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ABSTRACT 
The input vocabulary for touch--screen interaction on 
handhelds is dramatically limited, especially when the thumb 

must be used. To enrich that vocabulary we propose to 
discriminate, among thumb gestures, those we call 
MicroRolls, characterized by zero tangential velocity of the 
skin relative to the screen surface. Combining four categories 
of thumb gestures, Drags, Swipes, Rubbings and 
MicroRolls, with other classification dimensions, we show 
that at least 16 elemental gestures can be automatically 
recognized. We also report the results of two experiments 
showing that the roll vs. slide distinction facilitates thumb 
input in a realistic copy and paste task, relative to existing 
interaction techniques. 
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INTRODUCTION 
The reduction in mass and size that has taken place in the 
transition from the old desktop computer to the laptop, 
along with the extension of communication networks, has 
greatly increased the mobility of computer utilization. 
Today one may read one’s mail virtually anywhere. That 
change has been possible at essentially no cost from the 
viewpoint of computer usability: leaving aside the 
difference between a mouse and a touchpad, everything has 
been miniaturized but the interface. A modern laptop looks 
like a normal-sized keyboard attached to a normal-sized 
screen, with all the rest occupying virtually no room.  

With the next qualitative leap, from the laptop to the 
handheld, computer users no longer need to be seated. This 

 

 
Fig. 1. The six MicroRoll gestures used in this study. 

new step in the direction of increased mobility has involved 
a lot more miniaturization. But with handheld devices some 
critical scale threshold has been passed as now interface 
components are miniaturized, raising an unprecedented 
challenge to interaction design. 

In comparison with the interface of a standard laptop, those 
of handheld terminals like smartphones or PDAs are 
dramatically impoverished. Most familiar input devices 
have been removed because, if scaled down to such an 
extent, they would no longer match the size of the human 
hand. The devices that are most noticeably missing are the 
keyboard and the mouse, or any equivalent contrivance that 
would deliver the functionalities of the two buttons and the 
wheel of the standard mouse.  

Combined with the very limited amount of screen real 
estate, these limitations result in a dramatic reduction of 
interaction bandwidth. We focus here on the fairly extreme 
case of handheld devices that must be operated with just 
one thumb [11,17], a restriction that arises quite naturally in 
a variety of real world situations (e.g. the user is standing in 
the metro, and one hand is busy full time to ensure upright 
stance). In such a case not only must the input rely on a 
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single hand, but the hand that provides the input must also 
hold the device. Given the anatomy of the human hand, in 
such a case only the thumb can be used to cover the surface 
area of the screen. 

HANDHELD INPUT LIMITATIONS, RELATED WORK 
Handheld design is all about compromising in the face of a 
shrunk and impoverished interface. Smartphones with an 
extended touch-screen are suitable for the display of images 
or for Web browsing, but this is at the expense of the 
physical keyboard. Tricky interaction design problems 
result from combinations of the following factors: the 

absence of a keyboard or physical buttons, the intrinsic 
limitations of passive touch-screens, and the mediocre 
precision of finger operation on touch-screens. 

Hotkeys and Modifiers 
The absence of a keyboard deprives the user, by the same 
token, of hotkeys and modifiers. Although computer users 
usually know a small number of hotkeys, they use them 
often [7]. Recourse to hotkeys for the copy, cut, and paste 

functions is an especially critical instance, considering their 

high frequency of use. It is noteworthy that nothing 
equivalent to that crucial resource exists on a sophisticated 
device like the iPhone.  

Interaction States 
As often pointed out [3,4,13,14], graphical user interfaces 
require several different interaction states. The interaction 

model actually varies with the input technology [4], but 

virtually all modern computers make it possible for users to 
specify whether they want to move the cursor, drag an 
object, activate an interactor, or open a context menu and 
select one of its items. For instance, with the mouse or 
touchpad buttons (possibly in combination with modifier 
keys) one may discriminate tracking, activating/dragging, 
and ‘menuing’. Active touch-screens provide similar 
capabilities, thanks to stylus buttons and a technology that 
detects whether the stylus is close to or actually touching 
the screen, plus the possibility of measuring pressure. 
Unfortunately, common capacitive and resistive touch-
screens used in mobile devices do no provide equivalent 
capabilities. The user cannot specify the desired state, a 
drawback that results in several ambiguities and limitations, 
listed below. 

Context and Marking Menus 
For lack of some equivalent for a right-mouse button, menu 
opening generally relies on a temporal delay. Not only does 
this degrade performance when using linear menus, it may 
also seriously hinder interaction techniques, like Marking 
Menus [12], that rely on an expert mode based on gestures. 
If one has no control over quasi-modes to specify the 
meaning of one’s gestures, there is no way to state whether 
the gesture should affect the selected object (e.g. initiating a 

drag & drop) or trigger a contextual Marking menu. Waiting 

for a delay before drawing gestures would make little sense. 

