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Abstract

Context-based lossless coding suffers in many cases from the so-called
context dilution problem, which arises when, in order to model high-order
statistic dependencies among data, a large number of contexts is used. In
this case the learning process cannot be fed with enough data, and so the
probability estimation is not reliable. To avoid this problem, state-of-the-art
algorithms for lossless image coding resort to context quantization (CQ) into
a few conditioning states, whose statistics are easier to estimate in a reliable
way. It has been early recognized that in order to achieve the best com-
pression ratio, contexts have to be grouped according to a maximal mutual
information criterion. This leads to quantization algorithms which are able
to determine a local minimum of the coding cost in the general case, and
even the global minimum in the case of binary-valued input.

This paper surveys the CQ problem and provides a detailed analytical
formulation of it, allowing to shed light on some details of the optimization
process. As a consequence we find that state-of-the-art algorithms have a
suboptimal step. The proposed approach allows a steeper path toward the
cost function minimum. Moreover, some sufficient conditions are found, that
allow to find a globally optimal solution even when the input alphabet is not
binary. Even though the paper mainly focuses on the theoretical aspects of
CQ, a number of experiments to validate the proposed method have been
performed (for the special case of segmentation map lossless coding), and
encouraging results have been recorded.
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1. Introduction

Entropy coding is a key component for many visual data compression
techniques, be them devoted to lossless image coding (JPEG-LS [1]), to
lossy image coding (JPEG [2], JPEG2000 [3]) or to video coding (MPEG-
1, 2 or 4 [4, 5, 6], H.264 [7]). It aims at representing the realization zn =
(z1, z2, . . . , zn) of a random vector Zn with the minimum possible number of
bits, that is − log p(zn)1. Averaging over the probability of each vector zn,
the lower bound of the coding cost for a message generated by the random
process Zn is the entropy H(Zn). However, in order to approach this bound
it is necessary to dispose of the joint probability of the whole message. A
practical way to do this is suggested by the entropy chain rule [8],

H(Z1, Z2, . . . , Zn) =
n

∑

i=1

H(Zi|Z
i−1).

This equation assures that a sequential coding of Zi|Z
i−1 achieves the same

rate of the joint coding of Zn. However, this approach is useful only if the
conditional probabilities p(zi|z

i−1) are easier to compute than the overall
probability p(zn). This is true for example when the current sample de-
pends only on a fixed and finite subset of the previous ones, called the causal
pattern.

Let Y be a generic input symbol, Y = {y1, y2, . . . , yM} be the input
alphabet, and N be the number of samples constituting a context X. The
set of all contexts X = {x1, x2, . . . } is YN . We assume that the conditional
probability of the current symbol Y with respect to the whole past sequence
coincides with the conditional probability with respect to a suitable causal
template X. In this case, an entropy coder disposing of an estimation of
p(Y |X = x) for any x, let it be p̂(Y |x), can encode Y with − log p̂(Y |x) bits.
The estimated probabilities can be pre-computed off-line through a training
set, or evaluated on the fly on the basis of the previously encoded symbols,
for example by using their relative frequencies. This is the adaptive model,
while the former is the static one. It can be shown [9] that the adaptive model
performs only slightly worse than the best possible static model, which in
turns requires a two-passes coding. For this reason, the adaptive model is
widely employed.

1Throughout this paper, the logarithm is in base 2 and the symbol p(·) is used for the
probability mass functions; the corresponding random vector is identified by its argument.
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However, when the input symbol alphabet cardinality M or the causal
template size N are large, the conditional probability estimation can face
a severe context dilution: having too many contexts makes it difficult or
practically impossible to estimate and update the conditional probabilities
of symbols during the encoding process. To avoid this problem, state-of-
the-art algorithms for lossless image compression like CALIC [10] and the
arithmetic encoder in EBCOT [11], as well as popular algorithms proposed
in the scientific literature, resort to context quantization (CQ). CQ consists
in grouping contexts into a relatively small number of conditioning states
c1, c2, . . . , cF . Each state, or context class, ci is made up of one or more
contexts x, according to the quantization function which associates a context
to a class label, f : x ∈ X → f(x) ∈ L = {1, 2, . . . , F}. Thus, the class ci

is made up of all the contexts x ∈ X such that f(x) = i. Now we only need
the F probability mass functions (pmf’s) p(Y |f(x) = i) (also referred to as
p(Y |ci)) instead of the MN pmf’s p(Y |x). Of course, the counterpart is that
the CQ reduces the mutual information (MI) between the current symbol and
the conditioning state. It has been shown that this MI loss affects directly the
coding performances, as it is translated into an equal coding rate increase.
We come back to this point in the following (see Section 3), but we remark
here the importance of designing the best possible context quantizer.

