
capabilities, thanks to stylus buttons and a technology that
detects whether the stylus is close to or actually touching
the screen, plus the possibility of measuring pressure.
Unfortunately, common capacitive and resistive touch-
screens used in mobile devices do no provide equivalent
capabilities. The user cannot specify the desired state, a
drawback that results in several ambiguities and limitations,
listed below.

Context and Marking Menus
For lack of some equivalent for a right-mouse button, menu
opening generally relies on a temporal delay. Not only does
this degrade performance when using linear menus, it may
also seriously hinder interaction techniques, like Marking
Menus [12], that rely on an expert mode based on gestures.
If one has no control over quasi-modes to specify the
meaning of one’s gestures, there is no way to state whether
the gesture should affect the selected object (e.g. initiating a

drag & drop) or trigger a contextual Marking menu. Waiting

for a delay before drawing gestures would make little sense.

Precise Positioning
The absence of a tracking state not only prohibits
interaction techniques based on hovering, such as tooltips,
but also constrains users to point directly at the correct screen
location without the possibility of finely adjusting the cursor
position before actual selection. This problem is particularly
unwelcome on handheld devices on which, due to absolute
size problems, text and target selection is especially
difficult, all the more so when interacting with a thumb.

Efficient techniques for finger pointing have been proposed
[9,19,21,24,25] but how to allow the user to activate them is
a difficult design problem. Having them permanently
available would not only conflict with standard interaction
styles but also degrade efficiency when dealing with large
enough targets. In an attempt to solve this problem,
Thumbspace [9] is activated after pressing a physical
button, while Shift [24] relies on temporal delays, taking
into account the properties of target objects (the larger the
object the longer the delay before Shift is activated). A

simpler, and presumably more efficient option would be to
let users decide which pointing mode they want to elicit
when pressing the screen to select some graphical object.

Again, interaction states could allow this, were they
available on passive touch-screens.

Avoiding Widgets
Another approach for avoiding precision problems, also
liable to save screen real estate, consists in replacing on-
screen widgets with alternate interaction techniques. For
example, viewports do not have scrollbars on the iPhone,
the scrolling being obtained by direct finger dragging. One
drawback is that the user can no longer drag an object
contained in a viewport or scroll an embedded viewport.
This limitation is especially problematic for Web pages
which demand scrolling but also often contain graspable or
scrollable widgets (e.g. Google Maps). One solution is to
take into account the starting point of the drag by checking
whether the finger was initially pressed on some object or
an empty area. But then precision becomes an issue,
especially for finger interaction. As in the previous case,
interaction states are needed to allow users to specify which
action they actually want to perform.

Gestures as Substitute
Gestures conceal rich resources that can be used to solve
many of the above problems. For instance Lift-and-Tap
gestures [13] can serve as a substitute for clicking on a
touch-screen. A small rocking motion of the finger is used
in SimPress [3] to differentiate a tracking vs. a dragging
state. This technique, developed for vision-tracked
tabletops, simulates a pressure-sensitive device by
analyzing the finger contact area on the screen. In a
different context, Rollpad [15] was proposed as an alternative

to Multitap for inputting characters onto a 12-key soft
keypad. Instead of tapping a key several times, the user

presses the key and then performs a rolling motion of the
finger to select one individual character. Gestures also

provide an efficient means for selecting commands, as with
Marking Menus [12] and derived techniques [2], or for
improving navigation [10].

Gestures can also be used to set continuous values as in
Flow menus [8] and Control menus [18]. Rubbing
techniques such as Rub-Pointing [14] have been recently
proposed to allow view zooming with a single hand.
Rubbing, which relies on diagonal to-and-fro movements of
the finger, can be seen as a natural substitute for the mouse
wheel on touch-screens. Of course, multi-touch gestures
provide other ways of achieving such operations but that
resource is out of reach when a single hand has to both hold
and operate the device.

Analyzing the geometrical path or the space-time
kinematics of gestures can also provide valuable
information. For example Curve Dial [23], which focuses
on the curvature of user motion, was proposed for eyes-free
scrolling through documents. Swipe or Flick gestures [6],
easy to recognize automatically thanks to their specific
acceleration pattern, are now used on a number of
commercial systems, including the iPhone, where they
serve to control scrolling.

Thus gestural interaction appears to be one of the most
promising approaches for offsetting the input limitations of
passive touch-screens, especially in the case of small
handheld devices. In the next sections, we introduce a
coherent set of gestures that seems well suited for thumb
interaction. We first explain why one classification
criterion, corresponding to the slide vs. roll distinction,
seems particularly robust and easy to leverage for users as
well as recognition algorithms. We will then turn to
experiments that give support to this statement and some
possible applications.

