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Abstract—The current data network scenario makes Traffic
Engineering (TE) a very challenging task. The ever growing
access rates and new applications running on end-hosts result
in more variable and unpredictable traffic patterns. By provid-
ing origin-destination (OD) pairs with several possible paths,
load-balancing has proven itself an excellent tool to face this
uncertainty. Most previous proposals defined the load-balancing
problem as minimizing a certain network cost function of the
link’s usage, assuming users would obtain a good performance
as a consequence. Since the network operator is interested in
the communication between the OD nodes, we propose instead
to state the load-balancing problem in their terms. We define a
certain utility function of the OD’s perceived performance and
maximize the sum over all OD pairs. The solution to the resulting
optimization problem can be obtained by a distributed algorithm,
whose design we outline. By means of extensive simulations
with real networks and traffic matrices, we show that our
approach results in more available bandwidth for OD pairs and
a similar or decreased maximum link utilization than previously
proposed load-balancing schemes. Packet-level simulations verify
the algorithm’s good performance in the presence of delayed and
inexact measurements.

I. INTRODUCTION

Network convergence is a reality. Many new services such
as P2P or HD-TV are offered on the same network, increas-
ing the unpredictability of traffic patterns. To make matters
worse, access rates have increased at such pace that the old
assumption that core link capacities are several orders of
magnitude bigger than access rates is no longer true. Thus,
simply upgrading link capacities may not be an economically
viable solution any longer. This means that network operators
are now, more than ever, in need of Traffic Engineering (TE)
mechanism which are efficient (make good use of resources),
but also automated (as much self-configured as possible),
more robust with respect to network variations (changes in
traffic matrix, or characteristics of transported flows) and more
tolerant (in case of node/link failures).

Dynamic load-balancing [1]–[3] is a TE mechanism that
meets these requirements. If an origin-destination (OD) pair
is connected by several paths, the problem is simply how to
distribute its traffic among these paths in order to achieve
a certain objective. In these dynamic schemes, paths are
configured a priori and the portion of traffic routed through
each of them (traffic distribution) depends on the current
traffic matrix (TM) and network’s condition. As long as the
traffic distribution is updated frequently enough, this kind of
mechanism is robust and their dependence on the network’s

condition makes them naturally tolerant too. Finally, if the
algorithm is also distributed (in the sense that each router
makes its choices independent of the others) the resulting
scheme will also be automated.

In intra-domain TE, the network operator is interested in the
communication between the OD nodes, i.e. the performance
they get from their paths. The OD pairs may actually be
regarded as the users of the network, sharing its resources
between them. It is natural then to state the load-balancing
problem (or TE in general) in their terms. An analogy can
be made with the congestion control problem [4], where
the users are the end-hosts and share link capacities. The
user’s performance (or “revenue”) is the obtained rate and the
objective is to maximize the sum over all users of a utility
function of it. In our case the problem is different since the rate
is given and we control only the portion of traffic sent through
each path. In this paper we propose to measure the user’s
performance by the mean available bandwidth (ABW) the OD
pair obtains in its paths, and then maximize the sum over all
pairs of a utility function of this measure. We will present a
distributed algorithm in which the independent adjustments
made by each OD pair lead to the global optimum. Our
comparison with previously proposed load-balancing schemes,
using several real networks and TMs, shows that the resulting
traffic distribution improves OD pairs’ perceived performance
and decreases maximum link utilization.

Almost all prior proposals in load-balancing (and in TE
in general) define a certain link-cost function of the link’s
capacity and load, and minimize the total network’s cost
defined as the sum over all links of this function. The resulting
traffic distribution will be relatively balanced, in the sense
that no single link will be extremely loaded. However, it is
not the situation of isolated links, but the condition on the
complete path(s) connecting OD nodes that counts. Solving
the problem in terms of the links is only an indirect way of
proceeding which does not allow us, for instance, to prioritize
a certain OD pair or to enforce fairness among the OD pairs.
For example, consider the network in Fig. 1. In it, all link
capacities are equal and all sources generate the same amount
of traffic. However, only OD pair 1 has more than one path
to choose from. It is relatively simple to verify that if the
link-cost function is the same in all links, the optimum is
obtained when traffic from OD pair 1 is equally distributed
among paths. However, since the upper path “disturbs” two
OD pairs while the lower one disturbs only one, depending
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Fig. 1. An example in which if the total cost of the network is minimized
the resulting optimum is unfair (popt = 0.5).

on our fairness definition it could make more sense to route
more traffic from OD pair 1 through the lower path.

