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Abstract— In this paper, we address the problem of forecasting
a function of the link load, such as the peak load or percentiles of
its distribution, during an arbitrary time interval. As for ecasting
technique, we select Support Vector Machines (SVM), which
have shown very good performance in several areas including,
more recently, networking. SVM are known for its generalization
ability with respect to unseen data and their suitability to on-line
learning.

Using a hands-on approach, we evaluate the impact of several
parameters on the SVM prediction accuracy. In order to gather
robust results, we consider several real-world traffic traces,
representative of very different network scenarios –such as ISP,
Ethernet, WiFi LAN and enterprise networks– so as to be able to
print out a fine-grained picture of the gain brought by SVM in t he
context of network load forecast. Our results show that SVR may
provide accurate predictions and substantial gain over a naive
estimation technique, and furthermore that the use of several
machines in parallel can both ease SVM tuning and increase
forecast performance as well.

I. I NTRODUCTION

As IP network are truly becoming multi-service (e.g., triple
play convergence) and Internet applications evolve (e.g.,Skype
and other P2P-VoIP software and more recently PPlive and
other P2P-TV systems), the Internet traffic is becoming in-
creasingly complex and dynamic. The ability of accurately
forecasting such variability can be crucial for both ISPs and
telcos, and furthermore for very different tasks: e.g., short-
time scale prediction can be coupled to self-management
techniques, while long-time scale prediction is a valuabletool
for capacity planning.

In contrast with most of the work related to network load
forecast, which are based on the analysis of time series
properties [1], we prefer to focus on techniques that avoid
to make any assumptions on the phenomenon under obser-
vation. In particular, different models have been proposed
in the literature, but the majority of these approaches relies
on specific assumptions about the network traffic (e.g., they
are tailored to capture Long Range Dependence LRD [2] at
short and long timescales, etc.). Also, the effectiveness of
these models usually relies on the precise estimation of some
traffic parameters (e.g. Hurst parameter of the arrival time
series), whose estimation can be delicate and computationally
intensive.

We address the problem of forecasting (an arbitrary function
of) the link load by means of Support Vector Machines (SVM)
[3], [4]. More precisely, we aim to predict the maximum (or
a percentile) of the link load over a given temporal horizon.
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SVM are quite new statistical learning techniques, that can
be defined in the classification as well as regression context.
These techniques have been widely used in different contexts
after its origins in optical character recognition: for example,
time series prediction [5] or more recently networking [6],
[8], [9], only to name a few possible applications that are
in some way related to our work. We consider here the
regression approach (SVR) in which basically a prediction
model is constructed from a training set and this model can
be applied later to unseen data. A major property of SVR
is its generalization capacity, i.e accurate prediction even for
data that is not included in the training set. Also, these models
allow continuous and adaptive on-line learning which is clearly
suitable for networking purposes.

In our previous work [6], we preliminary explored the
problem of link load forecast at short time scales, adopting
an approach known as “embedding process” in the SVM
lingo: basically, the link load is treated as aseries, whose
future value is forecast based on an arbitrary number of
its past measurements. Despite a number of positive aspects
of SVM were outlined in [6], forecast performance were
not deemed satisfactory enough to justify SVM deployment.
Results indeed showed that SVR based models are rather
robust to parameter variation, which constitutes an undoubted
positive aspect. Also, we found that the shorter the timescale,
the harder the prediction. Moreover, when the number of
past samples used as features is exiguous, adding a few
more features dramatically improves the prediction accuracy.
Clearly, as more features are added, the gain saturates (i.e.,
adding more features does not yield to a better accuracy),
but it does not degrade neither (which further confirms SVM
robustness). Yet, despite a good accordance with the actual
data, the SVM embedding process approach only yielded a
marginal gain over simple estimation techniques.

In this paper, taking a radically different approach from [6],
we devise techniques that significantly improve the accuracy
of SVM link load forecast. In more detail, as SVM input
we consider asummaryof statistical properties (e.g., mean,
variance, quartiles, peak, etc.) of the link load, as opposite to
the past measurement of the link loadseriesitself. Following
a hands-on approach, we quantify the impact of several factors
(such as forecast timescale, samples aggregation strategy, input
feature combination, forecast target, type of traffic, etc.) in
the SVR forecast accuracy. Some preliminaries results can
be found in [7]. Finally, we also show that the use of an
“intelligent” combination of different machines, can bring
further advantages in both the forecast accuracy as well as in



the tuning of SVM, which allows us to construct a very robust
model. We evaluate our model over different real world traffic
traces representing very different network scenarios (Ethernet
and WiFi LAN, ISP and enterprise). Our results show that
SVR may provide accurate predictions and very significant
gain over both naive estimation techniques and also over the
“embedding process” adopted in [6].