In this paper we first review the state of the art for CQ (Section 2), with
particular focus on the case of a fixed number F of conditioning states. We
also expose the reasons and the alternatives of this choice. In Section 3 we
perform a detailed analysis of this problem, providing a unified framework.
A first original contribution of the present work, presented in section 4, is
that our analysis sheds light on some fine details of the CQ process with a
given F , allowing a complete control on it. A new result is that the iterative
algorithms presented in the literature do not completely take into account all
the effects of modifying an assigned context classification, and so they do not
perform the most effective operations at each step. Our framework allows
to find the algorithm achieving the largest improvement of the cost function
at each step. Moreover, this algorithm proves to be superior to the classi-
cal ones even from an experimental point of view, as we will show later. In
Section 5 we find some sufficient conditions which allow to find the globally
optimal classification even when the input alphabet has more than two sym-
bols (even if we consider cases where the influence of the context is in some
way binary). Section 6 provides experimental compression performances of
the proposed CQ algorithm for the motion segmentation maps of a set of

3



test video sequences. These results confirm the improvements achieved by
our method. Finally Section 7 draws conclusions and ends the paper.

2. Background and Prior Work

Context quantization is a major issue in lossless coding of images. How-
ever we favor a more general approach, and consider generic bi-dimensional
arrays. This means in particular that the statistic dependencies among sam-
ples can be other than simply linear, as in the case of motion segmentation
maps described by parametric contours [12] which we consider in the exper-
imental section. In order to keep generality we do not make any assumption
on the kind of dependence among input samples.

With respect to lossless coding of bi-dimensional data, a seminal paper is
the one by Weinberger et al. [13], where universal coding is introduced for this
kink of data. In this paper, authors consider the problem of context-based
coding of gray-level images. The construction of the contexts takes into ac-
count the so-called model cost. That is, a too complex model involves a more
costly description and a less accurate parameter estimation which can cancel
out the benefits of the attempt to account for high-order dependencies. This
problem is also called context dilution. If too many contexts are considered,
the estimation of p(Y |x) can be unreliable or difficult. The general solution
is context quantization or classification. This means that many contexts are
put together to form a context class ci which is the preimage of i under the
classification function f : ci = {x ∈ X : f(x) = i}. The f function can be seen
as a quantization function, since it groups many contexts to the same class.
Since the number of classes is generally small, the context dilution problem
is avoided, even though this result comes at the cost of an increase of the
achievable coding rate. The solution proposed in [13] is to adaptively build
a causal pattern for CQ. This is obtained by a tree structure such that only
contexts influencing the current symbol exactly in the same way are merged
together. This method relies on the linear dependencies typical of image
data, so it cannot be directly applied to more general cases. Another differ-
ence between [13] and our method is that in our case the number of classes
F is given, while in [13] it is determined by an adaptive algorithm which
however makes several assumptions based on the characteristics of gray-scale
images. Our choice of studying the CQ for a given number of classes fits
with the cases where constraints on complexity and memory needs exist, and
indeed, many papers on CQ assume the same framework. In these works,
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it was early recognized that the optimal CQ given F is done by maximiz-
ing the mutual information I(Y, f(X)), or equivalently by minimizing the
conditional entropy H(Y |f(X)), since the latter quantity coincides with the
increase of the minimum coding rate due to CQ.

One of the first works where these concepts are employed is [14] by Wu,
where the author deals with the problem of optimal CQ for lossless grey-
scale image coding. As in this case the input signal has a large alphabet,
the context dilution problem is important even with a very small template.
However, although it is recognized that the optimal CQ should maximize the
mutual information, this is done in an ad hoc way, since the context is repre-
sented only by a so called error discriminant (taking into account how much
pixels in the template differ from a linear prediction of the current sample).
Instead of considering all the possible values of error discriminant, these are
quantized on a fixed number of levels with a maximal mutual information
criterion. This strategy depends on the prediction algorithm, which in turns
relies on linear dependencies of data.

In [15] it is recognized once more that the CQ with a given number of
classes should be driven by a conditional entropy minimization, but authors
proposed instead the minimization of the prediction error energy since this
suboptimal choice allow to develop the mathematical analysis of the problem,
with a solution claimed to be generally quite near to the optimum.

The problem of optimal CQ with a given F is faced by Green et al.

in [16] for bi-level images. In this paper it is recognized that the correct
cost function is the mutual information between the current symbol and the
context class, and that it can be expressed as a weighted mean of relative
entropies (or Kullback-Leibler divergences) between conditioned pmf’s. As
reported in [16], this cost function was firstly introduced in the case of text
compression by Bookstein et al. [17]. The paper by Green et al. analyzes only
the case of a binary input, and it introduces an algorithm based on dynamic
programming, with a dramatic complexity reduction.

