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a b s t r a c t

Given a tournament T, Slater’s problem consists in determining a linear order (i.e. a complete directed
graph without directed cycles) at minimum distance from T, the distance between T and a linear order
O being the number of directed edges with different orientations in T and in O. This paper studies the
complexity of this problem and of several variants of it: computing a Slater order, computing a Slater
winner, checking that a given vertex is a Slater winner and so on.
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1. Introduction

A tournament T is an asymmetric and complete directed simple
graph: between two distinct vertices x and y, there is one and only
one of the two arcs (i.e. directed edges) ðx; yÞ and (y; xÞ. Such a
structure arises for instance in voting theory, to model the result
of a pairwise comparison method, as the one suggested by Condor-
cet [11]. Indeed, assume that we are given a set X of n candidates
and a collection P ¼ ðO1;O2; . . . ;OmÞ, called a profile, of the opin-
ions Oi of m voters ð1 6 i 6 mÞ who want to rank the n candidates;
we assume moreover that the individual preferences Oi ð1 6 i 6mÞ
of the m voters are linear orders over X. An order O defined on X will
be represented under the form x1 > x2 > � � � > xn for an appropriate
numbering of the n elements xj ð1 6 j 6 nÞ of X, with the agreement
that x > y means that x is preferred to y; with this notation, we say
that x1 is the first element of O. More generally, if O and O0 denote
two linear orders defined on different sets X and X 0;O > O0 will de-
note the linear order defined on X [ X0 as the concatenation of O fol-
lowed by O0.

In order to aggregate these m linear orders into a linear order
which can be considered as the collective preference, Condorcet
suggested to compute, for each pair of candidates fx; yg (with
x–y), the number mxy of voters who prefer x to y and the number
myx of voters who prefer y to x; x is then collectively preferred to y
if we have mxy > myx. We may model this collective preference by a
graph T, with the set of candidates as its set of vertices, and with an
arc from x to y when x is collectively preferred to y, i.e. when we
have mxy > myx. If there is no tie (it is in particular the case when
m is odd, since we have mxy þmyx ¼ m), as it will be assumed in
the sequel, the obtained graph T ¼ ðX;AÞ is a tournament, called

the majority tournament of the election, where X is the set of can-
didates and where A is thus defined by: ðx; yÞ 2 A () mxy > myx

(see [9] and the references therein for more details).
Sometimes T is a linear order O, i.e. a complete directed graph

without directed cycles, providing the desired ranking of the can-
didates of the election. It is well-known (see [6,20,21,22,23] for
the definitions and the basic results about graphs and tourna-
ments) that a linear order is a transitive tournament and con-
versely (remember that a tournament T is transitive if the
existence in T of the arcs ðx; yÞ and (y; zÞ implies the one of ðx; zÞ),
and that a tournament is transitive if and only if it is without
any circuit (i.e. any directed cycle). But, as discovered by Condorcet
himself, the majority tournament T ¼ ðX;AÞ of an election may not
be transitive, even if the preferences of the voters are all assumed
to be linear orders. This is the so-called ‘‘voting paradox” or also
‘‘Condorcet effect” [14]. The following example illustrates this
situation.

Example 1. Assume that m=9 voters must rank n ¼ 4 candidates
a; b; c, and d. The profile P0 of the preferences of the voters is
assumed to be given by the following linear orders:

� the preferences of three voters are: a > b > c > d;
� the preferences of two voters are: b > d > c > a;
� the preference of one voter is: c > d > a > b;
� the preference of one voter is: d > a > c > b;
� the preference of one voter is: d > b > a > c;
� the preference of one voter is: c > d > b > a.

Thus we have P0 ¼ ða > b > c > d; a > b > c > d; a > b >
c > d; b > d > c > a; b > d > c > a; c > d > a > b; d > a > c > b;
d > b > a > c; c > d > b > aÞ. The quantities mxy implied in
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Condorcet’s procedure are the following, where the bold values
show the ones greater than or equal to the strict majority
ðmþ 1Þ=2, here equal to 5:

� mab ¼ 5; mba ¼ 4;
� mac ¼ 5; mca ¼ 4;
� mad ¼ 3; mda ¼ 6;
� mbc ¼ 6; mcb ¼ 3;
� mbd ¼ 5; mdb ¼ 4;
� mcd ¼ 5; mdc ¼ 4.