The remainder of this paper is organized as follow. In Sec. II
we briefly describe the Support Vector Regression theory,
and introduce our forecast framework. Sec. III describes then
the experimental dataset that we use in Sec. IV to explore
the impact of the different parameters in the SVR forecast
performance. Results when several machines in parallel are
considered are shown in Sec. V, while a comparison with the
embedding process is presented Sec. VI. Finally, conclusions
and future work are addressed in Sec. VII.

II. SUPPORTVECTORMACHINES

A. Overview

Suppose that we are given atraining set
{(x1, y1), . . . , (xS , yS)} ⊂ Rd × R, where S is the
training set size,Rd is the space of the input featuresxi and
yi is the phenomenon under investigation. Inǫ-SV regression
[10] the goal is to find a functionf(x) whose deviation from
each targetyi is at mostǫ for all training data, and at the
same time, is as “flat” as possible. For the sake of clarity,
we first consider the linear case i.e.f : R

d → R, such that
f(x) = 〈w, x〉 + b, where 〈·, ·〉 denote the dot product in
Rd. Flatness in this case can be ensured by minimizing the
norm‖w‖2, which leads to the following convex optimization
problem:

min 1

2
‖w‖2 + C

S
∑

i=1

(ξi + ξ∗i )

s.t.







yi − 〈w, xi〉 − b ≤ ǫ + ξi

〈w, xi〉 + b − yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

(1)

In the above formulation, slack variablesξi, ξ
∗
i are included

to cope with infeasible constraint of the optimization problem,
whereas the constantC > 0 determines the trade off between
the flatness off and deviations from the target greater thanǫ.

The training problem (1) can be solved more easily in its
dual formulation, which results in a quadratic optimization
problem with a unique solution, thus avoiding to get stuck on
a local minimum. The solution of (1) yields to the forecast
function f(x), which can be written as a linear combination
of the training data, the Lagrange multipliersαi, α

∗
i , and a

constant termb whose computation stems from the Karush-
Kuhn-Tucker (KKT) conditions:

f(x) =

S
∑

i=1

(αi−α∗
i )〈xi, x〉+b =

SV
∑

i=1

(αi−α∗
i )〈xi, x〉+b (2)

However, not allxi are needed to calculatef(x) but only
those SV < S training pointsxi, whoseαi, α

∗
i 6= 0 and

which are referred to assupport vectors. Intuitively, as errors
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Fig. 1. Synoptic of the general framework used throughout this work

lower than ǫ are tolerated, training-data lying inside the so
called “ε-tube” will not contribute to the problem solution –
nor to its cost. Interestingly indeed, there exist very efficient
algorithms for the solution of the SVM problem: for example,
in this paper we use the LibSVM [11] tool, which implements
a Sequential Minimal Optimization decomposition technique,
whose computationally complexity islinear in the number of
support vectors.

The dual formulation also provides the key to its non-
linear extension, by means of the so called “kernel trick” [12],
which basically boils down to restate both the optimization
problem (1) and the forecast function (2) in terms of a
kernel functionk(x, x′). More formally, a function is called
a kernel if it corresponds to a dot product in some feature
spaceF , which has a higher dimension than the original
feature space. In this work we use the radial basis kernel
k(x, x′) = e−γ‖x−x′‖2

, to which corresponds an infinite
dimensional feature space, due to the good performance shown
in both time series prediction and network contexts.

As a general remark, SVR performance is affected by many
parameters, belonging to two different classes: a first set is
related to the SVR regression method and kernel function,
whereas a second set pertains to the input (i.e., features) and
output (i.e., target) spaces. A “grid optimization” routine is
used to systematically explore parameters of the first set, such
as the smoothing factorC, the toleranceǫ and the kernel
parameterγ, and to select the tuple(C∗, γ∗, ǫ∗) that minimizes
the prediction error: in [6], we shown that SVR is rather robust
to the parameter selection, provided that the above parameters
are selected in a “reasonable” range. Conversely, modification
of the input features, the output target, etc., can significantly
affect the forecast accuracy: therefore, in the following we
will restrict our attention to parameters belonging to the latter
class.