SLIDES VS. ROLLS: DISTINGUISHING TWO MOTION
REGIMES TO HELP DISAMBIGUATE THE INPUT
As mentioned above, some interaction techniques have
incorporated the roll more or less incidentally [3, 15]. To
our knowledge, however, no principled justification of the
distinction between slide and roll gestures has been offered
so far. The distinction in question, which is grounded in the
physics of friction, probably enjoys a broader scope of
application than one might believe at first.

Whenever the contact zone of the user’s fingertip shifts on a
touch-screen, a stream of events is registered by the system
and a move is identified. But according to elementary
physics [e.g., 20], two categories of moves, the slide and the
roll of the fingertip, should be easily distinguishable. When
a finger touches a solid surface, the contact forces may be
decomposed into two perpendicular forces, N and T, whose
orientations are normal and tangential, respectively, to the
mutual surface. When the two contacting surfaces move

relative to each other, the tangential sliding force is opposed
by kinetic friction Tk = µk*N, where µk is the characteristic
coefficient of kinetic friction of the combination of
materials under consideration. Now suppose the system is at
rest and the tangential effort is gradually increased: so long
as the tangential effort is insufficient to trigger motion, the
blocking force is known as static friction Ts ≤ µs*N, where
µs is the coefficient of static friction. The reason why it
usually takes a greater force to start the motion than to keep
it going is because typically µs>µk.

The fingertip has a spheroid shape, and so its motion on a
touch-screen may be likened to that of a ball on a flat
surface. A ball will either slide or roll depending on
whether or not the horizontal component of the contacting
forces overcomes static friction [5]. The fingertip must have
just the same two possible regimes of motion on a touch-
screen. Finger motion being detected on the touch-screen, if
the skin moves relative to the screen surface, then the
fingertip is sliding, otherwise it is rolling.

Physical transducers placed underneath the screen would
probably allow errorless automatic discrimination of finger
rolls from slides, but it turns out that the two categories of
moves are actually easy to discriminate in a purely
kinematic approach (Fig. 2). As a matter of fact, the
recognition algorithm we used in Exp. 1, to be described
below, was able, after little training, to perform the binary
classification with virtually no errors.

Fig. 2. Typical instances of the kinematic traces produced on
the touch-screen by the 16 elemental gestures of our repertoire.
Shown are the successive positions of the fingertip barycenter

(Δt ≈ 25 ms).

Note that finger rolls, like finger slides, may be modulated in

direction and, to some extent, in amplitude. Obviously the
range of amplitudes that can be covered with a roll of the
thumb is limited, hence the label MicroRoll. Note also that a
MicroRoll, just like a slide, can serve to trace curves.
Finally, for users it is quite a different experience to

produce a roll (where motion of the hand is supported by a
stationary fingertip) and a slide (where it is the fingertip
that moves), meaning that the latter cannot be confused
with the former. In sum we do seem to have at our disposal
a reliable and convenient extra bit of information for the
design of gestural vocabularies.

APPLICATION OF THE DISTINCTION: A SIXTEEN-
GESTURE REPERTOIRE FOR THE TOUCH SCREEN
Leveraging the above facts we designed a set of 16
elemental gestures (Fig. 3) that fall in two main categories:

• Six MicroRoll gestures (Fig. 1): four straight gestures
(in all cardinal directions) and two circular gestures
(clockwise and counterclockwise);

• Ten Slide gestures: four Drag and four Swipe gestures
(in all cardinal directions) plus two diagonal Rubbing
gestures, small repetitive diagonal motions as in [14].

We then developed an algorithm to automatically recognize
that 16-gesture set. This gesture recognizer uses a simple
but efficient supervised-learning algorithm based on K-
nearest neighbors, in which the gestures are characterized
by a set of 10 features from Rubine's algorithm [22].

Fig. 3. The 16 elemental gestures of our repertoire viewed

from the side and from above.

EXPERIMENT 1
Our goal was to check whether Drags, Swipes, Rubbings
and Rolls could be actually recognized. To this end, we
simply asked a sample of participants to draw all 16
elementary gestures of Fig. 3 at different locations on a
small handheld screen. Half of the gesture database (odd-
numbered trials) was used for training the recognition
algorithm, and the other half for evaluating its accuracy.

Methods
Task. The participants were asked to draw the gestures,
while seated, with the thumb of their preferred hand, that
hand also serving to hold the device.

Each trial started with a printed message specifying the
requested movement, followed by the appearance of a circle
60 pixels in diameter indicating where to make the gesture
on the screen. Each of the 16 gestures was performed four

times at nine screen locations. These locations were
determined by dividing the screen into nine 80x106 pixel
areas, with the location mark appearing in the center of the
area. The trial ended when the thumb was lifted from the
screen.