The paper [18] and even more relevantly its extended version [19] by Wu et

al. are however the first ones in which the optimal CQ with a given F is con-
veniently analyzed and a generic analytical solution is proposed. The optimal
quantization problem is recognized as a special case of vector quantization,
with the Kullback-Leibler divergence to be used as distortion measure. As
a consequence, a GLA-like algorithm is proposed to find the optimal CQ,
which must minimize the conditional entropy between the current symbol
and the quantized context. This approach is then called minimum condi-
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tional entropy context quantization (MCECQ). A first original contribution
of our work is an analysis of the mathematical background of MCECQ, which
allows to discover a suboptimal step and then to propose an improved algo-
rithm for CQ (this is a second contribution). As already seen in [16], the
paper [18] recognizes that if Y has a binary distribution, then the optimal
CQ problem is brought back to a 1D minimization problem, which can be
exactly solved by means of dynamic programming techniques. As third con-
tribution, we show how to extend this approach to M-valued symbols (with
M > 2), even if the distributions that we consider have essentially a binary
behavior. All relevant subsequent papers adopt approaches similar to those
of [16] or [18]. This is the case for example of [20] by Chen. This paper devel-
ops an analysis of the CQ problem for the lossless coding of WT coefficients
and ends up with an algorithm equivalent to MCECQ.

The paper [21] by Forchhammer et al. takes [18] as a starting point to
develop an optimal CQ technique for binary symbols. Here the accent is on
the binarization of input data samples, which allows to use dynamic pro-
gramming to find the globally optimal CQ. Moreover the authors propose
the minimum code length context quantization (MCLCQ), which is an alter-
native criterion to MCECQ and takes into account the specific probability
estimator. As a consequence, the optimal solution depends on the parameters
of this estimator. In [21] and [22] experimental results showed that MCECQ
and MCLCQ allow remarkable coding rate reductions with respect to state-
of-the-art techniques, when used to code MPEG4 α-plane video sequences.
MCLCQ is reconsidered in [23], where Forchhammer and Wu approach the
important problem of choosing the optimal number of classes. The target is
to minimize the expected adaptive coding length with respect both to the
classification function and the number of classes.

In [24], Liu and Karam use optimal CQ to improve the contexts for the
JPEG2000 arithmetic coder. In this case the input symbols are binary, and
so dynamic programming can be used to find the globally optimal CQ. The
number of classes is fixed a priori, but a study on the impact of this choice on
the overall performance is reported. The approach of this paper is interesting
and some other research groups have followed it [25].

We conclude this survey by considering the problem of CQ within coding
standards. In the JPEG-LS standard (based on the LOCO-I algorithm [1])
it is recognized that optimal CQ should be achieved by mutual information
maximization, but the proposed solution trades off between performance and
complexity, and relies on a correlation-based model of the input signal. In
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MPEG-4 some tools are provided for the lossless coding of binary maps [26].
The proposed algorithm uses a quite large context and an arithmetic encoder,
but the problem of optimal CQ is not considered. In the CABAC coder [27]
of the H.264 standard, the context classification is performed on ad hoc basis
rather than following an optimization criterion.

In conclusion, several papers in the scientific literature are strictly related
to the CQ issue. Like in our case, in several papers no a priori assumption
about data (like linear dependencies) is made, [16, 18, 19, 24], so we naturally
refer to these ones, even if interesting ideas are found in the others (like
[1, 14, 27]) as well.

3. The context quantization problem

In this section we review the problem of CQ and the derivation of the
optimal criterion. The final result had been shown in [19], and used in [20]
and in [24], but we come back to it in order to give a unified framework
and to better highlight the original contributions of our paper, presented in
sections 4, 5 and 6.

We start with the notation. Let Y be the current symbol of a random
process having a discrete2 alphabet Y . We assume without loosing generality
Y = {1, 2, . . . , M}. X is the context, formed by N causal neighbors of
the current symbol3, i.e. by N already encoded symbols. The alphabet of
X is X = YN , thus the number of possible contexts is |X | = MN . This
number can grow up very large, and we risk to incur in the context dilution

problem: the estimation of p(Y |x), necessary for the encoder to achieve the
minimum coding rate, is unreliable because there are too many contexts and
usually not enough data. In conclusion we want to encode Y using previously
encoded symbols information, attaining in this way a coding cost bounded
by H(Y |X) bits per symbol, but to reach this target we should estimate
on-the-fly the probability distribution p(Y |X), which is usually impossible
or at least unreliable, because of the context dilution. So we consider a
classification function f : x ∈ X → i = f(x) ∈ L = {1, 2, . . . , F}.