B. Framework

Assume, for the moment, that we want to predict the
peak network load on a given temporal horizon, using past
observations of the load meanµ and standard deviationσ
as input features. Let us denote the temporal horizon of the
forecast bytF , and let us further assume that predictions for
the time frametF are based on observations of a time frametO
of equal length, i.e.,tO = tF . Let us now introduce, with the
help of Fig. 1, the notation that will be used throughout this



TABLE I

TRAFFIC TRACESPROPERTIES

ISP Campus WiFi Ent
Period May’06 May’06 Sep’07 Dec’04
Duration 15h 15h 15h 1h
Rate [Mbps] 60.1 30.0 28.8 7.7
Flows 3.4·106 6.2·106 3.3·106 58·103

Pkts 461·106 329·106 195·106 9.7·106

Bytes 0.4·1012 0.2·1012 0.2·1012 3.5·109

Pkts/Flow 134 53 59 167
Bytes/Pkts 864 615 997 361
IP src 2.8·103 11.4·103 3.4·103 3.2·103

IP dst 493·103 699·103 431·103 2.7·103

work. As sketched in the top of the figure, a single pair of
features(µ, σ) can be gathered from the whole time frame
tO, which can then be used as SVR inputs to predict the
maximum load in the subsequent time frametF . Alternatively,
the samples constituting the time frametO can beaggregated
into several windows of durationtW , where a separate set of
input features(µi, σi) can then be calculated for each window
i. For instance, going down one step, the window length is
halved tW = tO/2, which doubles the number of features,
producing(µ1, σ1, µ2, σ2). Potentially, this dichotomic split-
ting procedure could continue until the window size reachesa
minimum, given by the traffic sampling time (i.e.,.tW = tS).
However, as 1-sample windows do not allow us to evaluateσ,
in the following we disregard the degenerated casetW = tS
and considertW ≥ 2tS . It is worth noting that the case with
1-sample windows when the input is defined as the mean, is
equivalent to the “embedding process” analyzed in [6]. This
means that the input is defined as a vectorx ∈ R

d, where
the fact thattS = 1 second, implies thatd = tO. In Sec. VI
we will show that the approach presented in this work brings
better results (10% in the worst case) than the “embedding
process”.

For the sake of clarity, in the following we will refer to
a forecasthorizon tF , based on anobservationtime frame
tO, which is possibly split into several timewindows tW ,
containing a number of samples collected using a constant
sampling timetS . Also, samples contained in thei-th window
can beconsolidatedinto a set of features, for example,(µi, σi)
in this example: therefore, the SVM input will be theunionof
all feature sets, over all windows in which the observation time
frame has been split. The impact of the above variables will be
studied at length in the following, but, unless otherwise stated,
we will refer to tF = tO = tW = 64 seconds (i.e., the power
of 2 closest to 1 minute interval), using a sampling intervalof
tS = 1 second. In this case, no splitting is performed.

At time scaletS , for each dataset letλ(t) be the traffic
load measured in the time interval[t − tS , t]. By quantizing
the time in multiples oftS , we obtain a time series{λk}k∈N,
whereλk is the average traffic load measured in the interval
[(k−1)tS, ktS ]. For the SVR training, we use a sliding window
of length tO = tF over this time series to build all possible
inputs/outputs pairs(xi, yi). A subset of this dataset is used
for training, i.e., to solve the SVR problem and gather the

forecast functionf(·). The model accuracy is then evaluated
over the complement of the training set, i.e., on unknown data.
In the remainder of this paper, for each experiment 60% of the
available data is used for SVM training and 40% for validation.
Also, each experiment is repeated 30 times (using different
training and validation sets), so that each experimental point
corresponds to the average result over different SVR instances.

III. E XPERIMENTAL DATASET

Prior to investigate the SVM performance, let us briefly
introduce the different real-world traces used throughoutthis
work: we directly monitored an ISP access link and the campus
egress router ports of our Ethernet and WiFi LANs, but we
also make use of the enterprise network data made available by
the LBNL/ICSI tracing project [13]. Details on these datasets
are reported in Tab. I, such as traces duration and bitrate,
amount of flows, packets and bytes observed, average packet
and flow lengths, count of distinct IP source and destination
hosts. All traces are 15 hours long and were collected between
May 2006 and September 2007, with the exception of the
enterprise traffic, which is 1 hour long1 and was gathered
during December 2003. The ISP dataset is very peculiar, as
it refers to an innovative ISP which is providing end users
(residential, SOHO or large companies) with data, voice and
video over IP by means of either an ADSL or a FTTH link,
whereas no PSTN link is offered: clearly, all flavors of p2p ap-
plications are present in this downstream dataset. Ethernet and
WiFi traces are typical examples of campus LAN downstream
traffic, measured at the campus egress router, representingthe
aggregated traffic of the hosts having Ethernet or Wireless
access respectively. Ethernet Campus traffic consists of a mix
of Web, intranet services and Internet applications (a firewall
tries to block p2p traffic, although some as, e.g. Skype, still
manage to go through) whereas WiFi access is mostly used for
Web browsing, mail and instant messaging. Finally, Enterprise
traffic is also particular, as intranet services constitutethe most
important part of the traffic – for a thorough analysis of the
LBNL/ICSI traffic, we refer the reader to [14].

