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Abstract— In this paper, we address the problem of forecasting SVM are quite new statistical learning techniques, that can
a function of the link load, such as the peak load or percentés of pe defined in the classification as well as regression cantext
its distribution, during an arbitrary time interval. As for ecasting These techniques have been widely used in different cantext

technique, we select Support Vector Machines (SVM), which fter it L tical ch ¢ ition:
have shown very good performance in several areas including after its origins in optical character recognition: for eyale,

more recently, networking. SVM are known for its generalizaion ~ time series prediction [5] or more recently networking [6],
ability with respect to unseen data and their suitability toon-line  [8], [9], only to name a few possible applications that are

learning. _ in some way related to our work. We consider here the
Using a hands-on approach, we evaluate the impact of several regression approach (SVR) in which basically a prediction

parameters on the SVM prediction accuracy. In order to gathe model is constructed from a training set and this model can
robust results, we consider several real-world traffic traes, g

representative of very different network scenarios —such ISP, be applied later to unseen data. A major property of SVR
Ethernet, WiFi LAN and enterprise networks— so as to be abled IS its generalization capacity, i.e accurate predictioenefor
print out a fine-grained picture of the gain brought by SVMinthe data that is not included in the training set. Also, these @®d

context of network load forecast. Our results show that SVR nay g1y continuous and adaptive on-line learning which isdie
provide accurate predictions and substantial gain over a nize . .
suitable for networking purposes.

estimation technique, and furthermore that the use of sevex A o
machines in parallel can both ease SVM tuning and increase IN our previous work [6], we preliminary explored the

forecast performance as well. problem of link load forecast at short time scales, adopting
an approach known as “embedding process” in the SVM
|. INTRODUCTION lingo: basically, the link load is treated assaries whose

As IP network are truly becoming multi-service (e.g., teip|future value is forecast based on an arbitrary number of
play convergence) and Internet applications evolve (Blype its past measurements. Despite a number of positive aspects
and other P2P-\VoIP software and more recently PPlive aRfl SYM were outlined in [6], forecast performance were
other P2P-TV systems), the Internet traffic is becoming iftot deemed satisfactory enough to justify SVM deployment.
creasingly complex and dynamic. The ability of accuratefgesults indeed showed that SVR based models are rather
forecasting such variability can be crucial for both ISPs arfobust to parameter variation, which constitutes an untéalib
telcos, and furthermore for very different tasks: e.g.,rsho POsitive aspect. Also, we found that the shorter the timlesca
time scale prediction can be coupled to self-managemédR€ harder the prediction. Moreover, when the number of
techniques, while long-time scale prediction is a valuabte Past samples used as features is exiguous, adding a few
for capacity planning. more features dramatically improves the prediction acgura

In contrast with most of the work related to network loa&'early, as more features are added, the gain saturates (i.e
forecast, which are based on the analysis of time serdding more features does not yield to a better accuracy),
properties [1], we prefer to focus on techniques that avolyt it does not degrade neither (which further confirms SVM
to make any assumptions on the phenomenon under ob$eRustness). Yet, despite a good accordance with the actual
vation. In particular, different models have been proposé@ta. the SVM embedding process approach only yielded a
in the literature, but the majority of these approachesselimarginal gain over simple estimation techniques.
on specific assumptions about the network traffic (e.g., they!n this paper, taking a radically different approach frorf) [6
are tailored to capture Long Range Dependence LRD [2] W€ devise techniques that significantly improve the acgurac
short and long timescales, etc.). Also, the effectivendss @ SVM link load forecast. In more detail, as SVM input
these models usually relies on the precise estimation obsoWe consider asummaryof statistical properties (e.g., mean,
traffic parameters (e.g. Hurst parameter of the arrival tim¥@riance, quartiles, peak, etc.) of the link load, as oppdsi
series), whose estimation can be delicate and computéiion#h€ past measurement of the link loseriesitself. Following
intensive. a hands-on approach, we quantify the impact of severalfacto

We address the problem of forecasting (an arbitrary functi¢Such as forecast timescale, samples aggregation styatpgy
of) the link load by means of Support Vector Machines (SVMgature combination, forecast target, type of traffic, Jete.