The classification function f maps each context in a class label i inducing
a partition C of X into F classes: C = {c1, c2, . . . , cF}. We use these classes

2The hypothesis that Y is discrete is not necessary, but it simplifies the treatment.
3It is not necessary to impose that the context is formed by previously encoded symbols,

but we keep this hypothesis for simplicity.
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as conditioning information to encode Y , because with a suitable choice of
F the estimation of the pmf’s p(Y |c) is reliable enough. In the following we
consider the problem of optimizing the CQ for a given F . This approach
is simpler than a joint optimization of the number of classes and of their
composition, but it is popular [16, 18, 19, 20, 24] and sometimes necessary,
as in the case of implementation constraints over memory or complexity. On
the other hand, a joint optimization has the potential of achieving the best
performance. However, a common approach [20, 24] consists in developing
an optimization for a given F and then in testing different values of it.

In conclusion, we consider a framework where we can attain a new en-
tropy bound on the coding cost, that is H(Y |f(X)). In order to analyze the
relationship between the new and the old coding rate bounds, we observe
that Y and f(X) are conditionally independent given X: indeed f(X)|X is
deterministic and hence independent from Y |X. In conclusion, we have:

I(Y ; X|f(X)) = H(Y |f(X)) − H(Y |X, f(X))

= H(Y |f(X)) − H(Y |X) (1)

where in the definition of conditional mutual information [8] we used the
conditional independence of Y and f(X) given X. This equation tells us that
the rate we can achieve with CQ, H(Y |f(X)) is greater than (or equal to) the
rate we could achieve without classification, H(Y |X), and that the increase
is the mutual information I(Y ; X|f(X)). We indicate this quantity with
L(f) or L(C) because it is the loss associated to the classification function f
or equivalently to the partition C. In conclusion, the classification function
should be chosen so that this loss is minimized for a given number of context
classes. Now we derive a useful formulation of L(f). Let us use the shorthand
notations p(y, i), p(y|i) for Pr(Y = y, f(X) = i), Pr(Y = y|f(X) = i), and
p(x, y), p(x|y) for Pr(Y = y, X = x), Pr(Y = y|X = x).

The probability of a context class c is p(c) =
∑

x∈c p(x). We consider the
conditional entropy H(Y |f(X)): since p(y, i) =

∑

x∈ci
p(y, x), we write it as:

H(Y |f(X)) = −
∑

i∈L

∑

y∈Y

∑

x∈ci

p(y, x) log p(y|i). (2)

On the other hand, we can express H(Y |X) decomposing the set X into
the context classes:

H(Y |X) = −
∑

i∈L

∑

x∈ci

∑

y∈Y

p(y, x) log p(y|x). (3)
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So, by combining (1), (2) and (3), the mutual information loss becomes:

L(f) =
∑

i∈L

∑

x∈ci

p(x)
∑

y∈Y

p(y|x) log
p(y|x)

p(y|i)
(4)

We can read the internal sum in (4) as the relative entropy between
p(Y |x), the distribution of the current symbol given a realization x of the
context X, and p(Y |i), the distribution of Y given a realization i = f(x)
of the conditioning class. If c is the class associated with the label i, i.e. if
c is the preimage of i, we will also indicate p(Y |i) as p(Y |c). The mutual
information loss can finally be written as:

L(f) =
∑

i∈L

∑

x∈ci

p(x)D ( p(Y |x) || p(Y |i) )

=
∑

x∈X

p(x)D ( p(Y |x) || p(Y |f(x)) ) , (5)

where we used the notation D ( · || · ) to indicate the relative entropy [8]. If
we define d(c1, c2) as

d(c1, c2) = D ( p(Y |c1) || p(Y |c2) ) , (6)

we can rewrite (5) as

L(f) =
∑

x∈X

p(x)d
(

x, cf(x)

)

, (7)

where with a little abuse of notation, in the expression of d(·, ·) we indicate
with x the class {x}, and cf(x) is the class containing the context x. We
can read (7) in this way: the global loss of mutual information due to CQ
f , is the average loss that we incur in by substituting the actual context x
with its quantized version cf(x). The loss for a single context is a measure of
how much its influence on the current symbol is well represented by the class

influence. If this influence is strictly the same (i.e. p(Y |x) = p(Y |f(x)))
there is no loss; otherwise the loss is the relative entropy between the two
probability distributions.