Intuitively, these different traffic characteristics willtranslate
into different prediction accuracy. For explanatory purposes,
let us show in Fig. 2 the peakp and 95-th percentilep95

computed over 1 second long time-windows for both ISP and
Campus traces. We easily realize that the prediction will be
more difficult for the Campus trace since there are a lot of
uncorrelated “spikes” in both series, especially considering the
peak load. Conversely, it can be seen also, that for the ISP
trace, both series are very similar, which make us expect the
ISP trace to be a relatively easier forecast scenario with respect
to the Campus one.

IV. EXPERIMENTAL RESULTS

In this section we explore SVM performance for different
inputs and outputs, for varying values of the temporal param-
eters and for different traces and traffic types.

1This is due to the measurement methodology in [14], where different
switch ports are monitored every hour.
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Fig. 2. Peakp and 95-th percentilep95 of the link load for ISP and Campus
traces

To quantify the forecast accuracy, we consider the root mean
square error, defined as RMSE=

√

∑n
i (yi − ŷi)2/n which

is suited to assess the quality of an estimator in terms of
both its variation and unbiasedness. For reference purposes
we consider thenaive estimation, i.e., it assumes that the
value in the next horizontF will remain equal to the value
achieved in the last observation time frametO. Thus, we
may also express the relative RMSE gain of SVR forecast
with respect to the naive prediction asG = (RMSEnaive −
RMSESV M)/RMSEnaive.

A. Features and target impact

Let us start by considering different statistical properties of
the link load variable as target (i.e.,output of the model),
and by feeding SVR with different combinations of their
previous observations (i.e.,inputsof the model). As statistical
properties, we consider the meanµ, standard deviationσ, peak
p and 95-th percentilep95. Also, as far as output is concerned,
for the sake of space, in the following we limitedly consider
the problems of peakp and 95-th percentilep95 prediction.
Due to space constraints, we show results only for the ISP and
Campus dataset since they reflect the variety of performance
results that can be obtained; we recall that we expect Campus
to be a stiffer scenario, especially as far as peak load estimation
is concerned.

As explained before, we preliminary fix SVR parameters
(C,ǫ,γ) for each trace by performing a grid optimization
for each output, using the pair(µ, p) as input (which is a
reasonable choice given SVR robustness [6]). We recall that
tO = tF = tW = 64 seconds, whereastS = 1 second.
For this parameter setting we show in Fig. 3 real values and
SVR predictions for a random validation set for both ISP and
Campus traces, to get a first (visual) idea of the prediction
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Fig. 3. Comparison of real and predicted values for ISP and Campus traces

accuracy. As expected, the predictions of both peak and 95th-
percentile are more accurate for the ISP trace: SVR is unableto
forecast the important “spikes” present in the Campus traces,
despite it is able to “follow” the curve. Also intuitively, the
presence of these spikes makes peak prediction harder than 95-
th percentile one. These differences are reflected in the RMSE:
for the ISP trace RMSE is 3.65 for the peak and 3.39 for the
95th-percentile, whereas for the Campus trace these valuesare
21.46 and 9.94 respectively.

In what follow we will explore the use of different inputs in
addition to(µ, p). More precisely, we will consider as inputs
all possible combinations of input featuresµ, σ, p and p95.
Tab. II reports the RMSE obtained by the naive prediction
and the corresponding SVR gain for the ISP and Campus
dataset and for these different combinations of input features.
Specifically, we select:

• the three best combinations of 2-features inputs (i.e., over
all pair of statistical properties)

• the average of all 2-features inputs
• the average of inputs with 3 or more features
• the average ofall possible combinations irrespectively of

their length

First, we observe that the performance of both SVR and
naive forecast significantly changes when differenttracesare
considered: the RMSE change by about a multiplicative factor
between2.5 and4. Second, considering differentoutputsasp
andp95, the RMSE variation can be either important (roughly,
a factor of 2 in the Campus case) or irrelevant (as in the
ISP dataset): as we early noticed this can be explained by
the presence of significant load spikes in the Campus trace,
which are harder to predict and thus yield to a larger forecast
error. Third, theinput features combination does influence the
results, although with a smaller magnitude. Interestingly, it



TABLE II

COMPARISON OFNAIVE AND SVR FORECAST OFp AND p95 , FOR

DIFFERENT INPUT FEATURES, WHERE◦=(µ),•=(µ, p),⋆=(µ, p95)