Here, the majority tournament is not a linear order, but the
tournament T0 of Fig. 1.

Even if T is not transitive, it may happen that there exists a Con-
dorcet winner: a Condorcet winner is a candidate f collectively pre-
ferred to any other candidate: 8 x 2 X with x – f; mfx > mxf. From
the graph theoretic point of view, it means that all the arcs involv-
ing f go from f to the other vertices: the out-degree of f is equal to
n � 1 and its in-degree is equal to 0. Notice that, when there exists
a Condorcet winner, there is only one.

When there exists a Condorcet winner of the election, we may
consider him as the winner of the election (though it is not the case
for many voting procedures). When there is no Condorcet winner
(as it is the case for the example above), the question arises to
know who can be considered as the winner of the election. Several
methods, known under the name of tournament solutions, have
been designed to answer this question (see for instance [20] for a
survey on these solutions and [17] for their complexities). Among
them, we find for example the solution proposed by Banks [3]. It
consists in considering as winners (called the Banks winners of TÞ
the first elements of the maximal (with respect to inclusion) tran-
sitive subtournaments of T (for instance, the Banks winners of the
tournament of Fig. 1 are a because of the maximal transitive sub-
tournament a > b > c; b because of the maximal transitive sub-
tournament b > c > d, and d because of the maximal transitive
subtournament d > aÞ.

Another solution, that we are going to consider in this paper, is
the one studied by P. Slater, called Slater’s solution ([24]; for a sur-
vey and references on this problem, see [9,10]). Slater’s solution
consists in transforming Tinto a linear order by reversing a mini-
mum number of arcs of T. For instance, it is easy to see that it is
necessary and sufficient to reverse the arc ðd; aÞ in the tournament
of Fig. 1 to transform it into the linear order a > b > c > d.

More formally, in the sequel, T ¼ ðX;AÞ will denote a tourna-
ment with n vertices. The set of linear orders defined on X will
be xðXÞ, and O will represent a linear order defined on X (in other
words, O is an element of xðXÞ). We define the symmetric difference
distance d (in fact, half this distance) between T and O ¼ ðX;BÞ by:

dðT;OÞ ¼ 1
2
jADBj;

where D denotes the usual symmetric difference between sets. As T
and O are complete and asymmetric, we have also:

dðT;OÞ ¼ ðx; yÞ 2 A� Bf gj j ¼ ðx; yÞ 2 B� Af gj j

(which shows that dðT;OÞ is an integer). This distance, which owns
good axiomatic properties (see [4]), measures the number of dis-
agreements between T and the ranking defined by O. From the
graph theoretic point of view, dðT;OÞ can also be interpreted as
the number of arcs which do not have the same orientation in T
and in O, or, equivalently, as the number of arcs that must be re-
versed in T to obtain the linear order O.

So, Slater’s problem consists in computing a linear order O�

which minimizes the distance d from T over the set xðXÞ :

dðT;O�Þ ¼ min
O2xðXÞ

dðT;OÞ;

or, equivalently, a linear order which minimizes the number of arcs
which must be reversed in T to obtain O. This minimum number
will be called the Slater index of T and is noted iðTÞ; an order O�ðTÞ
which minimizes the distance d to T will be called a Slater order of
T; a Slater winner of T is the first element of any Slater order of T;
notice that there always exists at least one Slater winner.

The aim of this paper is to study the algorithmic complexity of
Slater’s problem and some of its variants. Section 2 defines these
variants. The complexity results are proved in Section 3, and sum-
marized in the conclusion, in Section 4.

2. Slater’s problems

From the previous considerations, we may define several
problems.