Apparatus. All software was developed in C# using the .Net
Compact Framework. This experiment and the next two
were performed on a HTC P3600 running Windows Mobile
5.0 with a QVGA 320x240 pixel resistive touch-screen.

Participants. Ten right-handed volunteers (3 female) aged
23-28, none of whom were experienced with touch-screen
handhelds, were recruited from our institution and received
a handful of candies for their participation.

Design. Participants made each gesture four times in each
area, yielding a total of 16 x 9 x 4 = 576 gestures per
participant. Latin squares were used to counterbalance order
within participant. For each gesture, participants performed
four trials in each area. The experiment was run in a single
session, which lasted about 40 minutes, the first 10 minutes
being dedicated to instructions and warm up.

Results
Recognition Rates. The overall recognition rate was 95.3%,
despite the fact that some of the gestures we asked were
rather hard to make in some locations. A Drag or a Swipe to
the right is unlikely to be spontaneously started close to the
right border, because that would constrain gesture
amplitude. In some systems, a Slide can serve to drag an
object outside the viewport, in which case it can be
performed ins the direction of a border and started close to
that border. Such a gesture, however, has a different
kinematic signature, involving a delay (once the border is
reached, the user must keep the finger pressed to scroll the
viewport). A more elaborate algorithm could certainly
detect these specific gestures, but they were out of the scope

of the current study.

Table 1. Recognition rates with unlikely gestures discarded.

Leaving aside the unlikely Drag and Swipe gestures that
started near a boundary and were directed toward it, the
average recognition rate of our algorithm was raised to
97.1% (Table 1).

Note that that result was obtained without any feedback to
the participants about the possible ambiguity of their
gestures (which provided the training material for the
recognition algorithm). Real-life users, with feedback,
would probably adapt their gestures to maximize recognition
performance. Moreover, the recognition algorithm can
easily be made to adapt to each individual user, just by

adding new samples. This can be done automatically, in an
incremental way, without the user even knowing.

Time. The durations of the 16 gestures were measured from
the first screen contact to the thumb lift. The Swipe,
unsurprisingly, was the fastest gesture (129ms). On average
over the four directions it took participants 230ms to
complete a cardinal MicroRoll, and it took them 339ms to
complete a circular MicroRoll. Note that these durations are
appreciably shorter than the 938ms and 458ms we
measured for Rubbing and Drag.

IMPLEMENTING OUR NEW GESTURAL VOCABULARY
Exp. 1 showed that Drag, Swipe, Rubbing and MicroRoll
gestures can be reliably distinguished on handheld touch-
screens. As shown by the experiments to be reported, they
are also easy to discriminate from standard "Tap" gestures,
which do not involve motion on the screen. Rubbing and
MicroRoll gestures can thus be used to augment standard
interaction styles without conflict. As stated in previous
sections, the absence of hotkeys, modifiers and mouse
buttons seriously hinders interaction on mobile devices.
Rubbings and MicroRolls can serve as substitutes for these
missing interaction resources. While Rubbing [14] looks
like a natural substitute for mouse wheeling (for zooming or
scrolling), MicroRoll gestures can be used in a variety of
ways. Let us introduce one intuitively appealing way of
using them for performing useful and frequently used
functions (Fig. 4b):

1. The Bottom, Left and Right MicroRolls replace the
familiar cut, paste and copy hotkeys. Although crucial
for many applications, this functionality is currently
unavailable on many mobile platforms, including the
iPhone.

2. The Top MicroRoll activates a precision mode. Targets
on handhelds are often too small for selection with a
fingertip.

3. The Clockwise MicroRoll gesture replaces the right
mouse button for opening context menus. This option
makes it possible to activate Marking menus in the
expert mode, or likewise to open context menus with no
delay.

4. The Counterclockwise MicroRoll gesture triggers a
quasi-mode that will control the effect of a subsequent
Drag (e.g., specifying that a drag-and-drop, rather than a
view scroll, is required).

Learnability and the RollMark Menu Concept
One problem that can affect the learnability of gesture-
based interfaces is that the commands are invisible.
Marking menus solve this problem by displaying the
commands if the user keeps the mouse pressed for a short
delay. The same principle can be applied to MicroRoll
gestures. As shown in Fig. 4a, a RollMark menu recalling
which MicroRolls trigger which commands would appear
only if the finger was kept immobile on the screen for
300ms. As for traditional Marking menus, MicroRoll
gestures may remain exactly the same in novice and expert
modes, the only thing being that a novice, but not an expert,
will wait for the RollMark menu display.

Fig. 4. The RollMark Menu.