The rest of the paper is organized as follows. The following
section discusses related work. Section III defines the network
model and associated notation, followed by the presentation of
the utility objective function. In Sec. IV we address the reso-
lution of the problem. We present some flow-level simulations
in Sec. V, where we show the performance of the distributed
algorithm and the advantages of our scheme over other TE
techniques. In Sec. VI we discuss some implementation issues,
and present some packet-level simulations. We conclude the
paper in Sec. VII.

II. RELATED WORK

Load-Balancing can be seen as a particular case of Multi-
Path routing. Many papers fall under this category, but we
will highlight only those closely related to our work, or which
inspired us for our proposal. We will further classify research
in this topic into two sub-categories depending on the time-
scale under consideration.

A. Long Time-Scale

Here we consider the minute or hour time-scale of routing.
A TM is assumed to exist and is used as an input to the prob-
lem. At this time-scale congestion control is not considered,
i.e. the TM is assumed independent of the current condition of
the network. However, it is clear that the TM is not static and
changes over time [5]. Furthermore, some network operators
offer their customers VPN services in which they only have to
specify the total maximum rate each node can receive or send
[6]. Load-Balancing has proved itself a very effective tool to
cope with this TM uncertainty, and research in this area differs
mainly in choosing which uncertainty set contains the real TM
at all times. Robust routing considers a well-defined set, while
dynamic load-balancing only the current TM.

The objective in robust routing is to find a unique static
routing configuration that fulfills a certain criteria, generally
the one that minimizes the maximum link utilization over all
TMs of the corresponding uncertainty set. The set can be for
instance the TMs seen the previous day, or the same day the
previous week [7]. A very used option is the polytope proposed
in [8] which allows for easier and faster optimization. In any
case, since a single traffic distribution that works for all TMs is
used, resources will be wasted for any specific TM. Shrinking
the uncertainty set results in improved performance, and there
are some papers in this direction [9], [10]. This shrinking

should be carefully done though, because if the selected set
is too small and the network faces an unforeseen TM, the
resulting performance is unpredictable. Finally, optimizing
under uncertainty is more difficult than “normal” optimization.
This increased difficulty forces the use of simpler optimization
criteria which can lead to a not so good performance (e.g. it
is known that minimizing the biggest link utilization generally
results in the use of longer paths).

In dynamic load-balancing, each origin node estimates its
entries in the TM and, based on feedback from the network,
adapts the portion of traffic it sends through each path.
After some iterations, and if the TM does not change in the
meantime, a global optimum is achieved. The two most well-
known proposals in this area are MATE and TeXCP. In MATE
[1], a convex link cost function is defined, which depends
on the link’s capacity and load. The objective is to minimize
the total network cost, for which a simple gradient descent
method is proposed. TeXCP [2] proposes a somewhat simpler
objective: minimize the biggest utilization (ρl/cl) each OD
pair sees in its paths. A rough description of the algorithm is
that origin nodes iteratively increase the portion of traffic sent
through the path with the smallest utilization. Another load-
balancing scheme which has the same objective but a relatively
different mechanism is REPLEX [3].

B. Short Time-Scale

This short time-scale refers to the congestion control time-
scale. Possible adaptations of TCP to the multi-path case (MP-
TCP) have been extensively studied, where the utility each user
perceives is now a function of the total rate he obtains from
all his paths. Several propositions exist in this direction. For
instance, in [11]–[13] the user is responsible of calculating his
total rate and how much he should send through each path.
In [14], the user only calculates the total sending rate and the
routers distribute traffic among paths.