In order to establish a link with prior works, we observe that our cost
function, the mutual information loss (7), is equivalent to the loss function
definition in [16], and to equation (1) in [18], equation (2) in [19] or equa-
tion (6) in [20]. Moreover, it is slightly more general than equation (7) in
[24], which only allows to group together contexts with consecutive indexes.
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4. Context quantization properties and the MINIMA algorithm

In previous papers, the CQ was performed by using iterative algorithms
looking for a local minimum of the cost function by starting from an arbi-
trary partition C0 and then moving contexts from one class to another. A
remarkable exception is the case of bi-level images (i.e. data with a binary
alphabet), where the global minimum of the cost function can be found via
dynamic programming. We will come back to this case in Section 5; here
we consider the general M-ary case, and we use the formulation given in the
previous section to analyze the effect of these context displacements, and
then to validate the approaches proposed in previous works. In this frame-
work, we find that popular context displacement strategies do not perform
necessarily the best move at each step, i.e. the one that maximally reduces
the mutual information loss. Moreover we propose a “greedy” CQ algorithm,
which at each step chooses the single context displacement assuring the best
improvement of the cost function.

In this analysis we make intensive use of the relative entropy between
the conditional probabilities functions p(Y |c1) and p(Y |c2), referred to as
d(c1, c2). If ci is a single context, we will prefer the simpler notation d(x, c)
to the more correct one d({x}, c). With a little abuse, we will refer to this
quantity as distance between x and c. We start by computing the effect of
the insertion of a context x into a class c. It is intuitive that this operation
reduces the relative entropy d(x, c), since it amounts to injecting a term that
is proportional to p(Y |x) into the sum giving p(Y |c).

Proposition 1. Inserting a context into a class reduces the context distance

from the class. Namely, if x 6∈ c and c′ = c ∪ {x}, then

d(x, c′) = d(x, c) −
p(c′)

p(x)
d(c′, c) −

p(c)

p(x)
d(c, c′). (8)

Proof. We observe that p(y|c) =
∑

x∈c
p(x)
p(c) p(y|x), and so:

p(y|c′) =
p(x)

p(c′)
p(y|x) +

p(c)

p(c′)
p(y|c)

p(x)p(y|x) = p(c′)p(y|c′) − p(c)p(y|c). (9)
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Now we can write:

p(x)d(x, c) =p(x)
∑

y∈Y

p(y|x) log
p(y|x)

p(y|c)

=p(x)
∑

y∈Y

p(y|x) log
p(y|x)

p(y|c)

p(y|c′)

p(y|c′)

=p(x)
∑

y∈Y

p(y|x) log
p(y|x)

p(y|c′)
+

∑

y∈Y

p(x)p(y|x) log
p(y|c′)

p(y|c)

=p(x)d(x, c′) +
∑

y∈Y

[p(c′)p(y|c′) − p(c)p(y|c)] log
p(y|c′)

p(y|c)
(10)

=p(x)d(x, c′) + p(c′)d(c′, c) + p(c)d(c, c′).

Eq. (10) is obtained by using (9). �

The next proposition allows us to understand the effect on L(C) of moving
a context from a class to another.

Proposition 2. When a context x is moved from a class c1 to a class c2,

the total mutual information loss varies of:

∆ = p(c2)d(c2, c
′
2) − p(c′1)d(c′1, c1) + p(x)[d(x, c′2) − d(x, c1)], (11)

where c1 = {x1, x2, . . . , xN , x}, c2 = {z1, z2, . . . , zM}, c′1 = c1 − {x} and

c′2 = c2 ∪ {x}

Proof. Let C = {c1, c2, c3, . . . cF } and C′ = {c′1, c
′
2, c3, . . . cF }. We have ∆ =

L(C′) − L(C). If we indicate with l(c) the contribution of class c to the total cost
function, i.e. l(c) =

∑

z∈c p(z)d(z, c), we have L(C) =
∑F

i=1 l(ci), and so:

∆ =l(c′1) − l(c1) + l(c′2) − l(c2).