ISP Campus
Input p95 p p95 p

Naive RMSE 3.44 3.91 8.28 16.55
1st 5.1% ◦ 8.2% ⋆ 15.5% • 21.2% •

2nd 5.0% • 8.0% • 15.1% ⋆ 20.9% ⋆

SVM 3rd 4.6% ⋆ 7.9% ◦ 14.4% ◦ 20.8% ◦

Gain = 2 feat 4.7% 7.7% 14.6% 20.1%
≥ 3 feat 3.8% 6.3% 13.0% 15.9%
All 4.3% 7.2% 13.9% 18.3%

can be seen that is better to use a small number of features
to describe the statistical properties of the trace rather than
a large one. Moreover, the three best input combinations
yield to very similar results, although no clear winner can be
identified, as the best input varies across traces and outputs:
therefore, in what follow, we will limit ourselves to consider
(µ),(µ, p),(µ, p95) as inputs for the SVM prediction. Finally
notice that, rather surprisingly, the(µ, σ) combination yields
to worseresults with respect to the simplest input choice(µ),
and that this holds furthermore for both traces and outputs.
Also, the combination(σ, p) provides theworst results of all
combinations, which suggest that the meanµ should always
be considered as input feature, irrespectively of the statistical
properties considered as target of the forecast.

In Sec. V we will show that it is actually unnecessary to
inspect which combination of input yield the best results: the
underlying idea is to use several machines in parallel, eachof
which is trained with different inputs for the same output (so
that it is either possible to e.g.,combinethe forecast power of
different machines, or alsoautomatically selectthe best input
combination).

B. Aggregation and timescales impact

In this section, we explore the impact oftiming related
parameters, such as the forecast horizontF and the window
lengthtW . It is worth to note that we have fixedtS = 1 second,
since this choice implies more flexibility in the selection of the
the forecast horizon and will allow us to explore a wider range
of values for the aggregation time windowtW parameter. We
focus again on the prediction ofp andp95 load, considering
only ISP and Campus datasets, and report the SVM results
averaged over 30 repetitions for each of the three best 2-
features input combinations described so far.

We first consider the forecast horizontF = tO, assuming
that the window tW is consolidated into a single set of
features (i.e.tW = tO = tF ). Neglecting the degenerated
casetF = 1 s, we explore values oftF = 2i s for i ∈ [1, 6],
where for instancetF = 16 means that we observe an interval
of 16 seconds (or 16 samples, sincetS = 1 s) and predict
the output value over the next 16 seconds interval. Results
for naive and SVR prediction ofp and p95 are reported in
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Fig. 4. Impact of the forecast horizontF on forecast accuracy

Fig. 4 for both the ISP and Campus traces2. Interestingly, the
forecast accuracy is diversely affected by the forecast horizon
for the different traces: this reflects the fact that networkusage
is much different across the datasets, and so are the temporal
traffic dynamics. For example, considering the ISP trace, both
p and p95 can be predicted with higher accuracy over a
medium temporal horizon (i.e.,8 ≤ tF ≤ 16). Conversely, in
the Campus dataset thep RMSE error monotonously increases
with tF , whereas thep95 RMSE exhibits an opposite sym-
metrical behavior with respect to the ISP case (i.e., medium
values oftF yield to worse performance).The increasing error
for peak is in accordance with the important spikes shown in
Fig. 3 since it could be easier to predict values in the near
future being not possible to extend the forecast horizon. This
fact have less impact when the percentile is considered as
output since the spikes are not so important.

While it is hard to draw general conclusions from these
specific behaviors, nevertheless one can gather that some time
horizon are definitively easier to predict. Pushing this intuition
a bit further, we are interested in answering whether, aiming
at predicting link load overarbitrary time horizons, it could
be beneficial to aggregate data into windows corresponding to
timescales where forecast is known to be more accurate. For
instance, consider the Campus case: in order to predict next
minute’sp95 load, would it be better to use i) a single set of
features from the last minute window, or ii) several sets of
features gathered from separate smaller windows ? To answer
this question, fixingtF = tO = 64, we consider the impact
of the aggregation windowtW by splitting the observation
time frametO into several windows of durationtW = 2i s
with i ∈ [1, 6] as described in Fig. 1. For instance,tW = 32 s
means that the observation periodtO is split into two intervals
of 32 samples, each of which gets consolidated into a different
set of features: SVR is then fed with theunion of these sets.