A different but related problem is a user downloading
the same file from different sites or hosts (as in Bittorrent).
Currently, greedy policies are used where users change a path
only if they obtain a better performance on the new one. In
[15] the authors show that if current TCP flavors are used in
such schemes, the resulting allocation can be both unfair and
inefficient, and that a mechanism similar to MP-TCP should
be used instead.

In [16] the objective is to adapt the sending rates to
maximize the total users’ utility minus a network cost. The
idea is that users should also take into account the utilization
of the links and leave a margin for future arrivals. We believe
that this is not the best criteria. Congestion control should
enable users to consume all their fair-share of the path. At
this time-scale, saving a little bandwidth for future arrivals is,
in our opinion, a waste of resources.

Although MP-TCP constitutes a very interesting long-term
objective, no actual implementations of it exists. Allowing
end-hosts to choose their paths, or even making them aware
that several possibilities exist, presents several technical diffi-
culties in current Internet architectures.
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III. SOURCE-LEVEL UTILITY MAXIMIZATION

A. Network Model

We represent the network as L unidirectional links, indexed
by l, whose capacities are given by the column vector c =
[c1 . . . cL]T . We will reference OD pairs by index s = 1 . . . S.
By abuse of notation we will also reference by s its source
node, defined as the router through which its traffic ingress
the network. This node will be in charge of distributing this
traffic among paths, and in the sequel we will use the terms
source and OD pair without differentiation. Each source s has
ns possible paths towards its destination, indexed by i. Rs is
a L×ns matrix whose li entry is 1 only if source s uses link l
in its i-th path, and 0 otherwise. The incidence matrix is then
R = [R1 . . . RS ].

All traffic in the network is assumed to be elastic (i.e.
controlled by TCP). We suppose that flows arrive to source s as
a Poisson process of intensity λs. Each of these flows consist
of a random arbitrarily distributed workload (with mean ωs)
they want to transfer, generating a demand ds = λsωs. Each
flow is routed through path Psi with probability psi, and it uses
it throughout its lifetime. It is worth noting that we consider
a dynamic context, in which flows appear and have a finite
lifetime. It is also important to highlight that we are enforcing
flow-level load-balancing. Packet-level load-balancing (where
packets from the same flow can take different paths) may
have a negative impact on TCP performance due to packet
reordering on the receiver’s side.

The demand on path si is then psids = dsi. The
traffic distribution is defined simply as d = [d11 . . . d1n1

. . . dS1 . . . dSnS
]T , and the total load on link l (ρl) can be

easily calculated as the l-th entry of R × d. Under these as-
sumptions, if ρl is strictly smaller than cl for all l, the number
of flows in the network will not go to infinity [17], meaning
that the network supports the given traffic distribution.

B. The Utility Function

Since we consider the OD pairs as the users of the network,
a single performance indicator per pair should be used. Even if
we considered end-hosts as the users, a single indicator per OD
pair is also adequate since traffic belonging to a given OD pair
is composed of many flows generated by several end-hosts.

Our proposal defines first a revenue function us(d) which
indicates the performance perceived by source s when the
traffic distribution is d. The question is how this revenue
should be distributed among sources. We could for instance
maximize the average or the smallest of them. Drawing on
the work on congestion control [4], we define a concave
non-decreasing utility function Us(us) that represents the
satisfaction source s has with its revenue us(d), and maximize
the sum over all sources. The problem in this most general
version reads like this:

maximize
d

S∑
s=1

dsUs(us(d)) (1)

subject to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

We multiply each utility by ds to give more weight to those
nodes generating more traffic. The constraints assure that the
number of living flows is finite, that there are no negative
demands and that all traffic is routed.

A typical example of U(x) is the utility function that leads
to the so-called α-fairness [18]:

U(x) =

{
(1− α)−1x1−α, α 6= 1
log(x), α = 1

(2)

Throughout our simulations we will use α = 1, which
results in proportional fairness [19].