PROBLEM ðP1Þ. Given a tournament T, compute the value of the
Slater index iðTÞ of T.
PROBLEM ðP2Þ. Given a tournament T, compute a Slater order
O�ðTÞ of T.
PROBLEM ðP3Þ. Given a tournament T, compute all the Slater
orders O�ðTÞ of T.
PROBLEM ðP4Þ. Given a tournament T, compute a Slater winner
of T.
PROBLEM ðP5Þ. Given a tournament T, compute all the Slater
winners of T.
PROBLEM ðP6Þ. Given a tournament T and a vertex v of T, deter-
mine whether v is a Slater winner of T.
PROBLEM ðP7Þ. Given a tournament T ¼ ðX;AÞ and a linear order
O defined on X, determine whether O is a Slater order of T.

The question is to know where to locate these problems inside the
polynomial hierarchy (for the theory of NP-hardness, see for in-
stance [5,13,18]; see also [15] for a comprehensive survey of the
main complexity classes and [1] for a catalogue of about 500 com-
plexity classes). In the next section, we show that Problems
ðP1Þ—ðP6Þ are NP-hard while Problem ðP7Þ belongs to co-NP. From
a practical point of view, remember that NP-hardness implies that
we do not know polynomial algorithm to solve these problems
(and, if P and NP are different, such algorithms do not exist): the
CPU time required to solve these problems exactly can grow expo-
nentially with respect to the size of the instance (or, here, with re-
spect to n, the number of vertices of TÞ and so may soon become
prohibitive. It may seem obvious that these problems share the same
complexity. Indeed, there are some simple relations between some
of these problems. But we must be careful. For instance, for the solu-
tion suggested by Banks (see above), it is NP-complete to determine
whether a given vertex of a tournament is a Banks winner [25], but
computing a Banks winner can be done in polynomial time [16].

To establish the NP-hardness of Problems ðP1Þ—ðP6Þ, we shall
use another problem, of which the decision version is usually
called Feedback Arc Set Problem, here considered for tournaments:

a b

cd

Fig. 1. The majority tournament T0 associated with the profile P0 of the example.
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PROBLEM ðP8Þ. Given a tournament T ¼ ðX;AÞ, determine a sub-
set C of A with minimum cardinality and such that the graph
T ¼ ðX;A� CÞ is without circuit.

3. Complexity results for Slater’s problems

The complexity results of this section all come from the NP-
hardness of ðP8Þ. This problem, when extended to any directed
graph (i.e., T is not necessarily a tournament), has been known to
be NP-hard for a long time (see [19]). Recently, Alon [2], Charbit
et al. [7], and Conitzer [12] proved independently that ðP8Þ is NP-
hard. More precisely, they proved that the decision problem, called
FAST below, associated with problem ðP8Þ, is NP-complete:

Name: Feedback Arc Set for Tournaments (FAST)
Instance: a tournament T ¼ ðX;AÞ; an integer h;
Question: does there exist B � A with jBj 6 h and such that
ðX;A� BÞ is without circuit?

We first study the complexity of problem ðP1Þ (computation of
the Slater index of a tournament). For this, we define an extra nota-
tion. If U denotes a set of arcs, U will denote the set of the arcs ob-
tained by reversing the arcs of U : U ¼ fðx; yÞ with ðy; xÞ 2 Ug. The
decision problem associated with ðP1Þ is the following problem:

Name: Slater index (SI)
Instance: a tournament TS ¼ ðXS;ASÞ; an integer hS;
Question: does there exist BS � AS with jBSj 6 hS and such that
ðXS; ðAS � BSÞ [ BSÞ is a linear order?

To show that SI is NP-complete, we are going to use the NP-
completeness of the problem FAST.

Theorem 1. The problem SI is NP-complete.

Proof. Notice first that SI belongs to NP (the proof, quite simple, is
left to the reader; it is based on the fact that the size of any
instance of SI is Hðn2 þ log2hSÞ, or also Hðn2Þ, since hS can trivially
be upper-bounded by n2Þ.