Precise Positioning 
The absence of a tracking state not only prohibits 
interaction techniques based on hovering, such as tooltips, 
but also constrains users to point directly at the correct screen 
location without the possibility of finely adjusting the cursor 
position before actual selection. This problem is particularly 
unwelcome on handheld devices on which, due to absolute 
size problems, text and target selection is especially 
difficult, all the more so when interacting with a thumb.  

Efficient techniques for finger pointing have been proposed 
[9,19,21,24,25] but how to allow the user to activate them is 
a difficult design problem. Having them permanently 
available would not only conflict with standard interaction 
styles but also degrade efficiency when dealing with large 
enough targets. In an attempt to solve this problem, 
Thumbspace [9] is activated after pressing a physical 
button, while Shift [24] relies on temporal delays, taking 
into account the properties of target objects (the larger the 
object the longer the delay before Shift is activated). A 

simpler, and presumably more efficient option would be to 
let users decide which pointing mode they want to elicit 
when pressing the screen to select some graphical object. 

Again, interaction states could allow this, were they 
available on passive touch-screens. 

Avoiding Widgets 
Another approach for avoiding precision problems, also 
liable to save screen real estate, consists in replacing on-
screen widgets with alternate interaction techniques. For 
example, viewports do not have scrollbars on the iPhone, 
the scrolling being obtained by direct finger dragging. One 
drawback is that the user can no longer drag an object 
contained in a viewport or scroll an embedded viewport. 
This limitation is especially problematic for Web pages 
which demand scrolling but also often contain graspable or 
scrollable widgets (e.g. Google Maps). One solution is to 
take into account the starting point of the drag by checking 
whether the finger was initially pressed on some object or 
an empty area. But then precision becomes an issue, 
especially for finger interaction. As in the previous case, 
interaction states are needed to allow users to specify which 
action they actually want to perform. 

Gestures as Substitute 
Gestures conceal rich resources that can be used to solve 
many of the above problems. For instance Lift-and-Tap 
gestures [13] can serve as a substitute for clicking on a 
touch-screen. A small rocking motion of the finger is used 
in SimPress [3] to differentiate a tracking vs. a dragging 
state. This technique, developed for vision-tracked 
tabletops, simulates a pressure-sensitive device by 
analyzing the finger contact area on the screen. In a 
different context, Rollpad [15] was proposed as an alternative 

to Multitap for inputting characters onto a 12-key soft 
keypad. Instead of tapping a key several times, the user 



presses the key and then performs a rolling motion of the 
finger to select one individual character. Gestures also 

provide an efficient means for selecting commands, as with 
Marking Menus [12] and derived techniques [2], or for 
improving navigation [10]. 

Gestures can also be used to set continuous values as in 
Flow menus [8] and Control menus [18]. Rubbing 
techniques such as Rub-Pointing [14] have been recently 
proposed to allow view zooming with a single hand. 
Rubbing, which relies on diagonal to-and-fro movements of 
the finger, can be seen as a natural substitute for the mouse 
wheel on touch-screens. Of course, multi-touch gestures 
provide other ways of achieving such operations but that 
resource is out of reach when a single hand has to both hold 
and operate the device. 

Analyzing the geometrical path or the space-time 
kinematics of gestures can also provide valuable 
information. For example Curve Dial [23], which focuses 
on the curvature of user motion, was proposed for eyes-free 
scrolling through documents. Swipe or Flick gestures [6], 
easy to recognize automatically thanks to their specific 
acceleration pattern, are now used on a number of 
commercial systems, including the iPhone, where they 
serve to control scrolling. 

Thus gestural interaction appears to be one of the most 
promising approaches for offsetting the input limitations of 
passive touch-screens, especially in the case of small 
handheld devices. In the next sections, we introduce a 
coherent set of gestures that seems well suited for thumb 
interaction. We first explain why one classification 
criterion, corresponding to the slide vs. roll distinction, 
seems particularly robust and easy to leverage for users as 
well as recognition algorithms. We will then turn to 
experiments that give support to this statement and some 
possible applications. 

SLIDES VS. ROLLS: DISTINGUISHING TWO MOTION 
REGIMES TO HELP DISAMBIGUATE THE INPUT 
As mentioned above, some interaction techniques have 
incorporated the roll more or less incidentally [3, 15]. To 
our knowledge, however, no principled justification of the 
distinction between slide and roll gestures has been offered 
so far. The distinction in question, which is grounded in the 
physics of friction, probably enjoys a broader scope of 
application than one might believe at first.  