Probably the most delicate part of the problem is defining
us(d). A relatively simple path performance measure is its
available bandwidth (ABW). The ABW of path si is defined
as ABWsi = min

l∈si
{cl − ρl}. The meaning of this indicator

is twofold. On the one hand, it is a rough estimator of the
throughput TCP flows will obtain from the path [20], [21]. On
the other hand, a path with a big ABW is a “healthy” path, in
the sense that it can accommodate future unexpected increases
in traffic. Our definition for us will be the average ABW seen
by source s in all its paths, which presents a good balance
between current good conditions and prudence. Substituting
us in (1) results in:

maximize
d

S∑
s=1

dsUs

(
ns∑

i=1

psimin
l∈si

{cl − ρl}
)

(3)

This version of problem (1) is very important for the
elastic traffic case. Although TCP takes care of path’s resource
sharing, routing constitutes a degree of freedom in the obtained
rate that may be taken into account. Since the mean obtained
rate depends on the amount of traffic the flow is sharing
its path with, this obtained rate may be indirectly controlled
through routing. Let us assume that this relation is simply
that TCP flows traversing path si achieve a mean rate equal
to ABWsi. Then problem 3 is very similar to the multi-path
TCP one (see Eq. 4 in [15]) where each OD pair is seen as
serving ds MP-TCP flows. Notable differences are that the
decision variable is the portion of traffic sent through each
path (and not the amount of traffic), and that the mean of
the flow rate is used. However, by using standard TCP and
changing the ingress nodes only (not all end-hosts), users can
now be regarded as if they were using MP-TCP, with all
the advantages that this means (better performance and more
supported demands).

IV. SOLVING THE PROBLEM: DISTRIBUTED ALGORITHM

As the network’s size increases, a centralized algorithm that
solves (3) for the current TM does not scale well. In this
context, a distributed algorithm is not only desirable but, if
the network’s size is considerable, necessary. In this section
we present a distributed solution for our problem.

Let us rewrite (3) introducing the auxiliary variable tsi:
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maximize
d,t

S∑
s=1

dsUs

(
ns∑

i=1

psitsi

)
(4)

subject to tsi ≤ cl − ρl ∀s, i ∀l : l ∈ si

tsi > 0 , d ≥ 0 and
ns∑

i=1

dsi = ds

Although all constraints are affine, the objective function is
not concave, meaning that methods solving the dual problem
will only find a lower bound for the optimum. How tight is
this lower bound (i.e. how small is the duality gap) is closely
related to the lack of concavity of the function [22]. Our
estimations indicate that in this case the lack of concavity
is relatively small and decreases with the number of paths.
In view of these results, we applied the well-known Arrow-
Hurwicz method [23] and confirmed that the resulting traffic
distribution is a very tight approximation to the optimum.

This method is iterative and at each step updates the value
of the dual (primal) variables moving them in the direction of
(opposite to) the gradient of the Lagrangian function. In this
case, the Lagrangian function is:

L(p, t, θ) = −
S∑

s=1

dsUs

(
ns∑

i=1

psitsi

)
+

S∑
s=1

ns∑

i=1

∑

l:l∈si

θsil(tsi − cl + ρl) (5)

Paths with zero ABW will not be used by the algorithm and
the conditions on psi will be necessarily true (normalization
should be carefully done, though). Since the constraints are
enforced by the algorithm (presented below), we omitted the
Lagrange multipliers associated with the positiveness of psi

and tsi, and the normalization condition on psi. However, θsil

plays a very important role since it represents the cost of link
l generated by source s in its path i, resulting in a total cost
of θ̂l =

∑S
s=1

∑
i:l∈si θsil.

The derivatives of (5) with respect to ps0i0 and θs0i0l0 are:

∂L

∂ps0i0

= −ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ts0i0 + ds0

∑

l∈s0i0

θ̂l

∂L

∂θs0i0l0

= ts0i0 − cl0 + ρl0

The auxiliary variable tsi does not have much physical
meaning, except that for any given p its optimal value is
ABWsi. The derivative on θsil does not tell us much then,
except that it should decrease when l is not the bottleneck of
si (meaning that in such case its value should tend to zero).
This forces us to estimate the value of θsil. Before discussing
possible estimations, we will present the distributed algorithm:

Link algorithm. At times t = 1, 2, . . . link l:
1) Receives path demands dsi(t) from all sources using it,

and estimates its total load ρl(t).

2) Computes its cost for each path θsil(t) and its total cost
θ̂l(t).