Now, let us transform FAST into SI. For this, consider any
instance ðT;hÞ of FAST and consider it as an instance of SI: in other
words, we adopt the identity for the transformation. Such a
transformation is obviously polynomial.

Assume that the answer for the instance ðT;hÞ of FAST is ‘‘yes”.
Then there exists B � A with jBj 6 h and such that ðX;A� BÞ is
without any circuit. As (X;A� BÞ is without any circuit, it can be
extended into a linear order O ¼ ðX;CÞ with A� B # C. Let
D ¼ C � ðA� BÞ be the set of the arcs that are added to transform
ðX;A� BÞ into O. Notice that D and B are not necessarily disjoint: it
may happen that we remove some arcs of T which are put again to
obtain O. But it is easy to reach such a disjunction. Indeed, set
BS ¼ B� ðB \ DÞ; in other words, BS is the set of the arcs which are
really removed from T to obtain O. As O is complete, every removed
arc ðx; yÞ of BS is replaced by ðy; xÞ in O. So BS is the set of the arcs
which are reversed from T to obtain the linear order
O : O ¼ ðX; ðA� BSÞ [ BSÞ. As moreover we obviously have BS � A
and jBSj 6 jBj 6 h, this involves that the instance ðT;hÞ of SI admits
the answer ‘‘yes”.

Conversely, assume that the instance ðT; hÞ of SI admits the
answer ‘‘yes”: there exists BS with jBSj 6 h and such that
ðX; ðA� BSÞ [ BSÞ is a linear order. Set ðB ¼ BS. We have obviously
the required two properties: jBj 6 h and ðX;A� BÞ is without
circuit (since it is a subgraph of ðX; ðA� BSÞ [ BSÞ, which does not
contain any circuit). So, the instance ðT; hÞ of FAST admits the
answer ‘‘yes”.

Thus the proposed transformation keeps the answer. As it is
polynomial, as FAST is NP-complete, and as SI belongs to NP, then
SI is also NP-complete. h

Corollary 2. Problem ðP1Þ is NP-hard.

To study the complexity of some of the other problems, the next
lemmas will be useful.

Lemma 3. A vertex x is a Slater winner of T if and only if we have
iðTÞ ¼ d�ðxÞ þ iðT 0Þ, where d�ðxÞ denotes the in-degree of x in T, and
where T 0 denotes the subtournament of T obtained from T by removing x.

Proof. Let O be any linear order belonging to xðXÞwith x as its first
element. Let O0 be the linear order obtained from O by removing x.
Remember that the in-degree d�ðxÞ of x in T is the number of arcs
with x as their tails in T. To build O from T, it is necessary and suf-
ficient to reverse all the arcs with x as their tails in T and then to
build O0 by reversing the appropriate arcs of T 0. Thus the relation:
dðT;OÞ ¼ d�ðxÞ þ dðT 0;O0Þ. When O varies inside the set xx of the
linear orders with x as their first elements, we see that O0 varies
inside the set xðX � fx1gÞ of the linear orders defined on the same
set of vertices as T 0. Hence the following equalities hold when x is a
Slater winner of T:

iðTÞ ¼ min
O2xx

dðT; OÞ ¼ d�ðxÞ þ min
O02x X� x1f gð Þ

dðT 0; O0Þ ¼ d�ðxÞ þ iðT 0Þ:

Conversely, if we have iðTÞ0 ¼ d�ðxÞ þ iðT 0Þ for some vertex x, then x
is a Slater winner of T. Indeed, any order obtained by the concatena-
tion of x with any Slater order of T 0 provides a linear order at dis-
tance d�ðxÞ þ iðT 0Þ from T; if the equality iðTÞ ¼ d�ðxÞ þ iðT 0Þ holds,
then this order is a Slater order of T by definition. h

Lemma 4. Let x be a Slater winner of T and let O0 be a Slater order of
T 0, where T 0 denotes the subtournament of T obtained from T by
removing x. Then x > O0 is a Slater order of T.