Whenever the contact zone of the user’s fingertip shifts on a 
touch-screen, a stream of events is registered by the system 
and a move is identified. But according to elementary 
physics [e.g., 20], two categories of moves, the slide and the 
roll of the fingertip, should be easily distinguishable. When 
a finger touches a solid surface, the contact forces may be 
decomposed into two perpendicular forces, N and T, whose 
orientations are normal and tangential, respectively, to the 
mutual surface. When the two contacting surfaces move 

relative to each other, the tangential sliding force is opposed 
by kinetic friction Tk = µk*N, where µk is the characteristic 
coefficient of kinetic friction of the combination of 
materials under consideration. Now suppose the system is at 
rest and the tangential effort is gradually increased: so long 
as the tangential effort is insufficient to trigger motion, the 
blocking force is known as static friction Ts ≤ µs*N, where 
µs is the coefficient of static friction. The reason why it 
usually takes a greater force to start the motion than to keep 
it going is because typically µs>µk. 

The fingertip has a spheroid shape, and so its motion on a 
touch-screen may be likened to that of a ball on a flat 
surface. A ball will either slide or roll depending on 
whether or not the horizontal component of the contacting 
forces overcomes static friction [5]. The fingertip must have 
just the same two possible regimes of motion on a touch-
screen. Finger motion being detected on the touch-screen, if 
the skin moves relative to the screen surface, then the 
fingertip is sliding, otherwise it is rolling.  

Physical transducers placed underneath the screen would 
probably allow errorless automatic discrimination of finger 
rolls from slides, but it turns out that the two categories of 
moves are actually easy to discriminate in a purely 
kinematic approach (Fig. 2). As a matter of fact, the 
recognition algorithm we used in Exp. 1, to be described 
below, was able, after little training, to perform the binary 
classification with virtually no errors.  

 

Fig. 2. Typical instances of the kinematic traces produced on 
the touch-screen by the 16 elemental gestures of our repertoire. 
Shown are the successive positions of the fingertip barycenter 

(Δt ≈  25 ms). 

Note that finger rolls, like finger slides, may be modulated in 

direction and, to some extent, in amplitude. Obviously the 
range of amplitudes that can be covered with a roll of the 
thumb is limited, hence the label MicroRoll. Note also that a 
MicroRoll, just like a slide, can serve to trace curves. 
Finally, for users it is quite a different experience to 



 

produce a roll (where motion of the hand is supported by a 
stationary fingertip) and a slide (where it is the fingertip 
that moves), meaning that the latter cannot be confused 
with the former. In sum we do seem to have at our disposal 
a reliable and convenient extra bit of information for the 
design of gestural vocabularies.  

APPLICATION OF THE DISTINCTION: A SIXTEEN-
GESTURE REPERTOIRE FOR THE TOUCH SCREEN 
Leveraging the above facts we designed a set of 16 
elemental gestures (Fig. 3) that fall in two main categories: 

• Six MicroRoll gestures (Fig. 1): four straight gestures 
(in all cardinal directions) and two circular gestures 
(clockwise and counterclockwise); 

• Ten Slide gestures: four Drag and four Swipe gestures 
(in all cardinal directions) plus two diagonal Rubbing 
gestures, small repetitive diagonal motions as in [14].  

We then developed an algorithm to automatically recognize 
that 16-gesture set. This gesture recognizer uses a simple 
but efficient supervised-learning algorithm based on K-
nearest neighbors, in which the gestures are characterized 
by a set of 10 features from Rubine's algorithm [22].  

 
Fig. 3. The 16 elemental gestures of our repertoire viewed 

from the side and from above. 

EXPERIMENT 1  
Our goal was to check whether Drags, Swipes, Rubbings 
and Rolls could be actually recognized. To this end, we 
simply asked a sample of participants to draw all 16 
elementary gestures of Fig. 3 at different locations on a 
small handheld screen. Half of the gesture database (odd-
numbered trials) was used for training the recognition 
algorithm, and the other half for evaluating its accuracy. 

Methods 
Task. The participants were asked to draw the gestures, 
while seated, with the thumb of their preferred hand, that 
hand also serving to hold the device.   

Each trial started with a printed message specifying the 
requested movement, followed by the appearance of a circle 
60 pixels in diameter indicating where to make the gesture 
on the screen. Each of the 16 gestures was performed four 

times at nine screen locations. These locations were 
determined by dividing the screen into nine 80x106 pixel 
areas, with the location mark appearing in the center of the 
area. The trial ended when the thumb was lifted from the 
screen. 

Apparatus. All software was developed in C# using the .Net 
Compact Framework. This experiment and the next two 
were performed on a HTC P3600 running Windows Mobile 
5.0 with a QVGA 320x240 pixel resistive touch-screen. 

Participants. Ten right-handed volunteers (3 female) aged 
23-28, none of whom were experienced with touch-screen 
handhelds, were recruited from our institution and received 
a handful of candies for their participation. 