Results are reported in Fig. 5 in terms of the RMSE as a

2Clearly, the results for small time scales are equal for peakand percentile,
since in such time scales, they usually coincide.



function of the window durationtW . Moreover, we point out
that, being the naive estimation RMSE constant for a fixed
tO = tF = 64, the SVR gain is thus directly proportional to
the error. From comparison of Fig. 4 and Fig. 5, we have a
partial confirmation of our intuition: for instance, in bothISPp
andp95 cases the minimum error attO = tF = 64 is achieved
whentW = 16 s, which is precisely the value that minimized
the RMSE in Fig. 5. In other words, there are cases where for
an arbitrary forecast horizontF , it is preferable to split the
observation time frametO into different windowstW < tF ,
whose durationt∗W should be selected so as to minimize the
forecast error.

At the same time, interpretation of Campus results is
more complex, and undermine the generality of the above
observation. Consideringp95 estimation, it can be seen that
Fig. 4 would suggest the use of small (tW ≤ 4) or even large
(tW ≥ 32) windows – but not intermediate values oftW , as the
RMSE is concave intW . Fig. 5 states that smaller errors can be
achieved by using largetW ≥ 32 windows (and consequently,
a smaller number of features), which does not contradict our
intuition, despitetW value do not precisely correspond to
the optimum of Fig. 4. Prediction results ofp are of harder
interpretation, as the minimum error can be achieved when
the observation time frame isnot split (i.e.,tW = 64), despite
the prediction error monotonously increases withtW = tF as
shown in Fig. 4. Thus, it seems as though the specific network
scenario may play a very significant role in determining SVR
forecast performance, and that moreover this happen in a non
trivial way. A possible, partial, explanation lies in the fact that
shorter windowstW translate into a higher number of features,
which as early noted tends to “confuse” the SVR prediction:
therefore, there may be cases where this increased number of
features simply offsets the potential benefits brought by the
splitting procedure.

C. Traces and traffic breakdown impact

In this section, we analyze the different traces of Tab. I
in the attempt to quantitatively bound the extent of SVR
benefits. We limit the analysis to the peak load estimation
at tF = tO = 64 s and report in Tab. III the naive RMSE (R),
as well as the maximum gain (G%) brought by SVR (over
all possible window valuestW ). First of all, the table reports
the coefficient of variation (CoV), defined as the ratio of the
standard deviation over the mean load and measured at two
different timescales, as a statistical compact index of thelink
load variation. More specifically, CoV(∞) is evaluated over
the whole trace, and represents the long-term load variability,
whereas CoV(64 s) is the mean CoV evaluated over64 s long
windows and is representative of the traffic “burstiness” at
short timescales. Notice that there is only a weak correlation
between the CoVs and the forecast accuracy: for instance,
RMSE for Campus is the highest despite its CoV is lower
than both WiFi or Enterprise ones – which is reasonable since
relevant forecast errors, corresponding to Campus load spikes,
are quadratically penalized by the RMSE metric.

In order to test whether forecast accuracy not only depends
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Fig. 5. Impact of the window timescaletW on forecast accuracy

TABLE III

NAIVE RMSEERROR(R) AND SVR GAIN (G%) FOR DIFFERENT TRACES

(I,C,W,E)AND FOR DIFFERENT TRAFFIC BREAKDOWN IN TERMS OF

SERVICE TYPE(ALL , SRV, WEB), BYTES (B%) AND FLOWS (F%)

CoV All Srv/All Services Web/Srv Web
∞ 64 s G% R B% F% G% R B% F% G% R

I 0.29 0.05 12 3.7 1 2 22 1.1 8 2 15 0.5
C 0.40 0.17 21 13.4 44 21 19 14.2 66 38 18 12.5
W 0.88 0.54 11 10.6 92 89 11 10.6 91 80 10 10.6
E 0.64 0.56 25 10.2 62 37 27 10.0 27 33 10 4.9

on the traffic trace but on the traffic class as well, we partition
each trace into different traffic aggregates and apply the SVR
load estimation to each aggregate separately. Specifically, we
first extract all “server” traffic from the trace, considering
only those packets that involve well-known transport layer
ports, and then extract a second aggregate constituted by Web
traffic only (i.e., port 80). Aggregates have a very different
importance depending on the trace we are considering: e.g.,
ISP traffic volume is dominated by p2p traffic, while server
traffic plays a major roles in the Enterprise trace and HTTP
constitutes the dominant fraction of the WiFi dataset. Tab.III
details the traffic breakdown across traces reporting the relative
volume, expressed in terms of bytes (B%) and flows (F%),
of Server/Total and Web/Server traffic. We stress that this
difference in the relative volume of traffic aggregates affects
the RMSE value, which indeed also depends on the actual
scaleof the data. For example in the case of Web traffic for
the ISP trace, the fact that RMSE is very small is also tied
to the fact that Web browsing only represents a small fraction
of the total traffic. For this reason, and to allow a more direct
comparison across traffic aggregates, the table also reports the
gain in percentage with respect to the naive prediction method.