Proof. Let O denote the order x > O0. By Lemma 3, we have:
iðTÞ ¼ d�ðxÞ þ iðT 0Þ, where d�ðxÞ denotes the in-degree of x in T, since
x is a Slater winner of T. Moreover, we have the equalities dðT;OÞ ¼
d�ðxÞ þ dðT 0;O0Þ ¼ d�ðxÞ þ iðT 0Þ ¼ iðTÞ: hence the result. h

Lemma 5. A linear order O ¼ x1 > x2 > � � � > xn is a Slater order of T
if and only if, for any j with 1 6 j 6 n; xj is a Slater winner of the sub-
tournament induced by xj; xjþ1; . . . ; xn.

Proof. Assume that O is a Slater order of T. For any index j with
1 6 j 6 n, let Tj be the subtournament induced by xj; xjþ1; . . . ; xn.
Assume that, for some j; xj is not a Slater winner of Tj, and so that
xj > xjþ1 > � � � > xn is not a Slater order of Tj. Then replace
xj > xjþ1 > � � � > xn in O by a Slater order Oj of Tj. This provides a
new order O0 obtained as the concatenation of x1 > x2 > � � � > xj�1

with Oj : O0 ¼ x1 > � � � > xj�1 > Oj. To obtain O or O0 from T, we
reverse the same arcs except some arcs belonging to Tj. More pre-
cisely, we have: dðT;OÞ � dðT;O0Þ ¼ dðTj; xj > xjþ1 > � � � > xnÞ
�dðTj;OjÞ. This quantity is greater than 0 since Oj is a Slater order
of Tj while xj > xjþ1 > � � � > xn is supposed not to be. But in this
case, O0 is closer to T than O, a contradiction. So xj is a Slater winner
of this subtournament.

Conversely, assume that, for any j with 16 j 6 n; xj is a Slater
winner of Tj. An obvious induction allows us to conclude: still with
Tj denoting the subtournament induced by xj; xjþ1; . . . ; xn, we have
that xn is obviously a Slater order of Tn; by Lemma 4, this implies
that xn�1 > xn is a Slater order of Tn�1; in its turn, still by Lemma 4,
this implies that xn�2 > xn�1 > xn is a Slater order of Tn�2; and so
on, until O ¼ x1 > x2 > � � � > xn which is a Slater order of T. h
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We are going to show now that some problems are NP-hard.
Remember that, for two problems ðPÞ and ðQÞ, we write ðPÞ<TðQÞ
if (PÞ can be reduced to (QÞ by a Turing transformation, i.e. if the
existence of an algorithm A allowing to solve (QÞ implies the pos-
sibility to solve ðPÞ by applying A a polynomial number of times.
Remember that, if we have ðPÞ<TðQÞ while ðPÞ is NP-hard, then
ðQÞ is also NP-hard. More generally, the relation ðPÞ<T ðQÞ can be
interpreted as: ‘‘ðQÞ is at least as difficult as ðPÞ”.

In the sequel, for any tournament T; jTj will denote the size of T
according to a ‘‘reasonable” coding, for example the number n2 of
bits required to encode the adjacency matrix of T in a binary coding.

We now prove that Problems ðP2Þ—ðP6Þ are NP-hard:

Theorem 6. Problems ðP2Þ—ðP6Þ are NP-hard.

Proof. To show that Problems ðP2Þ—ðP6Þ are NP-hard, let us apply
appropriate Turing transformations. We consider each one of the
problems.

1. NP-hardness of ðP2Þ (computation of a Slater order)

Clearly, ðP2Þ is at least as difficult as ðP1Þ: any algorithm A2

providing a Slater order O of a tournament T can be used to
compute iðTÞwith only one call to A2, since the computation of
the distance between T and O is polynomial. Hence the relation:
ðP1Þ<TðP2Þ; the NP-hardness of ðP1Þ implies the one of ðP2Þ.

2. NP-hardness of ðP3Þ (computation of all the Slater orders)

Knowing an algorithm to compute all the Slater orders
obviously allows, with just one call, to obtain one of them.
Hence the relation: ðP2Þ<TðP3Þ; the NP-hardness of ðP2Þ implies
the one of ðP3Þ.