Design. Participants made each gesture four times in each 
area, yielding a total of 16 x 9 x 4 = 576 gestures per 
participant. Latin squares were used to counterbalance order 
within participant. For each gesture, participants performed 
four trials in each area. The experiment was run in a single 
session, which lasted about 40 minutes, the first 10 minutes 
being dedicated to instructions and warm up. 

Results 
Recognition Rates. The overall recognition rate was 95.3%, 
despite the fact that some of the gestures we asked were 
rather hard to make in some locations. A Drag or a Swipe to 
the right is unlikely to be spontaneously started close to the 
right border, because that would constrain gesture 
amplitude. In some systems, a Slide can serve to drag an 
object outside the viewport, in which case it can be 
performed ins the direction of a border and started close to 
that border. Such a gesture, however, has a different 
kinematic signature, involving a delay (once the border is 
reached, the user must keep the finger pressed to scroll the 
viewport). A more elaborate algorithm could certainly 
detect these specific gestures, but they were out of the scope 

of the current study. 

 
Table 1. Recognition rates with unlikely gestures discarded. 

Leaving aside the unlikely Drag and Swipe gestures that 
started near a boundary and were directed toward it, the 
average recognition rate of our algorithm was raised to 
97.1% (Table 1).  



Note that that result was obtained without any feedback to 
the participants about the possible ambiguity of their 
gestures (which provided the training material for the 
recognition algorithm). Real-life users, with feedback, 
would probably adapt their gestures to maximize recognition 
performance. Moreover, the recognition algorithm can 
easily be made to adapt to each individual user, just by 

adding new samples. This can be done automatically, in an 
incremental way, without the user even knowing. 

Time. The durations of the 16 gestures were measured from 
the first screen contact to the thumb lift. The Swipe, 
unsurprisingly, was the fastest gesture (129ms). On average 
over the four directions it took participants 230ms to 
complete a cardinal MicroRoll, and it took them 339ms to 
complete a circular MicroRoll. Note that these durations are 
appreciably shorter than the 938ms and 458ms we 
measured for Rubbing and Drag.  

IMPLEMENTING OUR NEW GESTURAL VOCABULARY 
Exp. 1 showed that Drag, Swipe, Rubbing and MicroRoll 
gestures can be reliably distinguished on handheld touch-
screens. As shown by the experiments to be reported, they 
are also easy to discriminate from standard "Tap" gestures, 
which do not involve motion on the screen. Rubbing and 
MicroRoll gestures can thus be used to augment standard 
interaction styles without conflict. As stated in previous 
sections, the absence of hotkeys, modifiers and mouse 
buttons seriously hinders interaction on mobile devices. 
Rubbings and MicroRolls can serve as substitutes for these 
missing interaction resources. While Rubbing [14] looks 
like a natural substitute for mouse wheeling (for zooming or 
scrolling), MicroRoll gestures can be used in a variety of 
ways. Let us introduce one intuitively appealing way of 
using them for performing useful and frequently used 
functions (Fig. 4b):  

1. The Bottom, Left and Right MicroRolls replace the 
familiar cut, paste and copy hotkeys. Although crucial 
for many applications, this functionality is currently 
unavailable on many mobile platforms, including the 
iPhone.  

2. The Top MicroRoll activates a precision mode. Targets 
on handhelds are often too small for selection with a 
fingertip. 

3. The Clockwise MicroRoll gesture replaces the right 
mouse button for opening context menus. This option 
makes it possible to activate Marking menus in the 
expert mode, or likewise to open context menus with no 
delay.  

4. The Counterclockwise MicroRoll gesture triggers a 
quasi-mode that will control the effect of a subsequent 
Drag (e.g., specifying that a drag-and-drop, rather than a 
view scroll, is required).  

Learnability and the RollMark Menu Concept 
One problem that can affect the learnability of gesture-
based interfaces is that the commands are invisible. 
Marking menus solve this problem by displaying the 
commands if the user keeps the mouse pressed for a short 
delay. The same principle can be applied to MicroRoll 
gestures. As shown in Fig. 4a, a RollMark menu recalling 
which MicroRolls trigger which commands would appear 
only if the finger was kept immobile on the screen for 
300ms. As for traditional Marking menus, MicroRoll 
gestures may remain exactly the same in novice and expert 
modes, the only thing being that a novice, but not an expert, 
will wait for the RollMark menu display. 

 
Fig. 4. The RollMark Menu. 

Such a solution precludes recourse to temporal delays for 
opening context menus but this is not a major concern in an 
implementation like ours, which uses another (clockwise) 
MicroRoll gesture to control the opening of context menus. 
We mentioned that a MicroRoll takes about the same time 
as a usual menu-opening timeout, on the order of 300ms (in 
fact, it should be realized that timeouts often last more than 
their programmed duration, being restarted by any 
inadvertent twitch of the finger). In sum, delays should 
probably be reserved for novice usage, with experienced 
users allowed to avoid them. 