From Tab. III, is easy to gather that the gain over the naive
estimation ranges between 10% and 30% , with an average



TABLE IV

BEST AND WORST CHOICE AND PERCENTAGE OF MOST DISTANT AND

CLOSEST TO THE MEAN PREDICTION

Best Worst Most distant Closest

ISP (3) - 100% (2) - 100% (2) - 39% (4) - 37%
Campus (3) - 76% (2) - 100% (1) - 38% (4) - 34%

WiFi (3) - 69% (1) - 100% (1) - 60% (2) - 35%

of 17% – which is clearly a very significant gain. Moreover,
results confirm that the specific dataset considered strongly
affects the SVR performance, whereas the forecast accuracy
does not exhibit a significant variation across the different
traffic aggregates3. An important remark is that the optimal
t∗W value (i.e., the one reported in Fig. 4 to which the most
accurate prediction whentW = tF = tO corresponds) only
varies acrosstraces, but remains the same over allaggregates
for a given trace. More precisely, the values oft∗W that yield
to the highest gain aretW = 64 s for Campus,tW = 16 s for
WiFi or ISP andtW = 2 s for Enterprise respectively.

Unfortunately, as early pointed out, there is no generally
applicable guideline to properly selecttW . A possible strategy
could be to use thelargest possible windowtW = 64,
which correspond to themost concisesummary. A natural
question is then to quantify the accuracy loss whethertW =
64 is used instead oft∗W . Interestingly, the loss in SVR
accuracy under this sub-optimal heuristic choice is actually
very limited. Specifically, results are on average only 4% above
the optimum, with a maximum of 11% for Enterprise traffic:
furthermore, if we neglect the latter (too short) dataset, the
mean accuracy loss drops to a very limited 2%. Therefore,
we can conclude that, although properly setting the SVR
parameters may be a cumbersome task, at the same time SVR
models are robust enough to have very good performance even
under non optimal settings.

V. PARALLEL SVR

In this section we study the performance obtained by using
several SVMs in parallel, i.e. for the same output several
machines are trained and the final prediction is acombination
of the results obtained by the single machines. The idea is that
the use of several parallel machines can increase the forecast
power. In this case we limit ourselves to consider the peakp
as output. In particular, a different SVM is trained for each
of the following inputs:(1) = (µ), (2) = (µ, σ), (3) = (µ, p)
and (4) = (µ, p95) (which are chosen according to Tab. II).
Different predictions are obtained form these machines and
combined according to the following strategies:

I. the final prediction is the average of all predictions
except the one that obtained the worst RMSE over the
validation set

II. idem, but for each point in the validation set, we neglect
the prediction that isfurthest from the mean prediction
of all machines

3The most important variations appears for the Enterprise traffic, but the
results may be negatively biased by the excessively short trace duration.

TABLE V

GAIN OF PARALLEL SVR OVER THE BEST AND THE WORST INPUT

ISP Campus WiFi
Strategy Best Worst Best Worst Best Worst

I -0.5% 5.4% 0.1% 2.1% 0.1% 6.8%
II -0.1% 5.7% 0.4% 2.4% 0.1% 6.8%
III 0.0% 5.8% 0.1% 2.1% 0.2% 6.9%

III. idem, but the prediction is defined as the one that is
closestto the mean prediction

For the first case (I) the final prediction is defined depending
on the performance (RMSE) of the different machines over
all the validation set: the same combination is used for all
points in this set. Conversely, in the last two cases the best
combination is redefined for each point, i.e. the decision can
be taken online with only punctual knowledge of the system.

It is our aim here to compare the performance of these three
strategies with respect to the best and worst input combination,
which possibly changes between datasets and outputs. Thus,
for a given validation set, we determine the best and worst
machine (in terms of RMSE). For each point in the validation
set, we also identified which was the machine that predicted
the value nearest and furthest to the mean of all predictions.
This procedure is repeated 200 times and results are shown
in Tab. IV for ISP, Campus and WiFi datasets. The first two
columns indicate the machine (or features combination) that
obtained the best and worst RMSE in the majority of the
repetitions (this majority is shown as a percentage in the table).
The last two columns indicate the machine whose prediction
was the closest and the most distant for the majority of points
in the validation set and repetitions (again this majority is
shown as a percentage).