[3], [4]. More precisely, we aim to predict the maximum (O,the SVR forecast accuracy. Some preliminaries results can

a percentile) of the link load over a given temporal horizo®e found in [7]. Finally, we also show that the use of an
“intelligent” combination of different machines, can hgin

This work was funded by the Celtic project TRANS. further advantages in both the forecast accuracy as wefl as i



the tuning of SVM, which allows us to construct a very robust AT o
model. We evaluate our model over different real world teaffi  t,=t<2 1ol 1l aat Lo il ol Lol x=(w0)
traces representing very different network scenariosd(att tw

and WiFi LAN, ISP and enterprise). Our results show that tw=tsZ™" [ 1 111 et Lol ol Lo Lt x=(1.6 1,.0)
SVR may provide accurate predictions and very significant :

Ly :
gain over both naive estimation techniques and also over the; - 73 @MMUJJMMME X=(1.G,, ... 10}
“embedding process” adopted in [6]. s 5

The remainder of this paper is organized as follow. In Sec. Il ¢z, ﬁﬁﬂmmmmmﬂmmmmwmmmmmﬂmmm X=(Hs B - W)
we briefly describe the Support Vector Regression theory,
and introduce our forecast framework. Sec. Ill describesith Fig 1. synoptic of the general framework used throughoist work
the experimental dataset that we use in Sec. IV to explore
the impact of the different parameters in the SVR forecast
performance. Results when several machines in parallel &eer thane are tolerated, training-data lying inside the so
considered are shown in Sec. V, while a comparison with tlealled “c-tube” will not contribute to the problem solution —
embedding process is presented Sec. VI. Finally, conaissiaor to its cost. Interestingly indeed, there exist very ffit
and future work are addressed in Sec. VII. algorithms for the solution of the SVM problem: for example,
in this paper we use the LibSVM [11] tool, which implements
a Sequential Minimal Optimization decomposition techeigu

Il. SUPPORTVECTORMACHINES

A. Overview whose computationally complexity Igear in the number of
Suppose that we are given atraining set Supportvectors. . .
{(z1,1),...,(xs,ys)} C R x R, where S is the  The dual formulation also provides the key to its non-

training set sizeR? is the space of the input featuresand linear extension, by means of the so called “kernel trick?][1
y; is the phenomenon under investigation 48V regression Which basically boils down to restate both the optimization
[10] the goal is to find a functiori(z) whose deviation from Problem (1) and the forecast function (2) in terms of a
each targety; is at moste for all training data, and at the kernel functionk(z, z’). More formally, a function is called
same time, is as “flat” as possible. For the sake of clarity kernelif it corresponds to a dot product in some feature

we first consider the linear case if.: R? — R, such that SPaceF, which has a higher dimension than the original
f(z) = (w,z) + b, where (-,-) denote the dot product in feature space. In this work we use the radial basis kernel

_ 12 . . . .
R". Flatness in this case can be ensured by minimizing thér. ') = e 717=*I", to which corresponds an infinite
norm ||w||2, which leads to the following convex optimizationdimensional feature space, due to the good performanceshow
problem: in both time series prediction and network contexts.
s As a general remark, SVR performance is affected by many
Inin%HwHQ +OS (&G +E) parameters, belonging to t\/\{o different classes: a first se_t i
i=1 related to the SVR regression method and kernel function,
Yi — (w,xi) —=b <e+§; (1) whereas a second set pertains to the input (i.e., featunes) a
stq (w,m) +b—yi <e+§ output (i.e., target) spaces. A “grid optimization” rowtiis
Sis §i Z used to systematically explore parameters of the first seh s
& & >0 d to systematically explore p ters of the first aeh

In the above formulation, slack variables ¢ are included @S the smoothing factof’, the tolerances and the kernel
to cope with infeasible constraint of the optimization fesh, Parameter, and to select the tuplg™, 7", €*) that minimizes
whereas the constafit > 0 determines the trade off betweerfn€ Prediction error:in [6], we shown that SVR is rather rsthu
the flatness off and deviations from the target greater than © the parameter selection, provided that the above paeamet

The training problem (1) can be solved more easily in iR€ seI_ected in a “reasonable” range. Conversely, mod_dm:at
dual formulation, which results in a quadratic optimizatiorP! the input features, the output target, etc., can sigmitiga
problem with a unique solution, thus avoiding to get stuck dgiiect the forecast accuracy: therefore, in the following w
a local minimum. The solution of (1) yields to the forecadill restrict our attention to parameters belonging to tatelr

function f(z), which can be written as a linear combinatioff/2Ss-

of the training data, the Lagrange multipliess, o, and a g Framework

constant termb whose computation stems from the Karush- )
Kuhn-Tucker (KKT) conditions: Assume, for the moment, that we want to predict the

peak network load on a given temporal horizon, using past
al Sv observations of the load mean and standard deviation
flx) = Z(O‘i_o‘f)@i’be = Z(ai_a?)<xi’x>+b (2)  as input features. Let us denote the temporal horizon of the
=1 =1 forecast bytr, and let us further assume that predictions for
However, not allz; are needed to calculatg(x) but only the time framer are based on observations of a time frame
those Sy < S training pointsz;, whosea;,a; # 0 and of equal length, i.e.{p = tF. Let us now introduce, with the

which are referred to asupport vectorsintuitively, as errors help of Fig. 1, the notation that will be used throughout this