While MicroRoll gestures could be used in many 
sophisticated ways, we found it important, as a first step, to 
evaluate their efficiency in a simple realistic case. The two 
experiments we performed compared MicroRolls with two 
conventional ways of performing copy and paste sequences 
on mobile devices. 

EXPERIMENT 2 
The aim of Exp. 2 was to evaluate the efficiency of 
MicroRoll (MR) gestures relative to two conventional 
techniques, the toolbar (TB) and the context menu (CM), 
which represent two sensible but different compromises in 
the face of space scarcity. A TB, whose main drawback is 
its permanent consumption of screen real estate, offers 
directly clickable buttons and thus should allow fast 
interaction. The CM seems better suited for small screens as 
it pops up only when needed, hence presumably its high 
incidence in the Windows Mobile environment, but it has 
the drawback of imposing an activation timeout delay on 
users, which can only slow down the interaction. 



 

Experimental Task 
We used a fairly realistic copy and paste task with the 
constraint that the pasting area was located away from the 
viewport, thus requiring the participant to perform a pan 
between the initial copy and the final paste (Fig. 5a). 
Participants had to perform five consecutive operations: (1) 
select the object to be copied (materialized by a red circular 
target 60 pixels in diameter appearing at screen center); (2) 
activate the copy command; (3) pan the view to reveal the 
pasting zone, also a 60 pixels round target, but green in 
color; (4) select that second target; and (5) activate the paste 
command. Any of these five operations had to be repeated 
if missed (for instance in the case of an empty or wrong 
selection). Thus, some copy and paste sequences involved 
more than five operations, but all five of the above list, by 
construction, had to be successfully performed once. 
Thanks to this feature, task completion time will be 
considered below a safe net measure of performance.  

Panning was done by means of Drag gestures. The location of 
the pasting area was invariably in the East direction, at a 
constant horizontal distance of 240 pixels from screen center 
(Fig. 5a). Depending on the technique condition, the copy 

and paste commands were activated by tapping on one of four 

buttons of the TB, by activating one of four items of the CM, 
or by making one among four possible cardinal MR gestures. 
Thus in all three conditions, the participants were offered 

four possible options, only two of which had to be used. 

To activate the CM, participants had to press the (copy or 
paste) target, wait 300ms, and then select the appropriate 
button by sliding their thumb to the appropriate location and 
lifting it up. While commonly used in menu systems, this 
pointing strategy differs from that of Windows Mobile, 
which requires users to first open the menu, then lift the 
finger and finally tap on the appropriate item. Thus our 
implementation of the CM technique required one less 
pointing act. In the MR condition no visual indication, such 
as icons or text labels, was provided to participants, who 
had learned the simple rule that left = copy and right = paste. 

We were aware that the efficiency of our two reference 
techniques depended on several parameters. Especially 
critical was the size of the graphical buttons, whether tool 
icons or menu items. We resolved to consider two button 
heights that correspond to two established standards: 20 
pixels (about 3 mm on the test device) is commonly used for 

buttons in Windows Mobile applications; 60 pixels (about 9 
mm) approximates the size of icons in the iPhone main 
window and corresponds to Parhi et al.’s recommendations 
for thumb operation on handhelds [16].  

Button width was chosen accordingly: a typical toolbar 
button being square, so were ours, with the copy and paste 
buttons located at the left-most and second left-most 
locations respectively (Fig. 5b). Menu items had to be 
rectangular because of their text material; we chose a 
convenient aspect ratio of 3.  

Apparatus and Participants 
We used the same equipment as in Exp. 1. Twelve right-
handers volunteers from our institution (aged 23-31, two 
female) participated. 

Experimental Design 
This experiment involved a 3 x 2 within-participant design, 
the factors being the technique (TB, CM, MR) and the level 
of difficulty for button acquisition (easy, 60px-high buttons 
vs. difficult, 20px-high buttons). The order of presentation 
of the conditions was counterbalanced within participants 
with Latin squares. For each technique, participants 
performed the easy task first so as to familiarize themselves 
with the technique (first block of trials) before handling the 
more difficult condition (second block). Eight trials were 
performed for each difficulty level. The button size factor is 
obviously irrelevant to the MR technique, which does not 
rely on any button. Therefore the MR technique was tested 
in the same conditions in two consecutive blocks, yielding 
the same total number of copy and paste sequences as for 
the other two techniques. In total, the experiment involved 
12 participants × 3 techniques (TB, CM, MR) × 2 levels of 
task difficulty × 8 trials = 576 copy and paste sequences. 
We performed the same 3 Technique x 2 task difficulty 
within-subject analysis of variance (ANOVA) on several 
dependent variables. 