3. NP-hardness of ðP4Þ (computation of a Slater winner)

Assume that we know an algorithm A4 allowing to solve ðP4Þ,
i.e. allowing to compute a Slater winner of any tournament T. By
applying A4n times, we could successively compute a Slater
winner x1 of T, then a Slater winner x2 of T � fx1g, then a Slater
winner x3 of T � fx1; x2g, and so on. So, thanks to Lemma 5, we
can, by applying A4n times, compute a Slater order of T. Thus:
ðP2Þ<TðP4Þ; the NP-hardness of ðP2Þ implies the one of ðP4Þ.

4. NP-hardness of ðP5Þ (computation of all the Slater winners)

Knowing an algorithm to compute all the Slater winners
obviously allows, with just one call, to obtain one of them.
Hence the relation: ðP4Þ<TðP5Þ; the NP-hardness of ðP4Þ implies
the one of ðP5Þ.

5. NP-hardness of ðP6Þ (determine whether a given vertex is a Sla-
ter winner)

Knowing an algorithm A6 to determine whether a given vertex
is a Slater winner allows us, by considering successively the n
possible vertices of the tournament, to compute a Slater winner
by applying A6 at most n times. Hence ðP5Þ<TðP6Þ; the NP-
hardness of ðP5Þ implies the one of ðP6Þ.

This completes the proof of Theorem 6. h

Notice that the problem ðP6Þ, which is a decision problem, is not
known to belong to NP nor to co-NP. If the conjecture stated at the
end of the section about ðP6Þ is true and if the usual conjectures of
the complexity theory are true, then indeed ðP6Þ would not belong
to NP [ co-NP.

Corollary 2 and Theorem 6 show that problems ðP1Þ—ðP6Þ are at
least as difficult as any problem belonging to NP. With this respect,
they provide, in a way, a lower bound of the complexities of these
problems. We now try to locate them inside the polynomial hierar-
chy by providing upper bounds of their complexities. To state the
following results, let us recall first some notation. As done by
D.S. Johnson in [18], we will distinguish between decision prob-
lems (i.e. problems for which a question is set of which the answer
is ‘‘yes” or ‘‘no”; note that the problems considered now does not
necessarily belong to NP) and the other types of problems (as opti-
mization problems or search problems). The class PNP or P(NP), or
Dp

2 (or simply D2Þ, or still PNP nOð1Þ½ � ¼
S

kP0PNP nk½ � contains the deci-
sion problems which can be solved by applying, with a polynomial
(with respect to the size n of the instance) number of calls, a sub-
program able to solve an appropriate problem belonging to NP
(usually, an NP-complete problem). In other words, PNP contains
the decision problems (PÞ such that there exists a problem ðQÞ
belonging to NP with ðPÞ<TðQÞ, where <T still denotes the Turing
transformation. Such a problem ðPÞ is sometimes called NP-easy
(though it can be NP-hard as well; a problem which is simulta-
neously NP-easy and NP-hard is said to be NP-equivalent: broadly
speaking, this means that the complexity of an NP-equivalent
problem is the same, up to some polynomials, as the complexity
of NP-complete problems). This class is usually considered as the
first step of the polynomial hierarchy above NP and co-NP (with
this respect, the notation D2 is more usual when dealing with this
polynomial hierarchy; anyway, we shall keep the notation PNP,
more informative and of which the meaning is easier to memo-
rize). Indeed, PNP contains NP obviously as well as the class co-
NP: NP [ co-NP # PNP. It also contains the class LNP, also denoted
by PNP log½ � or PNP log n½ �, or Hp

2, or still PNP
k or also PkNP, which contains

the decision problems that can be solved by applying, a logarithmic
(still with respect to the size n of the instance) number of times,
a subprogram able to solve an appropriate problem belonging to
NP (usually, an NP-complete problem). This class contains the
classes NP and co-NP and is contained in the class PNP :

NP [ co-NP # LNP # PNP. For the problems which are not decision
problems (sometimes called ‘‘function problems”), we generalize
these classes by adding ‘‘F” in front of their names (see [18]). For
example, the class FPNP or FDp

2 (respectively the class FLNPÞ contains
the optimization problems and the search problems which can be
solved by the application of a subprogram able to solve an appro-
priate problem belonging to NP a polynomial (respectively loga-
rithmic) number of times.