TABLE |

forecast functionf(-). The model accuracy is then evaluated
TRAFFIC TRACESPROPERTIES

over the complement of the training set, i.e., on unknowa.dat

ISP Campus WIF Enf In the remainder of this paper, for each experiment 60% of the
Period May'06 ~ May'06  Sep'07  Dec’04 available data is used for SVM training and 40% for validatio
Duration 15h 15h 15h 1h Al h . ti ted 30 {i . diff t
Rate [Mbps] 501 200 588 — so, each experiment is repeate imes (ugmg lifferen
Flows 3410° 62105 3.310° 58103 training and validation sets), so that each experimentaitpo
Pkts 46110 32910° 195105 9.7.10° corresponds to the average result over different SVR igst&an
Bytes 0.410'2 0.210'2 0.2102 3.510°
Pkis/Flow 134 53 59 167 [1l. EXPERIMENTAL DATASET
Bytes/Pkts 864 615 997 361 . _ . .
P src 5810° 11410° 3410° 3210° ~ Prior to investigate the SVM performance, let us briefly
IP dst 493103 69910  43110° 2.7.10% introduce the different real-world traces used througttbist

work: we directly monitored an ISP access link and the campus

egress router ports of our Ethernet and WiFi LANs, but we
work. As sketched in the top of the figure, a single pair d¢ilso make use of the enterprise network data made availgble b
features(u, o) can be gathered from the whole time framéhe LBNL/ICSI tracing project [13]. Details on these datase
to, which can then be used as SVR inputs to predict tige reported in Tab. |, such as traces duration and bitrate,
maximum load in the subsequent time fratpe Alternatively, amount of flows, packets and bytes observed, average packet
the samples constituting the time frame can beaggregated and flow lengths, count of distinct IP source and destination
into several windows of duratiofy;;, where a separate set ofhosts. All traces are 15 hours long and were collected betwee
input featureg;, o;) can then be calculated for each windowMay 2006 and September 2007, with the exception of the
i. For instance, going down one step, the window length @terprise traffic, which is 1 hour lohgand was gathered
halvedty, = to/2, which doubles the number of featuresguring December 2003. The ISP dataset is very peculiar, as
producing (1, o1, u2, 02). Potentially, this dichotomic split- it refers to an innovative ISP which is providing end users
ting procedure could continue until the window size reachedresidential, SOHO or large companies) with data, voice and
minimum, given by the traffic sampling time (i.ety =tg). Video over IP by means of either an ADSL or a FTTH link,
However, as 1-sample windows do not allow us to evalaate Whereas no PSTN link is offered: clearly, all flavors of p2p ap
in the following we disregard the degenerated case= tg plications are present in this downstream dataset. Ethante
and considety, > 2tg. It is worth noting that the case with WiFi traces are typical examples of campus LAN downstream
1-sample windows when the input is defined as the mean tigffic, measured at the campus egress router, represehéng
equivalent to the “embedding process” analyzed in [6]. Thiggregated traffic of the hosts having Ethernet or Wireless
means that the input is defined as a vectoe R¢, where access respectively. Ethernet Campus traffic consists dka m
the fact thatts = 1 second, implies thad = to. In Sec. VI of Web, intranet services and Internet applications (a atew
we will show that the approach presented in this work bring&es to block p2p traffic, although some as, e.g. Skypsd, stil
better results (10% in the worst case) than the “embeddiftanage to go through) whereas WiFi access is mostly used for
process”. Web browsing, mail and instant messaging. Finally, Entsepr