3) Communicates this last value and its ABW to all travers-
ing sources.

Source algorithm. At times t = 1, 2, . . . source s:
1) Estimates its current demand ds(t).
2) Receives from the network the cost θ̂l(t) of all links it

uses and their ABW.
3) Computes the available bandwidth of its paths

(ABWsi(t)) and its mean ABW (us(t)).
4) For each of its paths, it calculates the number:

∆si(t) = ds(t)U ′
s (us(t)) ABWsi(t)− ds(t)

∑

l∈si

θ̂l(t)

5) It finds the path imax with the biggest ∆si(t) (∆max
s (t)).

It then updates each psi in the following manner (where
γ is a small constant):

psi(t + 1) = [psi(t) + γ(∆si(t)−∆max
s (t))]+

psimax
(t + 1) = 1−

∑

i=1...ns
i 6=imax

psi(t + 1)

We will now discuss possible estimations of θsil. The
Karush-Kuhn-Tucker (KKT) conditions [23] state that the
derivative of (5) with respect to tsi evaluated at the optimum
should necessarily be zero. This means that at optimality:

∂L

∂ts0i0

= −ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ps0i0 +

∑

l:l∈s0i0

θs0i0l = 0

If path si only has one bottleneck, there would only be one
nonzero θs0i0l in the addition, a fact that may be used to make
a first estimation of θsil. However, the link does not know the
source’s mean ABW. To maintain communications between
elements in the network as restricted as possible, links will
assume that all the sources that use them have a mean ABW
equal to their ABW. The link’s estimation of θsil will then be:

θsil =





dsiU
′ (cl − ρl) if l = argmin

l∈si
{cl − ρl}

0 otherwise
(6)

We have assumed, for simplicity’s sake, that all sources use
the same known utility function. This is the cost function we
will use, thus finishing the specification of the algorithm. As
we will see in Sec. V-A, the consequences of this approxima-
tion are not significant and the algorithm yields a very good
estimation of the optimum. Details on how to implement this
algorithm in a real network are discussed in Sec. VI.

V. FLUID-LEVEL SIMULATIONS

A. Distributed Algorithm Performance

In this section we shall present some simple examples
to gain some insight into the proposed framework and to
verify that the resulting traffic distribution of the distributed
algorithm is not far from the actual optimum. We first present
fluid-level simulations to verify its behavior in an idealized
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scenario
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Fig. 3. The example topology, and its optimum traffic distribution as a
function of d.

context. We have also included some packet-level simulations
to analyze the effect of imprecise and delayed measurements,
which are presented in the next section.

The first example we will consider is the simplest one: a
single source has two possible paths to choose from. The two
paths have a capacity of 3.0 and 4.0 respectively. In Fig. 2 we
can see the value of p1 (the portion of traffic routed through
the path with the biggest capacity) obtained by the distributed
algorithm and the actual optimum, as a function of the demand
generated by the source.

We first remark that the distributed algorithm approximates
very well the optimum, being the biggest difference less than
0.05. The second aspect that is worth noting is that the
distributed algorithm always tends to “over-use” the widest
path. This can be explained by the approximation we made
in (6). Since U(x) is concave, U ′(x) is a non-increasing
function, meaning that if x1 > x2 then U ′(x1) ≤ U ′(x2).
So, when a link has an ABW bigger than the source’s average,
its estimation of the price will be smaller than it should. In this
example, it means that link 1 will calculate a smaller price,
which results in the source sending more traffic through it than
at optimality.

Consider now the example in Fig. 3. In it, all links have a
capacity of 4.0. Source 2 generates a total demand d2 = 1.0,
and we analyze the optimum traffic distribution while varying
d1 (the demand generated by source 1). Notice how, even if
the ABW source 1 sees on the lower path is the same as in
the last example, it concentrates more traffic in the wider path
than before. The presence of source 2 makes the lower path
more “expensive”. Also note that in this case the distributed
algorithm approximates even better the global optimum.