Moreover

d(xi, c
′
1) − d(xi, c1) =

∑

y∈Y

p(y|xi) log
p(y|xi)

p(y|c′1)

p(y|c1)

p(y|xi)
=

∑

y∈Y

p(y|xi) log
p(y|c1)

p(y|c′1)
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and

l(c′1) − l(c1) =

N
∑

i=1

p(xi)d(xi, c
′
1) −

N
∑

i=1

p(xi)d(xi, c1) − p(x)d(x, c1)

=
∑

y∈Y

N
∑

i=1

p(xi)p(y|xi) log
p(y|c1)

p(y|c′1)
− p(x)d(x, c1)

=
∑

y∈Y

p(c′1)p(y|c′1) log
p(y|c1)

p(y|c′1)
− p(x)d(x, c1)

= −p(c′1)d(c′1, c1) − p(x)d(x, c1). (12)

Likewise,
l(c′2) − l(c2) = p(c2)d(c2, c

′
2) + p(x)d(x, c′2). (13)

Adding (12) and (13), we get the thesis. �

Of course the ∆ resulting from a context displacement can be either pos-
itive or negative, i.e., the displacement can worsen or improve the CQ. This
is because the effects on the classes c1 and c2 have opposite signs: l(c′1)−l(c1)
is negative since removing a context from a class allows its pmf to be closer
to the pmf’s of remaining contexts4, so that the loss of mutual information
becomes smaller; for the symmetrical reason, adding a context to c2 increases
its contribution to L. Thus, in order to tell whether a context displacement
is suitable or not, we should consider both contributions, and verify that the
gains surpass the losses. We remark that the results of propositions 1 and 2
are new; prior works, on the contrary, used directly (7) to derive an iterative
algorithm for mutual information loss minimization. This algorithm is based
on a property demonstrated in [19], and used in [20] and [24]. With the next
proposition we provide a new demonstration of this property, which is useful
in order to compare our algorithm with literature.

Proposition 3. Let

c1 = {x1, x2, . . . , xN , x} c2 = {z1, z2, . . . , zM}

c′1 = c1 − {x} c′2 = c2 ∪ {x}

4For example, if c1 = {x, z}, then c′
1

= {z} and so l(c′
1
) = 0, because p(y|c′

1
) = p(y|z).
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C = {c1, c2, c3, . . . cF} C′ = {c′1, c
′
2, c3, . . . cF}.

If d(x, c1) ≥ d(x, c2), the new context partition obtained by switching x from

c1 to c2 has a smaller MI loss.

Proof. By hypothesis, d(x, c1) ≥ d(x, c2). Combining with (8), we get

p(x)d(x, c1) ≥ p(x)d(x, c′2) + p(c′2)d(c′2, c2) + p(c2)d(c2, c
′
2). (14)

So, substituting (14) in (11), we get the thesis:

L(C′) − L(C) ≤ p(c2)d(c2, c
′
2) − p(c′1)d(c′1, c1) + p(x)d(x, c′2)

− p(x)d(x, c′2) − p(c′2)d(c′2, c2) − p(c2)d(c2, c
′
2)

= −p(c′1)d(c′1, c1) − p(c′2)d(c′2, c2) ≤ 0

(15)

�

Equation (15) assures that, if x ∈ ci and there exists some j 6= i such
that

d(x, cj) < d(x, ci), (16)

then, moving the context x from class ci to cj will reduce the mutual infor-
mation loss of the context classification. This property is at the basis of the
MCECQ algorithm (proposed in [18, 19] and used in [20] and [24]) which
consists in an iterative scanning of all contexts. For the current context x,
its distance from its class d(x, ci) and from all other classes d(x, cj) are com-
puted. If for one or more index the condition (16) is satisfied, the context
x is moved to the “nearest” class. Proposition 3 assures that this algorithm
always improves the mutual information loss (7). However, Eq. (11) shows
clearly that it is not necessarily the best choice, as it does not take into ac-
count the true variation of L, but only a quantity which has the same sign
of it.

In conclusion, the result of proposition 2 shows that the popular algorithm
based on MCECQ and used in [18, 20, 24], does not follow the steepest descent

path towards the cost function minimum. Some explication is worth about
the use of the expression “steepest descent” in this work. With this phrase
we mean the single algorithm step which assures the maximal reduction of
the cost function with respect to all the possible steps, i.e. with respect to
all the possible context displacements from one class to another.
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The proposition 2 suggests as well how the MCECQ algorithm should be
modified in order to follow this optimal path: let cf(x) be the class which the
context x belongs to according to the current classification function f , let ck

be a generic class, c′f(x) = cf(x) − {x} and c′k = ck ∪ {x}. Then we define the
function δ as:

δ(x, k) = p(c′f(x))d(c′f(x), cf(x)) − p(ck)d(ck, c′k) + p(x)[d(x, cf(x)) − d(x, c′k)] (17)

This function gives the mutual information variation associated to the dis-
placement of the context x from its current class to the class ck. The algo-
rithm that we propose keeps moving the contexts according to the function
δ until the relative variation of MI loss (indicated with ϑ) is smaller than a
given threshold ǫ. More precisely, the algorithm has the following steps.