Such a solution precludes recourse to temporal delays for
opening context menus but this is not a major concern in an
implementation like ours, which uses another (clockwise)
MicroRoll gesture to control the opening of context menus.
We mentioned that a MicroRoll takes about the same time
as a usual menu-opening timeout, on the order of 300ms (in
fact, it should be realized that timeouts often last more than
their programmed duration, being restarted by any
inadvertent twitch of the finger). In sum, delays should
probably be reserved for novice usage, with experienced
users allowed to avoid them.

While MicroRoll gestures could be used in many
sophisticated ways, we found it important, as a first step, to
evaluate their efficiency in a simple realistic case. The two
experiments we performed compared MicroRolls with two
conventional ways of performing copy and paste sequences
on mobile devices.

EXPERIMENT 2
The aim of Exp. 2 was to evaluate the efficiency of
MicroRoll (MR) gestures relative to two conventional
techniques, the toolbar (TB) and the context menu (CM),
which represent two sensible but different compromises in
the face of space scarcity. A TB, whose main drawback is
its permanent consumption of screen real estate, offers
directly clickable buttons and thus should allow fast
interaction. The CM seems better suited for small screens as
it pops up only when needed, hence presumably its high
incidence in the Windows Mobile environment, but it has
the drawback of imposing an activation timeout delay on
users, which can only slow down the interaction.

Experimental Task
We used a fairly realistic copy and paste task with the
constraint that the pasting area was located away from the
viewport, thus requiring the participant to perform a pan
between the initial copy and the final paste (Fig. 5a).
Participants had to perform five consecutive operations: (1)
select the object to be copied (materialized by a red circular
target 60 pixels in diameter appearing at screen center); (2)
activate the copy command; (3) pan the view to reveal the
pasting zone, also a 60 pixels round target, but green in
color; (4) select that second target; and (5) activate the paste
command. Any of these five operations had to be repeated
if missed (for instance in the case of an empty or wrong
selection). Thus, some copy and paste sequences involved
more than five operations, but all five of the above list, by
construction, had to be successfully performed once.
Thanks to this feature, task completion time will be
considered below a safe net measure of performance.

Panning was done by means of Drag gestures. The location of
the pasting area was invariably in the East direction, at a
constant horizontal distance of 240 pixels from screen center
(Fig. 5a). Depending on the technique condition, the copy

and paste commands were activated by tapping on one of four

buttons of the TB, by activating one of four items of the CM,
or by making one among four possible cardinal MR gestures.
Thus in all three conditions, the participants were offered

four possible options, only two of which had to be used.

To activate the CM, participants had to press the (copy or
paste) target, wait 300ms, and then select the appropriate
button by sliding their thumb to the appropriate location and
lifting it up. While commonly used in menu systems, this
pointing strategy differs from that of Windows Mobile,
which requires users to first open the menu, then lift the
finger and finally tap on the appropriate item. Thus our
implementation of the CM technique required one less
pointing act. In the MR condition no visual indication, such
as icons or text labels, was provided to participants, who
had learned the simple rule that left = copy and right = paste.

We were aware that the efficiency of our two reference
techniques depended on several parameters. Especially
critical was the size of the graphical buttons, whether tool
icons or menu items. We resolved to consider two button
heights that correspond to two established standards: 20
pixels (about 3 mm on the test device) is commonly used for

buttons in Windows Mobile applications; 60 pixels (about 9
mm) approximates the size of icons in the iPhone main
window and corresponds to Parhi et al.’s recommendations
for thumb operation on handhelds [16].

Button width was chosen accordingly: a typical toolbar
button being square, so were ours, with the copy and paste
buttons located at the left-most and second left-most
locations respectively (Fig. 5b). Menu items had to be
rectangular because of their text material; we chose a
convenient aspect ratio of 3.

Apparatus and Participants
We used the same equipment as in Exp. 1. Twelve right-
handers volunteers from our institution (aged 23-31, two
female) participated.

Experimental Design
This experiment involved a 3 x 2 within-participant design,
the factors being the technique (TB, CM, MR) and the level
of difficulty for button acquisition (easy, 60px-high buttons
vs. difficult, 20px-high buttons). The order of presentation
of the conditions was counterbalanced within participants
with Latin squares. For each technique, participants
performed the easy task first so as to familiarize themselves
with the technique (first block of trials) before handling the
more difficult condition (second block). Eight trials were
performed for each difficulty level. The button size factor is
obviously irrelevant to the MR technique, which does not
rely on any button. Therefore the MR technique was tested
in the same conditions in two consecutive blocks, yielding
the same total number of copy and paste sequences as for
the other two techniques. In total, the experiment involved
12 participants × 3 techniques (TB, CM, MR) × 2 levels of
task difficulty × 8 trials = 576 copy and paste sequences.
We performed the same 3 Technique x 2 task difficulty
within-subject analysis of variance (ANOVA) on several
dependent variables.