For the sake of clarity, in the following we will refer totraffic is also particular, as intranet services constitbéemost

a forecasthorizon ¢, based on arobservationtime frame important part of the traffic — for a thorough analysis of the
to, which is possibly split into several timaindowsty,, LBNL/ICSI traffic, we refer the reader to [14].
containing a number of samples collected using a constanintuitively, these different traffic characteristics wilanslate
sampling time.s. Also, samples contained in thieh window into different prediction accuracy. For explanatory pegs
can beconsolidatednto a set of features, for examplgy;, o;) let us show in Fig. 2 the peak and 95-th percentilgys
in this example: therefore, the SVM input will be thaionof computed over 1 second long time-windows for both ISP and
all feature sets, over all windows in which the observatioret Campus traces. We easily realize that the prediction will be
frame has been split. The impact of the above variables will Bhore difficult for the Campus trace since there are a lot of
studied at length in the following, but, unless otherwisged, uncorrelated “spikes” in both series, especially congdethe
we will refer totp = to = ty = 64 seconds (i.e., the powerpeak load. Conversely, it can be seen also, that for the ISP
of 2 closest to 1 minute interval), using a sampling inteofal trace, both series are very similar, which make us expect the
ts = 1second. In this case, no splitting is performed. ISP trace to be a relatively easier forecast scenario witperet
At time scaletg, for each dataset lek(¢) be the traffic to the Campus one.
It(r)1adt_mea_lsure(?t_inI theﬁtime inte:ar;/hil— tf—‘,t]. By_gg)\agtizing IV. EXPERIMENTAL RESULTS
e time in multiples of 5, we obtain a time serief\; }ren, _ _ .
where )\, is the zverage traffic load measured in the interval In this section we explore SVM performance for different

[(k—1)ts, kts]. For the SVR training, we use a sliding windownputs and outputs, for varying values of the temporal param

of lengthtp = tF over this time series to build all possibleeters and for different traces and traffic types.

inpUtS/_ogtpUt_S pairgz;,y;). A subset of this dataset is used ityis is due to the measurement methodology in [14], wherterdifit
for training, i.e., to solve the SVR problem and gather thsvitch ports are monitored every hour.
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Fig. 2. Peakp and 95-th percentilegs of the link load for ISP and Campus

traces Fig. 3. Comparison of real and predicted values for ISP andpts traces

To quantify the forecast accuracy, we consider the root meagcuracy. As expected, the predictions of both peak and 95th
square error, defined as RMSE /> (y; — 9;)2/n which percentile are more accurate for the ISP trace: SVR is urtable
is suited to assess the quality of an estimator in terms fofecast the important “spikes” present in the Campus s;ace
both its variation and unbiasednessFor reference purposesdespite it is able to “follow” the curve. Also intuitivelyhé
we consider thenaive estimation, i.e., it assumes that thgresence of these spikes makes peak prediction harder$an 9
value in the next horizony will remain equal to the value th percentile one. These differences are reflected in thelRMS
achieved in the last observation time framg. Thus, we for the ISP trace RMSE is 3.65 for the peak and 3.39 for the
may also express the relative RMSE gain of SVR foreca@bth-percentile, whereas for the Campus trace these vatees
with respect to the naive prediction &= (RM SE, .. — 21.46 and 9.94 respectively.

RMSEsyn)/RMSEpqive- In what follow we will explore the use of different inputs in

addition to(u, p). More precisely, we will consider as inputs

all possible combinations of input featurgs o, p and pgs.

Tab. Il reports the RMSE obtained by the naive prediction

and the corresponding SVR gain for the ISP and Campus

dataset and for these different combinations of input fegtu
pecifically, we select:

A. Features and target impact

Let us start by considering different statistical propestof
the link load variable as target (i.eoutput of the model),
and by feeding SVR with different combinations of thei
previous observations (i.enputsof the model). As statistical
properties, we consider the meanstandard deviatioa, peak
p and 95-th percentilpys. Also, as far as output is concerned,
for the sake of space, in the following we limitedly consider *
the problems of peak and 95-th percentileg; prediction. . _ Mol ¢ )
Due to space constraints, we show results only for the ISP and the average oéll possible combinations irrespectively of
Campus dataset since they reflect the variety of performance their length
results that can be obtained; we recall that we expect Campugirst, we observe that the performance of both SVR and
to be a stiffer scenario, especially as far as peak load @a8tm naive forecast significantly changes when differeatesare
is concerned. considered: the RMSE change by about a multiplicative facto

As explained before, we preliminary fix SVR parametensetweer2.5 and4. Second, considering differentitputsasp
(C,eyy) for each trace by performing a grid optimizatiorandpys, the RMSE variation can be either important (roughly,
for each output, using the pa{u,p) as input (which is a a factor of 2 in the Campus case) or irrelevant (as in the
reasonable choice given SVR robustness [6]). We recall tH&8P dataset): as we early noticed this can be explained by
to = trp = tw = 64 seconds, whereas = 1 second. the presence of significant load spikes in the Campus trace,
For this parameter setting we show in Fig. 3 real values amdhich are harder to predict and thus yield to a larger foriecas
SVR predictions for a random validation set for both ISP argfror. Third, theinput features combination does influence the
Campus traces, to get a first (visual) idea of the predictisasults, although with a smaller magnitude. Interestingly