• Choose a starting classification function f , set Lold = L(f) and set ϑ to any
value greater than ǫ

• While ϑ > ǫ

– for each x ∈ X

1. set dmax(x) = 0

2. for each k ∈ {1, 2, · · · , F}

⋄ if δ(x, k) > dmax(x)

(a) set dmax(x) = δ(x, k)
(b) set f(x) = k

⋄ endif

3. endfor k ∈ {1, 2, · · · , F}

– endfor x ∈ X

– Set ϑ = Lold−L(f)
Lold

and set Lold = L(f)

• Exit

We note that, since the algorithm only moves context from a class to
another, if the initial classification is a partition of X , then each new clas-
sification produced with this algorithm will be a partition as well. We call
this algorithm MINIMA (Mutual INformation IMprovement Algorithm). We
observe that within the inner loop over the class index k, we compare all the
F partitions that we would obtain by moving x to each of the classes (by
comparing the displacement to the current class with the best displacement
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so far), and so at the end of loop the best move is kept. We would obtain
the same result if at each k we would not move x from the original class and
only at the end of the loop we would choose the best displacement.

On the other hand, at the end of the loop over the class index, the dis-
placement of x is actually performed, and this influences the displacement
of the next context (outer loop): we update the partition f and this new
partition is used to decide about the displacement of the next context.

So we have an algorithm which is optimal with respect to the displacement
of a given context, but at the same time is “greedy” since it moves the
context x before evaluating the effect of this action over the displacement of
the others. Therefore we have no assurance that MINIMA will produce the
best CQ: the only way to find it would be to compute L for any possible
partition, which is extremely demanding in terms of computation, and in
practice, impossible. The only exception is the binary alphabet case, and
some other special distribution that we will discuss in the next Section.

It is interesting to observe that MINIMA is brought back to the MCECQ
if we use the following definition of δ.

δ(x, k) = d(x, cf(x)) − d(x, ck) (18)

We remark that both the strategies for δ assure a reduction of L(f) at
each step, but only with the choice (17) we are assured to achieve the maximal
reduction at each step. If we follow this trajectory we can hopefully find a
better local minimum than what we can find with a non-optimal trajectory,
but of course, we are not assured of it. Aware of this issue, we performed
many experiments in order to validate MINIMA. Some of them (but not all,
for the sake of brevity) are reported in Section 6, but here we underline that in
every single experiment MINIMA always achieved better cost function values
than classical algorithm based on (18). In other words, starting from the same
initial conditions (i.e. the same initial classification function), MINIMA has
always given lower cost-function final values than MCECQ.

5. Model-based classification algorithm

As well as its predecessors [18, 20, 24], the proposed algorithm has the
problem that it can only find local minima of L(f). On the other hand, in
[16], and then in [18] and [24], it is shown that if the input alphabet is binary,
a dynamic programming (DP) algorithm can exactly solves the minimization
problem, i.e. it is able to determine the global minimum of L(f).

15



To demonstrate this, we note that in the binary case the contexts can
be ordered according to the conditional probabilities Pr(Y = 0|x) in a one-
dimensional space. The crucial property is that in the optimal classification
scheme, only consecutive contexts are merged in the same group. The demon-
stration of this property has been given in [19] and sketched in [24] We give
here an alternative and complete formulation.

Let pi = Pr(Y = 0|xi). We have that:

p1 < p2 < p3 ⇒

{

d(x1, x2) < d(x1, x3)
d(x2, x3) < d(x1, x3)

. (19)

This is demonstrated observing that:

d(xi, xj) = d2(pi, pj),

where d2(p, q) = p log p

q
+ (1 − p) log 1−p

1−q
is the relative entropy between the

binary distributions of parameters p and q. The first inequality in (19) is a
consequence of the fact that

∂d2

∂q
(p, q) =

p − q

q(1 − q) ln 2
,

and so d2 is increasing [decreasing] with q for all q > p [q < p]. The second
inequality in (19) can be demonstrated likewise. In conclusion, if p1 < p2 <
p3, then merging x1 with x2 or x2 with x3 is better that merging x1 with x3,
that is, only contexts which are consecutive with respect to the pi parameter,
are merged together in the optimal classification. This reduces our problem
to that of finding a set of thresholds in [0,1]. This is a one-dimensional
problem, which can be resolved exactly with DP techniques.