Theorem 7. The problem ðP1Þ belongs to FLNP and the problem ðP6Þ
belongs to LNP.

Proof. Let us show how an algorithm solving the NP-complete
problem called SI above can be used to solve ðP1Þ with a number
of calls upper-bounded by a logarithm in the size of the instance.
Consider any instance T of ðP1Þ. Let A be an algorithm to solve
SI: applied to any instance (T;hÞ of SI, A indicates whether there
exists a linear order at distance h or less from T. For
h ¼ nðn� 1Þ=2, the answer provided by A is obviously ‘‘yes”.
Thanks to a usual dichotomous process from this initial value, we
may compute the Slater index iðTÞ of T with a number of calls to
A which is upper-bounded by about log2ðnðn� 1Þ=2Þ, i.e. O(log
nÞ. Hence the result: P1ð Þ 2 FLNP, since the size of a tournament
on n vertices is about n2.

Now, consider any instance ðT;vÞ of ðP6Þ, where T denotes the
considered tournament (on n vertices) and v denotes a possible
Slater winner of T. Let A still be an algorithm to solve SI. We have
just seen how A can be exploited to compute iðTÞ with O(log nÞ
calls to A. Let Tv be the tournament obtained from T by removing
v. By Lemma 3, v is a Slater winner of T if and only if we have
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iðTÞ ¼ d�ðvÞ þ iðTvÞ, where d�ðvÞ denotes the in-degree of v in T. To
check whether v is a Slater winner of T thanks to A, it suffices to
apply A dichotomously to T to compute iðTÞ, then to Tv to compute
iðTv Þ, and last to compare iðTÞ � iðTvÞ to d�ðvÞ. As mentioned
above, iðTÞ and iðTv Þ can be computed by O(log nÞ calls to A, and
the remaining operations are negligible. Finally we obtain an
algorithm solving ðP6Þ through an algorithm (the algorithm A)
which solves a problem of NP (the problem SI) and which is
performed a number of times upper-bounded by a logarithm of the
size of the data. Hence the result about the complexity of ðP6Þ. h

Similarly, it is possible to locate ðP2Þ; ðP4Þ and ðP5Þ inside FPNP, as
stated in the following theorem. But, since a tournament can admit
an exponential number of Slater orders with respect to n (see
[8,26]), the following analysis cannot be applied to the problem ðP3Þ.

Theorem 8. The problems ðP2Þ; ðP4Þ and ðP5Þ belong to FPNP.

Proof. In order to prove that ðP4Þ belongs to FPNP, we apply the
same process as for ðP6Þ by varying the considered vertex v as
the potential winner. We consider at most n vertices to find a Slater
winner. Let A be an algorithm solving SI. To check whether a given
vertex is a Slater winner can be done in O(log nÞ calls of A (see
above). Since there are at most n vertices to be checked, the deter-
mination of a Slater winner can therefore be done in Oðn log nÞ calls
of A; hence the result for ðP4Þ. The belonging of ðP5Þ to FPNP is
obtained in a similar way, with the same complexity, i.e. within
Oðn log nÞ calls to A, by testing all vertices and by verifying
whether each of them is a Slater winner of T. Last, by Lemma 5,
we know that O ¼ x1 > x2 > � � � > xn is a Slater order of T if and only
if, for all j between 1 and n; xj is a Slater winner of the subtourna-
ment of T induced by fxj; xjþ1; . . . ; xng. A Slater order is thus
obtained by performing n times an algorithm which determines a
Slater winner of a tournament. From what has been said for ðP4Þ,
this aim can be attained by applying Oðn2 log nÞ times the algo-
rithm A solving SI. Hence the belonging of ðP2Þ to FPNP. h

For Problem ðP7Þ (determine whether a given order is a Slater
order of a given tournament), it can be located inside co-NP:

Theorem 9. Problem ðP7Þ belongs to co-NP.