Fig. 5. (a) Layout of the copy and paste task; (b) The TB and
CM displays.

Results
Task completion time (Fig. 6) was measured from the first
thumb-screen contact to the thumb lift that followed a
successful paste. Recall that the full sequence involved at
least five operations and that panning could involve several

drag gestures. Significant effects were found for Technique
(F2,22=12.54, p<.001), Task difficulty (F1,11=24.74, p<.001),
and for the Technique x Task difficulty interaction
(F2,22=4.44, p<.016). Post-hoc multiple means comparison
tests showed that for the condition with the rather large
60px buttons, TB (4.0s on average) was faster than CM
(7.0s), MR falling in between (5.4s), not significantly
different from TB or CM. However, for the more realistic
condition with the 20px buttons of Windows Mobile

applications, MR (5.8s) was much faster than both TB
(8.1s) and CM (10.1s). The difference between the two
blocks for MR performance was quite small and non
significant.

The ANOVA showed a significant effect of Technique on
panning time, measured from the first screen contact to the
last lift of the thumb (F2,22=6.27, p<.004): panning took less
time with TB (0.68s) than MR (1.07s) and CM (1.17s). One
explanation is that the final x-location to which the paste
target was panned was technique dependent (F2,22=17,27,
p<.0001): paste targets were released closer to the right
border of the 320x240px screen, that is, panned over a
smaller amplitude, for TB (20px) than for CM (43px) and
MR (53px). Presumably the participants found it more
comfortable using CM and MR to operate not too close
from the border (we will return to the screen location issue
in the next experiment).

Fig. 6. Mean total time. Bars represent 95% confidence

interval based on between-participant standard deviations.

Finally the ANOVA was run on total less panning time.
Similar results were obtained, with significant effects for
Technique (F2,22=13.56, p<.001), Task difficulty
(F1,11=28.42, p<.001), and Technique x Task difficulty
(F2,22=5.5, p<.01). Post hoc tests gave similar results: for the
easy task (60px buttons), TB (3.4s on average) was faster
than CM (5.9s), with MR in between (4.4s), not
significantly different from TB or CM. For the difficult task
(20px buttons), MR (4.7s) was faster than both TB (7.4s)
and CM (8.8s). Again, there was no significant change in
MR performance from the first to the second block.

Discussion
One should not be too impressed by the fact that the best
performance for this experiment was obtained with the TB
technique in the easy task condition. We did manipulate the
size of graphical objects involved in the TB and the CM
techniques to acknowledge the fact that this variable is
critical to both of these techniques, but one should keep in
mind that a TB with 60px icons would be rather problematic
on the small screens of real-life handhelds. The really
interesting finding of this experiment is that the MR technique

outperformed not only the CM technique unconditionally
(with a 23% or 43% time saving, depending on menu-item

size) but also our realistic implementation of the TB
technique, that which used the sort of graphical icons used
in the Windows Mobile environment (a 28% time saving).

EXPERIMENT 3
The goal of this experiment was to see how the techniques
of interest fate for different screen locations in the case,
often met in the real world, where objects are too small for
direct selection. Participants again had to copy and paste
objects but since in real-life applications the object to be
copied may well be a text element, here we used 20x20px
copy and paste areas (instead of 60x60px in Exp. 2).
Another difference with Exp. 2 is that the object to be
copied could appear in four different screen locations.

The TB technique was used as our baseline condition. The
CM, found in Exp. 2 to elicit far slower performance than
the two other techniques, was dismissed. Three commands
were used instead of two: in addition to the copy and the
paste buttons (for TB) or gestures (for MR), a Precise-
selection command was provided for selecting the very
small copy and paste targets. Because of their small size,
the targets were selected by using a variant of TapTap [21],

an automatic zooming technique for handhelds that
improves over Zoom-Pointing [1].

TapTap and RollTap
The original TapTap technique requires tapping the screen
twice to select a small target: (1) the first tap serves to
select an area of interest; (2) this area is then automatically
zoomed and displayed at the middle of the screen; (3) the
second tap serves to select the target in the magnified view.
An advantage of this design is that the zoomed target is
generally pretty close to screen center when the second tap
is performed. This second tap is hence executed in a
remarkably small amount of time, which makes this
technique especially fast [21].

TapTap was combined with MicroRolls by replacing its
first tap with a top MicroRoll gesture. A nice feature of
RollTap, this new precise-selection technique, is that it can
be activated on request, just when needed. It will not
interfere with usual interaction styles: tapping on a target
does just what is expected.