Finally, we analyze some examples in the network of Fig.
1. In particular, we will consider the case of cl = 5.0∀l where
source 1 generates a demand d1 and the rest a demand d. The
two graphs in Fig. 4 shows the optimum traffic distribution
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Fig. 4. Some case-scenarios for the network in Fig. 1

for d = 2, 4 as a function of d1. The three curves represent
the actual optimum, the value obtained by the distributed
algorithm, and the one obtained by both MATE and TeXCP.
We can see that while d1 is relatively small and the ABW is
enough, source 1 uses only the lower path. If any of these
conditions is not true, p will rapidly go to 0.5, but always
privileging better conditions on the upper path.

B. The Benefits of Utility Maximization

In this section we will assess the performance gain achieved
by our proposal (UM from now on, as in Utility Maximization)
over two well-known load-balancing techniques: MATE and
TeXCP, which we already presented in Sec. II. It is important
to highlight that the results shown in this section were obtained
by the distributed algorithm. We tried some centralized numer-
ical optimization methods and obtained very similar results,
verifying that approximations we did had little effect.

The comparison will be made in two real networks, with
several real TMs, calculating for each of these demands two
performance indicators: mean ABW perceived by sources (us)
and link utilization (ρl/cl), whose importance we have already
discussed. We could consider other performance indicators,
such as queueing delay or path propagation delay. However,
calculation of the former depends heavily on the assumed
traffic model, and we shall suppose that the latter has already
been taken into account by the operator in the choice of paths.

For each TM we measured a weighted mean us, where
the corresponding weight is ds/

∑
ds. This average provides

us with a rough idea of the performance as perceived by
traffic. A good value of this average indicator could however
hide some pathological cases where some OD pairs obtain
a bad performance. That is why we also measured the 10%
quantile and the minimum us. The comparison will be made
by dividing the value obtained by UM by the one obtained by
the other load-balancing technique in each case.

For each TM we also calculated the mean, 90% quantile
and maximum utilization on the network for each of the
mechanisms. The difference between the TeXCP indicators
and the other mechanisms is presented.

1) Comparison in Abilene: Our first case study is Abilene
[24], a well-known academic network which consists of 12
nodes and 15 bidirectional links all with the same capacity.
The topology comes as an example in the TOTEM toolbox
[25] and we used 388 demands (spanning a complete week)
of dataset X11 from [26]. The paths we used in this case
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Fig. 6. Link utilization for TeXCP, UM and MATE in the Abilene network

were constructed by hand, trying to give sources as much path
diversity as possible, but limiting the hop count.

In Fig. 5 we can see the boxplots of the us indicators. We
first note that the weighted mean us is always bigger in UM
than in MATE, being generally between 1-2% and at most
4%. On the other hand, TeXCP obtains a much smaller mean
us, generally between 4-7% and as much as 12% smaller. No
conclusive results can be obtained from the quantile us. In the
minimum us, UM achieves a minimum us that is generally
between 6-12% (and can be as big as 20%) bigger than MATE.
As expected, TeXCP obtains the best results in this aspect,
although its gain over UM is not so large.

Fig. 6 shows the results on link utilization. Both the mean
and the quantile do not present any substantial difference
between the three mechanisms (except for a relatively bigger
mean utilization for TeXCP). It is in the maximum utilization
that we can see a clearer distinction between them, where
as expected TeXCP always obtains the best results. However,
and in concordance with the us indicators, its gain over UM
is smaller than over MATE, the former being generally 1-2%
and the latter between 3-7%.

2) Comparison in Géant: The second case scenario is
Géant [27]. This European academic network connects 23
nodes using 74 unidirectional links, with capacities that range
from 155 Mbps to 10 Gbps. The topology and TMs (477
in total, covering a three week period) were obtained from
TOTEM’s webpage [5], [25]. In this case paths were con-
structed by a shortest path algorithm, where we used the
inverse of the capacity as the link’s weight. For each OD pair
we computed two paths. The first is simply the shortest path,
we then prune the network of the links this path uses, and
compute the second shortest path.