« the three best combinations of 2-features inputs (i.e.;, ove
all pair of statistical properties)

the average of all 2-features inputs

the average of inputs with 3 or more features



TABLE I

Campus

COMPARISON OFNAIVE AND SVRFORECAST OFp AND pgs, FOR 2
DIFFERENT INPUT FEATURESWHERE 0=(p),0=(p, p),*=(14, po5)
ISP Campus &
| Input pos | P pos | P
[ Naive RMSE [344 [391 7828 [ 16,55 |
Ist 51% 0 | 82% x | 15.5% e | 21.2% e
2nd 5.0% e | 8.0% e | 15.1% x | 20.9% % . ‘ ‘ s
SVM 3rd 4.6% % | 7.9% o | 14.4% o | 20.8% o |
Gain =2 feat | 4.7% 7.% 14.6% 20.17%
> 3 feat | 3.8% 6.3% 13.0% 15.9%
All 4.3% 7.2% 13.9% 18.3%

2 4 8 16 32 64
Forecast Horizont, =t_=t_[s]

can be seen that is better to use a small number of featu. __ e

to describe the statistical properties of the trace rathant

a large one. Moreover, the three best input combinations

yield to very similar results, although no clear winner can b

identified, as the best input varies across traces and autput

therefore, in what follow, we will limit ourselves to consid Fig. 4 for both the ISP and Campus tra@enterestingly, the

(1).(12,p).(12, po5) @s inputs for the SVM prediction. Finally o045t accuracy is diversely affected by the forecaszbor

notice that, rather surprisingly, th, ?’) compmanon yields for the different traces: this reflects the fact that netwasge

to worseresults with respect to the simplest input chojpg, is much different across the datasets, and so are the tempora

FPatfic dynamics. For example, considering the ISP trac#) bo
and pgs can be predicted with higher accuracy over a

medium temporal horizon (i.e§ < tr < 16). Conversely, in

Fig. 4. Impact of the forecast horizan- on forecast accuracy

Also, the combinatiorio, p) provides theworst results of all
combinations, which suggest that the megashould always

be con§idered as input feature, irrespectively of thessieal the Campus dataset theRMSE error monotonously increases
properties considered as target of the forecast. with ¢z, whereas theyo; RMSE exhibits an opposite sym-

In Sec. V we will show that it is actually unnecessary tghetrical behavior with respect to the ISP case (i.e., medium
inspect which combination of input yield the best result& t 51yes oft - yield to worse performance).The increasing error
underlying idea is to use several machines in parallel, @&chfor peak is in accordance with the important spikes shown in
which is trained with different inputs for the same output (Skjg. 3 since it could be easier to predict values in the near
that it is either possible to e.qcombinethe forecast power of fytyre being not possible to extend the forecast horizois Th
different machines, or alsautomatically selecthe best input fact have less impact when the percentile is considered as
combination). output since the spikes are not so important.

While it is hard to draw general conclusions from these
) . ) specific behaviors, nevertheless one can gather that soree ti
B. Aggregation and timescales impact horizon are definitively easier to predict. Pushing thisiiin
a bit further, we are interested in answering whether, agmin
at predicting link load ovearbitrary time horizons, it could
be beneficial to aggregate data into windows corresponding t
timescales where forecast is known to be more accurate. For
instance, consider the Campus case: in order to predict next
grninute’3p95 load, would it be better to use i) a single set of
features from the last minute window, or ii) several sets of
fgg\tures gathered from separate smaller windows ? To answer

In this section, we explore the impact ¢iming related
parameters, such as the forecast horizprand the window
lengthtyy . It is worth to note that we have fixeéd = 1 second,
since this choice implies more flexibility in the selectidrtie
the forecast horizon and will allow us to explore a wider man
of values for the aggregation time windaw parameter. We
focus again on the prediction @f and pys; load, considering
only ISP and Campus datasets, and report the SVM res
averaged over 30 repetitions for each of the three best
features input combinations described so far.