Task
The task was essentially the same as in Exp. 2 but the
number of operations was doubled (leaving the pan aside).
Whether for copying or for pasting participants had to: (1)
press the screen to select the area; (2) trigger the modified
version of TapTap; (3) press the screen to select the
magnified target; and (4) activate the copy or paste
command. Modified TapTap was either triggered by
performing a top MR, as explained above, or by tapping on
the third button of the TB. Participants always had to
perform all these steps and were not allowed to attempt to
select targets directly (this would have caused numerous
errors and made results hard to compare).

Apparatus and Participants
We used the same equipment as in Exp. 1. Twelve right-
handers volunteers from our institution (aged 23-31, three
female) participated.

Experimental Design
We used a 2 x 2 x 4 within-participant design using as
factors the technique (TB, MR), the level of difficulty for
button acquisition (easy 60px-high buttons vs. difficult
20px-high buttons), and the screen location of the to-be-
copied object (obtained by dividing into four identical
rectangular zones the space available under the large icon
version of the toolbar). The order of presentation of
conditions was counterbalanced within participants using
Latin squares. For each technique, however, participants
performed the easy task in a first block of trials before
experiencing the more difficult condition in a second block.

Note that here, as in Exp. 2, difficulty was an irrelevant
factor for the MR technique, where commands were
activated without recourse to any graphical object. Thus for
the MR technique, the first and second blocks of trials were
identical replications. The justification for this design
option is that it would have been unfair to allot half practice
time to our novel technique, however easy to grasp, in its
evaluation relative to a far more familiar technique.

In summary the experiment involved 12 participants × 2
techniques (TB, MR) × 2 levels of task difficulty × 4 target
locations x 4 trials = 768 copy and paste sequences.

Results and Discussion
As any error had to be immediately corrected, in this
experiment again the error rate was 0%, allowing task-
completion time (measured in the same way as for Exp. 2)
to be used as a safe net measure of performance.

Exp. 3 delivered two main findings concerning total task-
completion time (Fig. 7). The first was that MRs generally
outperformed the TB technique (F1,11 = 10.60, p < .02).
While using the TB technique it took participants on
average 12.06s to complete the copy and paste sequence,
they needed only two-thirds of that time (8.04s) when
allowed to use the MR technique.

This conclusion obviously must be qualified by taking into
account the considerable dependence of TB performance
upon icon size (actually revealed in our ANOVA by a
strong and highly significant technique × difficulty
interaction (F1,11 = 21.15, p < .002). As visible in Fig. 7,
performance with the MR technique was roughly twice as
fast as with the small-icon version of the TB (15.71s, a
value that differs very significantly from 8.04s), and MR
did at least as well as the easy, large-icon version of the TB
(8.41s). Keeping in mind that this research is aimed at
designing novel techniques for use on devices that all suffer
from space scarcity, the fact that MRs actually allowed very
fast performance at zero real-estate expense is a potent
argument for its consideration.

The same pattern of results was obtained for total less
panning time, unsurprisingly since panning occupied a
modest and little variable proportion of total time (1.16s
and 0.97s on average for MR and TB, corresponding to
14.4% and 8.0% of total completion time, respectively).

The second main finding was that performance was more
dependent on the screen location of the gesture for the MR
than the TB technique, as revealed by a significant
technique × location interaction (F3,33 = 7.29, p < .002).
The pattern of data in Fig. 7 shows that MRs were more
quickly performed in the left, rather than right half of the
screen. Such a dependency of thumb operation is not very
surprising given the high degree of motor idiosyncrasy of
the thumb. But the data of Exp. 3 do show that MR gestures
can be made successfully in various screen locations.

Our experience during the experimental sessions was that
the MR technique, new to participants, was quite easy to
learn. That impression was supported by the data of Exp. 3.
Had the technique required substantial training, we would
presumably have observed an improvement in its utilization
from the first to the second block of trials. In fact, virtually
no change was observed (from 8.16s to 7.93s, a difference
far from statistical significance).

Fig. 7. Mean total task completion time for the four locations

and the two techniques of Exp. 3.

SUBJECTIVE PREFERENCES
Several participants spontaneously complained about
fatigue when using the CM and TB techniques with small
buttons. It turns out that no reservation was expressed by
the participants about the MR technique. We asked the
participants to rank the techniques by order of global
preference. MR was ranked first by a majority of
participants, but the result fell short of significance. We also
recorded from our participants subjective evaluations of the
MR, TB, and CM techniques, using a set of Likert scales to
quantify judgments on the techniques’ merits, but no
significant patterns emerged from the data (Fig. 8).

Fig. 8. Subjective Preferences (Experiments 2) on a Five-points

Likert scale.