 

Fig. 5. (a) Layout of the copy and paste task;  (b) The TB and 
CM displays. 

Results 
Task completion time (Fig. 6) was measured from the first 
thumb-screen contact to the thumb lift that followed a 
successful paste.  Recall that the full sequence involved at 
least five operations and that panning could involve several 

drag gestures. Significant effects were found for Technique 
(F2,22=12.54, p<.001), Task difficulty (F1,11=24.74, p<.001), 
and for the Technique x Task difficulty interaction 
(F2,22=4.44, p<.016). Post-hoc multiple means comparison 
tests showed that for the condition with the rather large 
60px buttons, TB (4.0s on average) was faster than CM 
(7.0s), MR falling in between (5.4s), not significantly 
different from TB or CM. However, for the more realistic 
condition with the 20px buttons of Windows Mobile 



applications, MR (5.8s) was much faster than both TB 
(8.1s) and CM (10.1s). The difference between the two 
blocks for MR performance was quite small and non 
significant. 

The ANOVA showed a significant effect of Technique on 
panning time, measured from the first screen contact to the 
last lift of the thumb (F2,22=6.27, p<.004): panning took less 
time with TB (0.68s) than MR (1.07s) and CM (1.17s). One 
explanation is that the final x-location to which the paste 
target was panned was technique dependent (F2,22=17,27, 
p<.0001): paste targets were released closer to the right 
border of the 320x240px screen, that is, panned over a 
smaller amplitude, for TB (20px) than for CM (43px) and 
MR (53px). Presumably the participants found it more 
comfortable using CM and MR to operate not too close 
from the border (we will return to the screen location issue 
in the next experiment). 

 
Fig. 6. Mean total time. Bars represent 95% confidence 

interval based on between-participant standard deviations. 

Finally the ANOVA was run on total less panning time. 
Similar results were obtained, with significant effects for 
Technique (F2,22=13.56, p<.001), Task difficulty 
(F1,11=28.42, p<.001), and Technique x Task difficulty 
(F2,22=5.5, p<.01). Post hoc tests gave similar results: for the 
easy task (60px buttons), TB (3.4s on average) was faster 
than CM (5.9s), with MR in between (4.4s), not 
significantly different from TB or CM. For the difficult task 
(20px buttons), MR (4.7s) was faster than both TB (7.4s) 
and CM (8.8s). Again, there was no significant change in 
MR performance from the first to the second block. 

Discussion 
One should not be too impressed by the fact that the best 
performance for this experiment was obtained with the TB 
technique in the easy task condition. We did manipulate the 
size of graphical objects involved in the TB and the CM 
techniques to acknowledge the fact that this variable is 
critical to both of these techniques, but one should keep in 
mind that a TB with 60px icons would be rather problematic 
on the small screens of real-life handhelds. The really 
interesting finding of this experiment is that the MR technique 

outperformed not only the CM technique unconditionally 
(with a 23% or 43% time saving, depending on menu-item 

size) but also our realistic implementation of the TB 
technique, that which used the sort of graphical icons used 
in the Windows Mobile environment (a 28% time saving). 

EXPERIMENT 3  
The goal of this experiment was to see how the techniques 
of interest fate for different screen locations in the case, 
often met in the real world, where objects are too small for 
direct selection. Participants again had to copy and paste 
objects but since in real-life applications the object to be 
copied may well be a text element, here we used 20x20px 
copy and paste areas (instead of 60x60px in Exp. 2). 
Another difference with Exp. 2 is that the object to be 
copied could appear in four different screen locations.  

The TB technique was used as our baseline condition. The 
CM, found in Exp. 2 to elicit far slower performance than 
the two other techniques, was dismissed. Three commands 
were used instead of two: in addition to the copy and the 
paste buttons (for TB) or gestures (for MR), a Precise-
selection command was provided for selecting the very 
small copy and paste targets. Because of their small size, 
the targets were selected by using a variant of TapTap [21], 

an automatic zooming technique for handhelds that 
improves over Zoom-Pointing [1].  

TapTap and RollTap 
The original TapTap technique requires tapping the screen 
twice to select a small target: (1) the first tap serves to 
select an area of interest; (2) this area is then automatically 
zoomed and displayed at the middle of the screen; (3) the 
second tap serves to select the target in the magnified view. 
An advantage of this design is that the zoomed target is 
generally pretty close to screen center when the second tap 
is performed. This second tap is hence executed in a 
remarkably small amount of time, which makes this 
technique especially fast [21]. 

TapTap was combined with MicroRolls by replacing its 
first tap with a top MicroRoll gesture. A nice feature of 
RollTap, this new precise-selection technique, is that it can 
be activated on request, just when needed. It will not 
interfere with usual interaction styles: tapping on a target 
does just what is expected. 