IS question, fixingir = to = 64, we consider the impact
of the aggregation windowy; by splitting the observation
. . . . time frameto into several windows of duratioty,y = 2°s

We first (_:onS|der the forecagt ho”z‘?’ﬁ = lo, assuming iy ; ¢ [1,6] as described in Fig. 1. For instaneg; = 32s
]tchat the windowty, is consolldatei\d into E sljngle set Ofyeans that the observation periaglis split into two intervals
eatures (i.etw = to = tr). Neglecting the degeneratedy 35 samples, each of which gets consolidated into a diftere

casetp = _1 s, we explore values ofr = 2's fori & [1_’6]' set of features: SVR is then fed with tlion of these sets.
where for instancér = 16 means that we observe an interval Results are reported in Fig. 5 in terms of the RMSE as a

of 16 seconds (or 16 samples, singe = 1s) and predict
the Ol“!tpm value over th_e _neXt 16 seconds interval. R_GSUItSCIearIy, the results for small time scales are equal for @eakpercentile,
for naive and SVR prediction gf and pgs are reported in since in such time scales, they usually coincide.



function of the window duratiory, . Moreover, we point out ISP
that, being the naive estimation RMSE constant for a fixe ' ‘ ‘ ‘ e
to = tp = 64, the SVR gain is thus directly proportional to 1

&
the error. From comparison of Fig. 4 and Fig. 5, we have 3_5%

partial confirmation of our intuition: for instance, in bd®P p

RMSE

andpgs cases the minimum error & = ¢t = 64 is achieved : ¢ ¢ 1 % o

Campus

whenty = 16 s, which is precisely the value that minimizec

the RMSE in Fig. 5. In other words, there are cases where f

an arbitrary forecast horizont g, it is preferable to split the

observation time framey into different windowsty, < tpg,

whose duratiorty;, should be selected so as to minimize th

forecast error. : _ Campus
At the same time, interpretation of Campus results

more complex, and undermine the generality of the abo

observation. Consideringg; estimation, it can be seen thai

Fig. 4 would suggest the use of small;{ < 4) or even large 7 : L = = o

(tw > 32) windows — but not intermediate valuesigf, as the Aggregation Timescale [s]

RMSE is concave iy, . Fig. 5 states that smaller errors can be

achieved by using larggy > 32 windows (and consequently,

a smaller number of features), which does not contradict our rig. 5. impact of the window timescalgy on forecast accuracy

intuition, despitety, value do not precisely correspond to

the optimum of Fig. 4. Prediction results pfare of harder TABLE Il

interpretation, as the minimum error can be achieved whe¥nve RMSEERROR(R) AND SVRGAIN (G%) FOR DIFFERENT TRACES

the observation time frame ot split (i.e.,ty = 64), despite (1,C,W,E)AND FOR DIFFERENT TRAFFIC BREAKDOWN IN TERMS OF

the prediction error monotonously increases with = tr as SERVICE TYPE(ALL, SRv, WEB), BYTES (B%) AND FLOWS (F%)

shown in Fig. 4. Thus, it seems as though the specific network

scenario may play a very significant role in determining SVR  —""0cr— o r et —mices | Hebio b

forecast performance, and that moreover this happeninafon| 029 005 12 37 1 2 22 11| 8 2 15 05

trivial way. A possible, partial, explanation lies in thefahat \(,:’, g;gg 8:;1 ﬁ 13;;‘ ‘91‘21 gsl, ﬁ ig:é gf gg 13 13;2

shorter windowsyy translate into a higher number of featureg, E | 064 0.56] 25 102| 62 37 27 10.0| 27 33 10 49

which as early noted tends to “confuse” the SVR prediction:

therefore, there may be cases where this increased number of

features simply offsets the potential benefits brought gy tlon the traffic trace but on the traffic class as well, we pariiti

—E8—95th—percentile

splitting procedure. each trace into different traffic aggregates and apply thR SV
. ) load estimation to each aggregate separately. Specifioedly
C. Traces and traffic breakdown impact first extract all “server” traffic from the trace, considegin