GENERAL DISCUSSION
According to the preceding, MicroRoll gestures are quite
promising for selecting commands on passive touch-
screens. Screen real estate is obviously a scarce resource on
handheld devices. Context menus seem well suited as they
allow to save that resource. Unfortunately, however, their
speed performance is limited: Exp. 2 shows that MicroRolls
are nearly twice faster than context menus in the realistic
case of 20px buttons. MicroRolls can thus be deemed a
better technique when the number of commands is limited.

Toolbars and similar interactors are the other common
technique for issuing commands on handhelds with a GUI.
Compared with context menus, toolbars have opposite
advantages and drawbacks: they allow faster performance
but they consume a substantial amount of screen space. The
larger the buttons, the more serious this problem, with the
consequence that in general applications (most notably
Windows Mobile) only use small 20px buttons.
Acknowledging that toolbar buttons, unfortunately, have to
be reduced to that sort of size on handhelds, one is led to
conclude from our data that for these devices MicroRolls
are definitely more efficient than a toolbar: not only was
performance 28% faster in Exp. 2, and twice as fast in Exp.
3, but this result was obtained with a technique that does
not waste any screen real estate.

The halving of task-completion time with MicroRolls that
we observed in Exp. 3 is especially worth considering as
that was certainly our most realistic experiment, both the
buttons and the copy and paste targets having small, most
commonly observed, sizes. Finally, although MicroRolls
were of course not designed to serve as a substitute for
large-buttoned toolbars, it is interesting to note that they
compared well even in this case, being slower, but not
significantly so, in Experiment 2 and significantly faster in
Experiment 3.

Of course there are situations where other techniques than
MicroRolls are more appropriate. For instance, in contrast
with menus, MicroRolls can only support a limited number
of commands. However, an important property of

MicroRolls is that they enjoy a high degree of compatibility
with other techniques because they leverage an unoccupied
input channel. For instance MicroRolls can be used together
with menus, as these two techniques will not interfere with
each other.

Besides, as already suggested, using a MicroRoll gesture
instead of a temporal delay for opening context menus
would probably further improve their performance. This
design would also make it possible to use delays for
triggering the MicroRoll novice mode: as for traditional
Marking menus, a RollMark menu could be made to appear
after a certain timeout to display the available commands to
the user. Such a design would solve the well-known
learnability problem characteristic of gesture-based
interfaces. It would also facilitate the implicit learning of
the expert mode, gestures remaining the same in novice and
expert modes.

Several reasons can explain the efficiency of MicroRoll
gestures. First, unlike context menus, they do not involve
delays. Second, they require less information on the part of
the user than does the pointing act required by the context-
menu and toolbar techniques. A MicroRoll gesture, just like
a normal Marking-menu gesture, requires the specification
of just one direction: if its orientation must be contained in
a given, usually fairly tolerant, angular sector, its amplitude
suffers no maximum constraint thanks to the natural stop
provided by the hand biomechanics. Moreover, techniques
that require pointing movements are handicapped by the
problem, quite inevitable in miniaturized interfaces, of a
rather high ratio of fingertip size to screen size. The
foregoing provides a general argument in favor of
techniques based, like MicroRolls, on directional rather
than pointing gestures.

One important outcome of this study is that MicroRolls
were shown to combine successfully with TapTap, giving
birth to an intuitive novel technique, which we called
RollTap. This new precise-selection technique has two
interesting properties: it can be activated on request and it
does not interfere with usual interaction styles like standard
tapping. In fact RollTap could be made to trigger multiple-
level zooms, with the magnifying command issued
iteratively in case of extremely small targets. This feature
makes this new technique quite flexible.

PERSPECTIVES
The application scope of the finger-slide vs. finger-roll
distinction in HCI seems fairly large. The one bit of
information available in this distinction, which may be
especially valuable when it comes to the extreme case of
thumb interaction, remains potentially useful too in less
constrained cases like multi-touch interaction, where it may
provide an extra input channel to be combined with others.
The potential usefulness of the slide vs. roll discrimination
extends naturally to quite different situations where a

keyboard is missing, like for example multi-person
interaction on a wall screen and tabletops. In general, we
believe the future of MicroRoll is in their association with
other techniques with complementary potentialities. The
RollMark and RollTap techniques presented in this paper
are two steps in this direction. We plan to investigate in
future research whether MicroRolls and other gestures can
be efficiently concatenated.

ACKNOWLEDGMENTS
This research arose from a close collaboration with Alcatel-
Lucent researchers, notably B. Aidant, J. Daigremont, and
B. Legat, whom we warmly thank for their uninterrupted
advice and encouragements. We gratefully acknowledge the
financial support of UBIMEDIA, a joint laboratory of
Alcatel-Lucent and Institut TELECOM. We thank the
anonymous reviewers of this article for their insightful
critiques and recommendations. Many thanks to G. Bailly
and S. Malacria, who helped us in multiple ways, and to all
our participants.