Some remarks are in order. Regarding the first strategy, we
find that the best input changes over the different repetitions,
in accordance with the results already shown in Tab. II.
However the worst machine does not change, motivating the
first considered strategy (I). More in details, since the worst
machine is different across the traces, but not changes overa
particular trace, a startup phase can be used to evaluate the
worst machine which is then not considered for future pre-
dictions. Moreover we find out that the best (worst) input not
necessarily coincides with the closest (most distant) predictor.
This last observation justifies the consideration of the last two
strategies (II and III).

We report in Tab. V the gain of using parallel SVMs over the
best and worst results obtained by a single SVM. Performance
are very similar for all the strategies, with strategy III obtaining
slightly better results. Interestingly,any strategy employing
parallel SVM is also better than a single machine using all
the input (µ, σ, p, p95). Moreover, with respect to the best
2-feature input, the results of parallel SVR are generally
better but sometimes worse (i.e. strategies I and II in the ISP
case), with a difference always smaller than 0.5%. This means
that although no real gain is obtained, at the same time no
noticeable performance loss happens either.



TABLE VI

GAIN OF PARALLEL SVR OVER THE “ EMBEDDING PROCEDURE”

ISP Campus WiFi
RE RMSE RE RMSE RE RMSE

11.6% 10.3% 25.7% 14.8% 12.2% 11.8%

In other words, the use of several machines in parallel can
be an excellent strategy when the best input is not clear.
A possible objection is that this approach may raise the
computational cost of training several machines at the same
time: to this extent, we stress that a common PC can support
several thousandof such SVR machines in real-time [6].

VI. COMPARISON WITH “ EMBEDDING PROCEDURE”

Finally, we compare the performance of parallel SVM and
the “embedding process” described in [6]. For this purpose
we considered again the dataset ISP, Campus and WiFi, and
the peak as the output, since it is the most difficult to predict.
Given the results of the previous section, for parallel SVM
we limit ourselves to the strategy III. Roughly, with this
comparison we aim at knowing which approach is better to
predict the maximum load in the next minute: the “embedding
process” which uses as input a vector containing all the
observed samples (x ∈ R

d with d = 64), or the approach
presented in this paper which uses an intelligent combination
of statistical summary as input.

Results are shown in Tab. VI, averaged over 100 repetitions,
where in each case 60% of the data is used as training and
the remainder as validation set. Considering both the relative
error (RE) or the RMSE, results indicate that for all traces
an important gain can be obtained with the new approach
presented in this paper: 15% on average and 10% in the worst
case. It can be observed that a substantial RE gain is obtained
for the Campus trace, which we already knew to be a stiffer
scenario. This is an encouraging result, which shows that the
drawbacks of the “embedding procedure” can be overcome,
confirming that SVM is a very interesting technique for the
purpose of link load prediction.

VII. D ISCUSSION ANDCONCLUSION

In this paper, we apply Support Vector Regression to the
purpose of link load prediction: investigating the impact of
several parameters on the forecast accuracy and considering
several real-work traces we gather results that are representa-
tive of rather different network environments.

Our main result is that an “intelligent” combination of
several parallel SVR using different statistical summary as
input can provide accurate prediction. Indeed, we observe a
significant gain not only over naive estimation technique, but
also with respect to time-series based SVM predictions [6] as
well. These findings make necessary to compare SVR with
other forecast techniques, such as e.g., Nadaraya-Watson [15],
which we leave for further work.

This work further provides some useful insights to tune SVR
predictors: for instance, as a rule of thumb, SVR accuracy

improves when “compact” statistical summaries are used as
inputs. Then, despite the best input feature set possibly de-
pends on the forecast output, we have shown that the selection
can be avoided by using parallel SVMs. Concerning time-
related parameters, our experiments show that their optimal
tuning may not be easy task. Yet, we point out that the best
setting only depends on the network measurement point but is
insensitive to the traffic breakdown. Second, the use of large
input time-scales (corresponding to compact input summary)
yield to a near-optimal forecast accuracy . Third, we argue that
the use of parallel SVMs could bring benefits also concerning
the tuning of time-related parameters.

Overall, we can conclude that SVR is an interesting tech-
nique for its flexibility, cost-effectiveness, accuracy and robust-
ness. SVR is flexible since it applies to the forecast of different
targets, while cost-effectiveness stems from the fact thatboth
the offline training and the online forecast operations havea
linear cost in the number of support vector. Moreover, given
that a number of software tools are readily available, SVR
techniques can be deployed right away. Finally, SVR has the
potential to bring accurate results under a number of different
scenarios: while parameter tuning may not be a trivial task,
we stress that SVR performance are rather robust even under
non optimal settings and that the use of parallel SVM helps
in relieving this problem.
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