Results for the us in this case can be seen in Fig. 7. This
time, results of both UM and MATE are more similar, where
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Fig. 8. Link utilization for TeXCP, UM and MATE in the Géant network

the mean and quantile us are somewhat bigger for UM than
MATE (although in some cases the difference easily exceeds
5%), and the minimum is relatively bigger for MATE than
UM. However, the results of the comparison between UM and
TeXCP are clearly in favor of the former. The mean ABWP is
generally 7-10% bigger, going as high as 13%. With respect
to the minimum ABWP , the results are logically better for
TeXCP, but the difference is not significant.

Fig. 8 shows that the results for the link utilization are
also very similar between UM and MATE. The difference
between the two and TeXCP is not very significant, specially
in the mean and quantile. With respect to the maximum
utilization, TeXCP obtains only subtle improvements over the
rest. However, there are some cases where the difference with
MATE is more than 10%.

VI. IMPLEMENTATION ISSUES

In this section we will discuss some practical issues of the
distributed algorithm. Its first clear requirement is that border
routers have to be able to send arbitrary portions of traffic
through the different paths. Secondly, in order to measure dsi,
interior routers should distinguish between traffic belonging to
a given path that is traversing its links.

These requirements are accomplished for instance by
MPLS. Hashing can be used in order to load-balance traffic
with an arbitrary distribution. Packets belonging to a given si
can be identified by its label header. A counter for each of
them should be kept by interior routers, indicating the number
of routed bytes belonging to a given label. Periodically, each
router calculates the corresponding dsi by dividing its counter
by the measurement interval, after which they reset it. In order
to avoid noisy measurements, some filtering should be applied.
In our simulations a simple exponential filter was sufficient.
The total load ρl is then calculated as the sum of all dsi that
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use the link. The ABW of link l can be easily calculated as the
difference between the total capacity and this value. However,
in order to avoid numerical problems, the maximum between
the ABW and a relatively small value (for instance cl/100)
should be used.

Another important aspect is the communication between
link and source. Explicit messages from the source to the link
are not necessary, since communication in that sense is simply
how much traffic source s is sending through link l. It is true
that what actually reaches the link will always be smaller or
equal than originally at the source, but this approximation does
not affect the algorithm’s performance.

The most challenging communication is from the link
towards the source. We will use the same approach as TeXCP
and use probe packets, which in our case will contain the
path’s ABW and total cost (

∑
l:l∈si θ̂l). Periodically, the source

sends a probe packet, initially indicating as the path’s ABW
and cost ∞ and 0.0 respectively. As the probe advances
towards the destination node, each interior router checks the
ABW indicated in it. If this value is bigger than that of the
outgoing link, the router overwrites it with the link’s ABW (and
“remembers” it). When the destination node receives the probe
packet, he sends it back to the source through the same path
but in the opposite direction. As it is going back, each interior
router checks whether the final ABW indicated on the probe
packet is the one its link had when the packet first passed.
If this is the case, it means that he is the bottleneck of the
particular path. He then calculates θsil accordingly, updates
the link’s total cost θ̂l, and adds this value to the total path
cost indicated on the packet. Finally, the source receives the
path’s ABW and total cost, and updates his load distribution.

When applying the distributed algorithm, one rapidly real-
izes that the value of γ (the adaptation step) is very important.
This value indicates how fast the probabilities adapt. A very
big value makes the algorithm unstable, while a very small one
makes it unresponsive. The problem is that a “good” choice
of γ depends on the network topology, but also on the current
load. A value that works when the network is too congested
may make the network unresponsive when the network is
lightly loaded. In this last case one may think that it is not
very urgent to change the traffic distribution to the optimum.
Research on this direction will be the object of future work.

As a final remark we will emphasize the importance of load
measurement periods being smaller (several times smaller)
than the inter-probe period. This way, the source can clearly
appreciate the effects of the last load distribution update. If
this is not the case, the distributed algorithm will either be too
unstable or unresponsive.