REFERENCES
1. Albinsson, P-A. and Zhai, S. (2003). High precision

touch screen interaction. Proc. CHI’03, ACM Press,
105-112.

2. Bailly, G., Lecolinet, E., and Nigay, L. (2008). Flower
menus: a new type of marking menu with large menu
breadth, within groups and efficient expert mode
memorization. Proc. AVI '08. ACM Press, 15-22.

3. Benko, H., Wilson, A., and Baudisch, P. (2006). Precise
selection techniques for multi-touch screens. Proc.
CHI’06, ACM Press, 1263-1272.

4. Buxton, W. (1990). A three-state model of graphical
input. Proc. INTERACT '90. Amsterdam: Elsevier
Science Publishers B.V. (North-Holland), 449-456.

5. Cross, R. (1999). The bounce of a ball. Am. J. Physics,
67, 222-227.

6. Geißler, J. (1998). Shuffle, throw or take it! Working
efficiently with an interactive wall. Proc. CHI’98,
Extended Abstracts, 265-266.

7. Grossman, T., Dragicevic, P., Balakrishnan, R. (2007).
Strategies for accelerating on-line learning of hotkeys.
Proc. CHI’07, ACM Press, 1591-1600.

8. Guimbretiére, F., Winograd, T. (2000). FlowMenu:
combining command, text, and data entry. Proc.
UIST’00, 213-216.

9. Karlson, A. K., Bederson, B. B. (2008). One-handed
touchscreen input for legacy applications. Proc. CHI’08,
ACM Press, 1399-1408.

10. Karlson, A. K., Bederson, B. B., SanGiovanni, J. (2005).
AppLens and launchTile: two designs for one-handed
thumb use on small devices. Proc. CHI’05, ACM Press,
201-210.

11. Karlson, A., Bederson, B., Contreras-Vidal, J. (2007).
Understandingon User Interface Design and Evaluation
for Mobile Technology, Idea Group.

12. Kurtenbach, G. and Buxton, W. (1991). Issues in
combining marking and direct manipulation techniques.
Proc. UIST’91, ACM Press, 137-144.

13. MacKenzie, I. S., Oniszczak, A. (1998). A comparison
of three selection techniques for touchpads. Proc.
CHI’98, ACM Press, 336-343.

14. Olwal, A., Feiner, S., Heyman, S. (2008). Rubbing and
Tapping for precise and rapid selection on touch-screen
displays. Proc. CHI’08, ACM Press, 295-304.

15. Oniszczak, A., MacKenzie, I. S. (2004). A comparison
of two input methods for keypads on mobile devices.
Proc. NordiCHI '04, ACM Press, 101-104.

16. Parhi, P., Karlson, A., Bederson, B. (2006). Target Size
Study for One-Handed Thumb Use on Small
Touchscreen Devices. Proc. MobileHCI’06. 203-210.

17. Pascoe, J., Ryan, N., Morse, D. (2000). Using while
moving: HCI issues in fieldwork environments. ACM
Trans. Comput.- Hum. Interact. 7(3):417-437.

18. Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E. (2000).
Control menus: execution and control in a single
interactor. Proc. CHI'00, ACM Press, 263-264.

19. Potter, R. L., Weldon, L. J., Shneiderman, B. (1988). Impr-
oving the accuracy of touchscreens: an experimental eval-
uation of three strategies. Proc.CHI88, ACM Press, 27-32.

20. Resnick, R. & Halliday, D. (1966). Physics, Part I. New
York: John Wiley & Sons, Inc.

21. Roudaut, A., Huot, S., Lecolinet, E. (2008). TapTap and
MagStick: improving one-handed target acquisition on
small touchscreens. Proc. AVI’08, ACM Press, 146-153.

22. Rubine, D. (1991). Specifying gestures by example.
SIGGRAPH Comput. Graph. 25, 4 (Jul. 1991), 329-337.

23. Smith, G., schraefel, m. c., Baudisch, P. (2005). Curve
dial: eyes-free parameter entry for GUIs. Proc. CHI'05
Extended Abstracts, ACM Press, 1146-1147.

24. Vogel, D., Baudisch, P. (2007). Shift: a technique for
operating pen-based interfaces using touch. Proc.
CHI’97, ACM Press, 657-666.

25. Yatani, K., Partridge, K., Bern, M., Newman, M. W.
(2008). Escape: a target selection technique using visually
cued gestures. Proc. CHI’08, ACM Press, 285-294.