Task  
The task was essentially the same as in Exp. 2 but the 
number of operations was doubled (leaving the pan aside). 
Whether for copying or for pasting participants had to: (1) 
press the screen to select the area; (2) trigger the modified 
version of TapTap; (3) press the screen to select the 
magnified target; and (4) activate the copy or paste 
command. Modified TapTap was either triggered by 
performing a top MR, as explained above, or by tapping on 
the third button of the TB. Participants always had to 
perform all these steps and were not allowed to attempt to 
select targets directly (this would have caused numerous 
errors and made results hard to compare).  



 

Apparatus and Participants 
We used the same equipment as in Exp. 1. Twelve right-
handers volunteers from our institution (aged 23-31, three 
female) participated. 

Experimental Design 
We used a 2 x 2 x 4 within-participant design using as 
factors the technique (TB, MR), the level of difficulty for 
button acquisition (easy 60px-high buttons vs. difficult 
20px-high buttons), and the screen location of the to-be-
copied object (obtained by dividing into four identical 
rectangular zones the space available under the large icon 
version of the toolbar). The order of presentation of 
conditions was counterbalanced within participants using 
Latin squares. For each technique, however, participants 
performed the easy task in a first block of trials before 
experiencing the more difficult condition in a second block. 

Note that here, as in Exp. 2, difficulty was an irrelevant 
factor for the MR technique, where commands were 
activated without recourse to any graphical object. Thus for 
the MR technique, the first and second blocks of trials were 
identical replications. The justification for this design 
option is that it would have been unfair to allot half practice 
time to our novel technique, however easy to grasp, in its 
evaluation relative to a far more familiar technique.  

In summary the experiment involved 12 participants × 2 
techniques (TB, MR) × 2 levels of task difficulty × 4 target 
locations x 4 trials = 768 copy and paste sequences. 

Results and Discussion 
As any error had to be immediately corrected, in this 
experiment again the error rate was 0%, allowing task-
completion time (measured in the same way as for Exp. 2) 
to be used as a safe net measure of performance. 

Exp. 3 delivered two main findings concerning total task-
completion time (Fig. 7). The first was that MRs generally 
outperformed the TB technique (F1,11 = 10.60, p < .02). 
While using the TB technique it took participants on 
average 12.06s to complete the copy and paste sequence, 
they needed only two-thirds of that time (8.04s) when 
allowed to use the MR technique.  

This conclusion obviously must be qualified by taking into 
account the considerable dependence of TB performance 
upon icon size (actually revealed in our ANOVA by a 
strong and highly significant technique × difficulty 
interaction  (F1,11 = 21.15, p < .002). As visible in Fig. 7, 
performance with the MR technique was roughly twice as 
fast as with the small-icon version of the TB (15.71s, a 
value that differs very significantly from 8.04s), and MR 
did at least as well as the easy, large-icon version of the TB 
(8.41s). Keeping in mind that this research is aimed at 
designing novel techniques for use on devices that all suffer 
from space scarcity, the fact that MRs actually allowed very 
fast performance at zero real-estate expense is a potent 
argument for its consideration. 

The same pattern of results was obtained for total less 
panning time, unsurprisingly since panning occupied a 
modest and little variable proportion of total time (1.16s 
and 0.97s on average for MR and TB, corresponding to 
14.4% and 8.0% of total completion time, respectively). 

The second main finding was that performance was more 
dependent on the screen location of the gesture for the MR 
than the TB technique, as revealed by a significant 
technique × location interaction  (F3,33 = 7.29, p < .002). 
The pattern of data in Fig. 7 shows that MRs were more 
quickly performed in the left, rather than right half of the 
screen. Such a dependency of thumb operation is not very 
surprising given the high degree of motor idiosyncrasy of 
the thumb. But the data of Exp. 3 do show that MR gestures 
can be made successfully in various screen locations.  

Our experience during the experimental sessions was that 
the MR technique, new to participants, was quite easy to 
learn. That impression was supported by the data of Exp. 3. 
Had the technique required substantial training, we would 
presumably have observed an improvement in its utilization 
from the first to the second block of trials. In fact, virtually 
no change was observed (from 8.16s to 7.93s, a difference 
far from statistical significance).  

 
Fig. 7. Mean total task completion time for the four locations 

and the two techniques of Exp. 3. 

SUBJECTIVE PREFERENCES 
Several participants spontaneously complained about 
fatigue when using the CM and TB techniques with small 
buttons. It turns out that no reservation was expressed by 
the participants about the MR technique. We asked the 
participants to rank the techniques by order of global 
preference. MR was ranked first by a majority of 
participants, but the result fell short of significance. We also 
recorded from our participants subjective evaluations of the 
MR, TB, and CM techniques, using a set of Likert scales to 
quantify judgments on the techniques’ merits, but no 
significant patterns emerged from the data (Fig. 8).  