A. Packet-Level Simulations

In order to verify the correct operation of the algorithm in
a realistic context (i.e. delayed and unprecise measurements),
we implemented it in an ns-2 [28] simulation script. The first
example we will present is again the one of Fig. 1. This time,
all links have a capacity of 1.0 Mbps, except for the “access”
ones which have 2.0 Mbps, and all transmission delays are
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Fig. 9. Evolution of p over time in the example of Fig. 1

20 ms. Traffic consists of elastic flows with an exponentially
distributed size with mean 20 kB, arriving as a Poisson process
of the corresponding intensity so as to generate a demand
d = 400 kbps for all sources. The exponential filter’s parameter
is set to β = 0.7, and γ is set to 250 × 10−9 (although
it may seem like a small value, we measured everything in
bps). Probabilities are updated every 60 seconds and load
measurements are made every 20 seconds. Fig. 9 shows the
evolution of p (the upper path’s portion of source 1 traffic)
over time for several initial values. Two important aspects
of the algorithm are highlighted in this example. First, the
initial condition has virtually no effect on the stationary
behavior of p. Secondly, the distributed algorithm converges
to the optimum very fast (less than 15 iterations). Finally,
the simulations indicate that, although they traverse a more
congested link, flows on the lower path are transferred faster
than those in the upper one. This can be explained by the
bigger queueing delay in the upper path. The second router on
the lower path has no queueing delay, because packet size is
constant, and their interarrival time is shaped by the previous
router. This means that, by preferring less shared links, the
algorithm avoids the use of links with big queueing delays.

We will now present an example where two UM load-
balancing algorithms interact. In Fig. 10 we can see a simple
case scenario. There are two sources and each of them can use
two paths, one of which is shared. Links as well as the traffic
characteristics are the same as in the previous example. The
initial probabilities are set on both sources so that the shared
link is not used, maximizing the likelihood of oscillations.
Probabilities are updated every 50 seconds (γ = 5×10−9) and
the load measurements are made every 10 seconds. Sources
are however not coordinated and update their probabilities at
different moments. Both sources generate the same demand,
approximately 1.1 Mbps, which the network cannot initially
support. The optimal distribution is then that both sources send
a third of their traffic through the shared path.

In Fig. 10 we see that both sources at first rapidly change
their probability to start using the middle path. It takes them a
little while to realize that another source is using this path, and
start augmenting the direct path probability, but slower than
before, since the price difference between them is not big now.
The probabilities finally converge to the optimum after some
few minutes. This whole process takes approximately 15 min.
(only 20 iterations). Notice that load measurements need not
be very precise, and that the algorithm supports some noise.
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VII. CONCLUDING REMARKS

In this work we presented a load-balancing mechanism that
takes into account the needs of both the network operator and
the users. We achieved this by defining an objective function
that is not a cost at the link level, but a utility at the OD pair
level. This lead to an optimization formulation very similar in
spirit to Multi-Path TCP [15], where we maximize the sum of
a utility function whose argument is the average ABW each
OD pair sees in its path. Although the resulting optimization
problem was not convex, a distributed algorithm was outlined
which finds very tight approximations to the optimum in a
relatively short time.

Along with our proposal (noted as UM), we considered
two previously proposed dynamic load-balancing mechanisms:
MATE [1] and TeXCP [2]. From our study, conducted over two
real networks along with several real traffic demands, some
conclusions can be drawn. Firstly, performance as perceived
by traffic (measured as the mean ABW) is always better
in UM than both MATE and TeXCP. More specifically, the
improvement over MATE is generally not very big for the
mean value, but can be important, specially in the worst ABW.
This difference comes from the implicit unfairness among OD
pairs of the social cost function of MATE. With respect to
TeXCP, UM obtains a significantly better performance, spe-
cially when the link capacities are not similar. Secondly, results
on link utilization are very similar for UM and TeXCP. MATE
obtains similar results in the mean and quantile link utilization.
However, maximum link utilization can be significantly bigger
in MATE than the other two mechanisms. All in all, UM is
the most balanced mechanism, in the sense that it generally
outperforms the rest (though in some cases the difference may
not be large), and when it does not there is only a small
difference.

Much remains to be done. For instance, we have considered
only elastic traffic but the performance obtained by streaming
traffic should be studied. Moreover, the stability of the algo-
rithm should be analyzed, specially considering that several
approximations were used.
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[27] “Géant Topology Map,” http://www.geant.net.
[28] “The Network Simulator - ns,” http://nsnam.isi.edu/nsnam/in-

dex.php/Main Page.