In this section, we analyze the different traces of Tab.dnly those packets that involve well-known transport layer
in the attempt to quantitatively bound the extent of SVRorts, and then extract a second aggregate constituted by We
benefits. We limit the analysis to the peak load estimatidraffic only (i.e., port 80). Aggregates have a very différen
attrp = to = 64s and report in Tab. Il the naive RMSE (R),importance depending on the trace we are considering: e.g.,
as well as the maximum gain (G%) brought by SVR (ovd6P traffic volume is dominated by p2p traffic, while server
all possible window valuesy). First of all, the table reports traffic plays a major roles in the Enterprise trace and HTTP
the coefficient of variation (CoV), defined as the ratio of theonstitutes the dominant fraction of the WiFi dataset. THb.
standard deviation over the mean load and measured at @Weails the traffic breakdown across traces reporting tladgive
different timescales, as a statistical compact index oflittle  volume, expressed in terms of bytes (B%) and flows (F%),
load variation. More specifically, Co¥¢) is evaluated over of Server/Total and Web/Server traffic. We stress that this
the whole trace, and represents the long-term load vaitigbil difference in the relative volume of traffic aggregates ffe
whereas CoV(64s) is the mean CoV evaluated oMes long the RMSE value, which indeed also depends on the actual
windows and is representative of the traffic “burstiness” ataleof the data. For example in the case of Web traffic for
short timescales. Notice that there is only a weak coraatithe ISP trace, the fact that RMSE is very small is also tied
between the CoVs and the forecast accuracy: for instantethe fact that Web browsing only represents a small fractio
RMSE for Campus is the highest despite its CoV is lowef the total traffic. For this reason, and to allow a more direc
than both WiFi or Enterprise ones — which is reasonable sincemparison across traffic aggregates, the table also eefert
relevant forecast errors, corresponding to Campus lodespi gain in percentage with respect to the naive prediction otkth
are quadratically penalized by the RMSE metric. From Tab. Ill, is easy to gather that the gain over the naive

In order to test whether forecast accuracy not only depeneistimation ranges betweenvl@nd 3& , with an average



TABLE IV TABLE V
BEST AND WORST CHOICE AND PERCENTAGE OF MOST DISTANT AND GAIN OF PARALLEL SVROVER THE BEST AND THE WORST INPUT
CLOSEST TO THE MEAN PREDICTION

ISP Campus WiFi
| | Best | Worst | Most distant] Closest | | Strategy | Best | Worst | Best | Worst | Best | Worst
ISP (3) - 100% | (2) - 100% | (2) - 39% | (@) - 37% | -05% | 54% | 0.1% | 2.1% | 0.1% | 6.8%
Campus| (3) - 76% | (2) - 100% | (1)~ 38% | (4) = 34% [ -0.1% | 57% | 0.4% | 2.4% | 0.1% | 6.8%
WE— 1 (3) - 69% | (1) - 100% (1) - 60% | (2~ 35% 1 0.0% | 58% | 0.1% | 2.1% | 0.2% | 6.9%

of 17 — which is clearly a very significant gain. Moreover, lll. idem, but the prediction_is_ defined as the one that is
results confirm that the specific dataset considered syongl ~ closestto the mean prediction

affects the SVR performance, whereas the forecast accuracyy the first case (1) the final prediction is defined depending
does not exhibit a significant variation across the differegp the performance (RMSE) of the different machines over
traffic aggregatés An important remark is that the optimalg)| the validation set: the same combination is used for all
tyy value (i.e., the one reported in Fig. 4 to which the mogfyints in this set. Conversely, in the last two cases the best
accurate prediction whety, = tr = to corresponds) only combination is redefined for each point, i.e. the decisiam ca
varies acrosgraces but remains the same over atjgregates pe taken online with only punctual knowledge of the system.
for a given trace. More precisely, the valuestff that yield |t is our aim here to compare the performance of these three
to the highest gain argy = 64 s for Campusfw = 16s for  gyrategies with respect to the best and worst input comibimat
WiFi or ISP andty, = 2s for Enterprise respectively. which possibly changes between datasets and outputs. Thus,
Unfortunately, as early pointed out, there is no generalfy, 5 given validation set, we determine the best and worst
applicable guideline to properly selei;. A possible strategy machine (in terms of RMSE). For each point in the validation
could be to use theargest possible windowtw = 64, get we also identified which was the machine that predicted
which correspond to thenost concisesummary. A natural he vajue nearest and furthest to the mean of all predictions
question is then to quantify the accuracy loss whether=  This procedure is repeated 200 times and results are shown
64 is used instead ofy,. Interestingly, the loss in SVR iy 1ap |V for ISP, Campus and WiFi datasets. The first two
accuracy under this sub-optimal heuristic choice is atualo|ymns indicate the machine (or features combinationt) tha
veryhm_ﬂed. Spe_zcmcally, r_esults are on average only 4%\mb_ obtained the best and worst RMSE in the majority of the
the optlmum,_wnh a maximum of 11% for Enterprise traﬁ'c'repetitions (this majority is shown as a percentage in thie}a
furthermore, if we neglect the latter (too short) dataset, tTpe |ast two columns indicate the machine whose prediction
mean accuracy loss drops to a very limited 2%. Therefotgas the closest and the most distant for the majority of goint
we can conclude that, although properly setting the SVIR he validation set and repetitions (again this majoriy i
parameters may be a cumbersome task, at the same time S¥Bwn as a percentage).
models are robust enough to have very good performance eveg, nq remarks are in order. Regarding the first strategy, we