 
Fig. 8. Subjective Preferences (Experiments 2) on a Five-points 

Likert scale.   

GENERAL DISCUSSION 
According to the preceding, MicroRoll gestures are quite 
promising for selecting commands on passive touch-
screens. Screen real estate is obviously a scarce resource on 
handheld devices. Context menus seem well suited as they 
allow to save that resource. Unfortunately, however, their 
speed performance is limited: Exp. 2 shows that MicroRolls 
are nearly twice faster than context menus in the realistic 
case of 20px buttons. MicroRolls can thus be deemed a 
better technique when the number of commands is limited.  

Toolbars and similar interactors are the other common 
technique for issuing commands on handhelds with a GUI. 
Compared with context menus, toolbars have opposite 
advantages and drawbacks: they allow faster performance 
but they consume a substantial amount of screen space. The 
larger the buttons, the more serious this problem, with the 
consequence that in general applications (most notably 
Windows Mobile) only use small 20px buttons. 
Acknowledging that toolbar buttons, unfortunately, have to 
be reduced to that sort of size on handhelds, one is led to 
conclude from our data that for these devices MicroRolls 
are definitely more efficient than a toolbar: not only was 
performance 28% faster in Exp. 2, and twice as fast in Exp. 
3, but this result was obtained with a technique that does 
not waste any screen real estate.  

The halving of task-completion time with MicroRolls that 
we observed in Exp. 3 is especially worth considering as 
that was certainly our most realistic experiment, both the 
buttons and the copy and paste targets having small, most 
commonly observed, sizes. Finally, although MicroRolls 
were of course not designed to serve as a substitute for 
large-buttoned toolbars, it is interesting to note that they 
compared well even in this case, being slower, but not 
significantly so, in Experiment 2 and significantly faster in 
Experiment 3.  

Of course there are situations where other techniques than 
MicroRolls are more appropriate. For instance, in contrast 
with menus, MicroRolls can only support a limited number 
of commands. However, an important property of 

MicroRolls is that they enjoy a high degree of compatibility 
with other techniques because they leverage an unoccupied 
input channel. For instance MicroRolls can be used together 
with menus, as these two techniques will not interfere with 
each other.  

Besides, as already suggested, using a MicroRoll gesture 
instead of a temporal delay for opening context menus 
would probably further improve their performance. This 
design would also make it possible to use delays for 
triggering the MicroRoll novice mode: as for traditional 
Marking menus, a RollMark menu could be made to appear 
after a certain timeout to display the available commands to 
the user. Such a design would solve the well-known 
learnability problem characteristic of gesture-based 
interfaces. It would also facilitate the implicit learning of 
the expert mode, gestures remaining the same in novice and 
expert modes. 

Several reasons can explain the efficiency of MicroRoll 
gestures. First, unlike context menus, they do not involve 
delays. Second, they require less information on the part of 
the user than does the pointing act required by the context-
menu and toolbar techniques. A MicroRoll gesture, just like 
a normal Marking-menu gesture, requires the specification 
of just one direction: if its orientation must be contained in 
a given, usually fairly tolerant, angular sector, its amplitude 
suffers no maximum constraint thanks to the natural stop 
provided by the hand biomechanics. Moreover, techniques 
that require pointing movements are handicapped by the 
problem, quite inevitable in miniaturized interfaces, of a 
rather high ratio of fingertip size to screen size. The 
foregoing provides a general argument in favor of 
techniques based, like MicroRolls, on directional rather 
than pointing gestures. 

One important outcome of this study is that MicroRolls 
were shown to combine successfully with TapTap, giving 
birth to an intuitive novel technique, which we called 
RollTap. This new precise-selection technique has two 
interesting properties: it can be activated on request and it 
does not interfere with usual interaction styles like standard 
tapping. In fact RollTap could be made to trigger multiple-
level zooms, with the magnifying command issued 
iteratively in case of extremely small targets. This feature 
makes this new technique quite flexible. 

PERSPECTIVES 
The application scope of the finger-slide vs. finger-roll 
distinction in HCI seems fairly large. The one bit of 
information available in this distinction, which may be 
especially valuable when it comes to the extreme case of 
thumb interaction, remains potentially useful too in less 
constrained cases like multi-touch interaction, where it may 
provide an extra input channel to be combined with others. 
The potential usefulness of the slide vs. roll discrimination 
extends naturally to quite different situations where a 



 

keyboard is missing, like for example multi-person 
interaction on a wall screen and tabletops. In general, we 
believe the future of MicroRoll is in their association with 
other techniques with complementary potentialities. The 
RollMark and RollTap techniques presented in this paper 
are two steps in this direction. We plan to investigate in 
future research whether MicroRolls and other gestures can 
be efficiently concatenated. 
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