Proof. Let (T;OÞ be an instance of ðP7Þ. To prove that ðP7Þ is in co-
NP, it is sufficient to guess an order O0 closer to T than O (O0 exists if
O is not a Slater order of TÞ. Then we just have to compute dðT;OÞ
and to compare it with dðT;O0Þ. This can trivially be performed in
polynomial (and even linear) time with respect to n2, which is,
broadly speaking, the size of T. So the verification is polynomial
and ðP7Þ belongs to co-NP. h

Because of this result, ðP7Þ cannot be NP-complete, except if
NP=co-NP. On the other hand, Theorem 9 does not permit to locate
ðP7Þ inside co-NP precisely. So the question remains: where is ðP7Þ
located inside the class co-NP? Is ðP7Þ co-NP-complete? Let us no-
tice that the possible polynomiality of ðP7Þ would not be in contra-
diction with the NP-hardness of the other previous problems.
Indeed, even if we assume that we can determine in polynomial
time whether a given order is a Slater order or not, it would not
indicate how to choose it, and therefore it would not indicate for
instance how to find a Slater winner. On the other hand, such a
polynomiality of ðP7Þwould have interesting consequences. Hence,
it would be possible to deduce that ðP6Þ belongs to NP. Indeed, in
order to be convinced that a given vertex v is a Slater winner, we
could guess a linear order and claim that it is a Slater order. The
hypothetical polynomiality of ðP7Þ would allow to check such a
claim in polynomial time, and thus to verify in polynomial time
that the vertex v is indeed a Slater winner, which would imply that
ðP6Þ belongs to NP.

To conclude this section, we state some conjectures:

Conjectures.

1. Problem ðP1Þ is FLNP-complete.
2. Problems ðP2Þ, ðP4Þ and ðP5Þ are FPNP-complete.
3. Problem ðP6Þ is LNP-complete.
4. Problem ðP7Þ is co-NP-complete.

4. Summary

As a conclusion, let us summarize the results obtained above.

� The computation of the Slater index of a tournament (Problem
ðP1ÞÞ is an NP-hard (Corollary 2) and NP-easy (Theorem 7) prob-
lem, so it is NP-equivalent. This problem belongs to FLNP (Theo-
rem 7). The decision problem that is associated with it (problem
SI) is NP-complete (Theorem 1).

� The determination of a Slater order of a tournament (Problem
ðP2ÞÞ, of a Slater winner of a tournament (Problem ðP4ÞÞ, or of
all the Slater winners of a tournament (Problem ðP5ÞÞ are NP-
hard (Theorem 6) and NP-easy (Theorem 8) problems, so they
are NP-equivalent. These problems belong to FPNP (Theorem 8).

� The determination of all the Slater orders of a tournament (Prob-
lem ðP3ÞÞ is an NP-hard problem (Theorem 6).

� The verification that a given vertex is a Slater winner of a tour-
nament (Problem ðP6ÞÞ is an NP-hard (Theorem 6) and NP-easy
(Theorem 7) problem, so it is NP-equivalent. This problem
belongs to LNP (Theorem 7).

� The verification that a given order is a Slater order of a tourna-
ment (Problem ðP7ÞÞ belongs to co-NP (Theorem 9).

We may compare these results to the ones relative to the com-
putation of Banks winners. As said above, the computation of one
Banks winner (the equivalent of Problem ðP4ÞÞ can be done in poly-
nomial time, but the computation of all the Banks winners (the
equivalent of Problem ðP5ÞÞ is NP-hard and the verification that a
given vertex is a Banks winner (the equivalent of Problem ðP6ÞÞ is
NP-complete. On the other hand, the computation of a Condorcet
winner, when such a winner does exist, can be done in polynomial
time, as well as the linear order provided by Condorcet’s proce-
dure, when this procedure provides a linear order.
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