under non optimal settings. find that the best input changes over the different repattio
V. PARALLEL SVR in accordance with the _results already shown iq T'.;tb. I.
In thi . tudv th ¢ btained b .However the worst machine does not change, motivating the
n IISSSSK/IIOO we s u” ); e p$r og:mnce 0 alrtle ¢ Y USIREt considered strategy (). More in details, since thesawor
severa s In parafel, 1.€. for the same oulpu S_evermachine is different across the traces, but not changesaver
machines are tralned and the f.'nal predlct.|on rs)mbmanon articular trace, a startup phase can be used to evaluate the
of the results obtained by the smgle mach|.nes. The ideais t orst machine which is then not considered for future pre-
the usel oftr.?everal paralll_el_trnachmles cz;m mcre_zse tt:e mre%"i‘ctions. Moreover we find out that the best (worst) input not
powert. nt lls cast_e V\Ile |m|d_(;rurse :/ess\/l\a (_:O?S'_ erd fe hea ecessarily coincides with the closest (most distant)ipted
as oufput. In particu a.r, a dieren IS trained 1or €achy;s ast observation justifies the consideration of thétlae
of the following inputs:(1) = (), (2) = (u,0), (3) = (,p) strategies (Il and I1l).

)~ o) o e shose ackriny o T 15050 gt e s v
ent p . X s B&st and worst results obtained by a single SVM. Performance
combined according to the following strategies: g : : L
) S _ . areverysimilar for all the strategies, with strategy IItaibing
. the final prediction is the average of all predictiongjighily better results. Interestinglgny strategy employing
except the one that obtained the worst RMSE over the, 5jie] SVM is also better than a single machine using all
validation set o o the input (i, o, p, pos). Moreover, with respect to the best
II. idem, but for each point in the validation set, we negled teatyre input, the results of parallel SVR are generally
the prediction that isurthestfrom the mean prediction heter hut sometimes worse (i.e. strategies | and Il in te IS
of all machines case), with a difference always smaller than 0.5%. This mean
3The most important variations appears for the Enterprigfidr but the thaF although no real gain is Obta'ned’_at the same time no
results may be negatively biased by the excessively stawe tduration. noticeable performance loss happens either.



TABLE VI

. improves when “compact” statistical summaries are used as
GAIN OF PARALLEL SVR OVER THE “EMBEDDING PROCEDURE

inputs. Then, despite the best input feature set possibly de

ISP Campus Wi pends on the forecast output, we have shown that the sedectio
RE [RMSE| RE [RMSE|[ RE [ RMSE can be avoided by using parallel SVMs. Concerning time-
[ 11.6% | 10.3% [ 25.7% [ 14.8% [ 12.2% | 11.8% | related parameters, our experiments show that their optima

tuning may not be easy task. Yet, we point out that the best
setting only depends on the network measurement point but is
In other words, the use of several machines in parallel c{ensitive to the traffic breakdown. Second, the use oflarg
be an excellent strategy when the best input is not cleﬁ,{put time-scales (corresponding to compact input sumjnary
A possible objection is that this approach may raise thgeld to a near-optimal forecast accuracy . Third, we artiaé t
computational cost of training several machines at the sagg se of parallel SVMs could bring benefits also concerning
time: to this extent, we stress that a common PC can suppg/ tuning of time-related parameters.
several thousanadf such SVR machines in real-time [6]. Overall, we can conclude that SVR is an interesting tech-
nigue for its flexibility, cost-effectiveness, accuracylanbust-
ness. SVR is flexible since it applies to the forecast of oaffe
Finally, we compare the performance of parallel SVM anghrgets, while cost-effectiveness stems from the fact it
the “embedding process” described in [6]. For this purposge offline training and the online forecast operations have
we considered again the dataset ISP, Campus and WiFi, &f@ar cost in the number of support vector. Moreover, given
the peak as the output, since it is the most difficult to predighat a number of software tools are readily available, SVR
Given the results of the previous section, for parallel SViechniques can be deployed right away. Finally, SVR has the
we limit ourselves to the strategy Ill. Roughly, with thispotential to bring accurate results under a number of differ
comparison we aim at knowing which approach is better tgenarios: while parameter tuning may not be a trivial task,
predict the maximum load in the next minute: the “embeddinge stress that SVR performance are rather robust even under

process” which uses as input a vector containing all thgn optimal settings and that the use of parallel SVM helps
observed samplesc(€ R? with d = 64), or the approach jn relieving this problem.
presented in this paper which uses an intelligent comlinati
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