This result is interesting because it allows to find the global minimum of
the cost function, but it only holds for the binary case. In order to verify
whether it can be extended to M-ary distributions, we tried to understand
in which conditions one can use the DP technique. First, we observe that we
need to sort the conditional pmf’s with respect to some parameter λx (e.g. the
probabilities Pr(Y = 0|x) in the binary case). We also note that a condition
on contexts’ merging, similar to (19), should hold. This condition should hold
not only when merging single contexts, but also when classes are involved.
At this end, a sufficient condition is that the conditional pmf’s p(y|c) have

the same shape of p(y|x). We remember that p(y|c) =
∑

x∈c

p(x)
p(c)

p(y|x), so
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we conclude that the conditional pmf’s should have a mixture invariance

property. In conclusion, we have found some sufficient conditions for a set
of M-ary conditional probabilities so that the globally optimal classification
function could be determined by a 1-D search. These are summarized in the
following proposition.

Proposition 4. If

1. the conditional pmf’s depend from the context x only by a scalar param-

eter λx: p(y|x) = q(y, λx);

2. for any class c there exists a value λc such that the conditional pmf can

be expressed as: p(y|c) = q(y, λc);

3. the pmf’s q(·, ·) have relative entropies such that

λ1 < λ2 < λ3 ⇒

{

D ( q(y, λ1) || q(y, λ2) ) < D ( q(y, λ1) || q(y, λ3) )
D ( q(y, λ2) || q(y, λ2) ) < D ( q(y, λ1) || q(y, λ3) )

(20)

then, the optimal classification can be found by a DP algorithm, as in the

binary case.

Proof. When these hypotheses hold, all the conditional pmf’s (for contexts

and classes) are expressed by q(·, ·) functions. So we can sort the pmf’s according

to the parameter λ. Since the pmf q is mixture-invariant (i.e. condition 2 holds),

even the merging of classes can be done according to the same principle. So we

can adopt the same DP optimization algorithm used in the binary case. �

This generalization allows to find the globally optimal classification func-
tion even when the input alphabet is not binary. We just have to use the DP
algorithm considered in the binary case, having λ instead of the probability
p(Y = 0) as optimization parameter. We give in the following an example
where proposition 4 is applicable. Let us define, for each y ∈ {0, 1, . . . , M−1}
and for each λ ∈ (0, 1) the function:

ρ(y, λ) =

{

λ if y = 0
1−λ
M−1

if y ∈ {1, . . . , M}
(21)
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We use ρ to model the conditional probabilities, setting

p(y|x) = ρ(y, λx). (22)

Therefore the pmf is parameterized with respect to the probability λx of the
symbol 0. The other symbols are equiprobable. This is a quite particular
model, but however it can apply in some interesting cases. In facts, it has
arisen by observing the statistics of the motion segmentation maps described
in the experimental section. We observe however that the proposed model
is very similar to a binary one. When the input symbols have this kind of
distribution, the following proposition holds.

Proposition 5. Let the conditional probability mass functions p(y|x) be in

the form of ρ(y, λx) ∀x ∈ X .

Then the globally optimal classification function can be found by the DP

algorithm.

Proof. Let λc = EX∈c[λX ] and let d2(p, q) be the relative entropy between the
binary distributions of parameters p and q. We first show that for any context x

and for any class c,

p(y|c) = ρ(y, λc) (23)

d(x, c) = d2(λx, λc) (24)

We know that p(y|c) =
∑

x∈c
p(x)
p(c) p(y|x). Using the definition of ρ, we have:

p(y|c) =
∑

x∈c

p(x)

p(c)
λxδ(y) +

∑

x∈c

p(x)

p(c)

M−1
∑

k=1

1 − λx

M − 1
δ(y − k) (25)

We set:

λc = EX∈c[λX ] =
∑

x∈c

p(x)

p(c)
λx (26)

We observe that:

∑

x∈c

p(x)

p(c)

1 − λx

M − 1
=

1

(M − 1)p(c)

[

p(c) −
∑

x∈c

p(x)λx

]

=
1

M − 1

[

1 −
∑

x∈c

p(x)

p(c)
λx

]

=
1 − λc

M − 1
(27)
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Replacing (26) and (27) in (25), we get (23), which proves the mixture invariance
property. On the other hand we get:

d(x, c) = D ( ρ(y, λx) || ρ(y, λc) )

=
M−1
∑

y=0

ρ(y, λx) log
ρ(y, λx)

ρ(y, λc)

= λx log
λx

λc

+ (M − 1)
1 − λx

M − 1
log

1 − λx

M − 1

M − 1

1 − λc

= λx log
λx

λc

+ (1 − λx) log
1 − λx

1 − λc

This assures that the relative entropies between conditional pmf’s fulfill Eq. (20).
It suffices to apply the same arguments that justify Eq. (19), since the relative
entropy has the same structure.

Since all the hypotheses of proposition 4 hold, we can conclude with the

thesis.�

The pmf described by (21) is not the only possible distribution satisfying
the hypotheses of proposition 4, but the others we found share with it an
essentially binary nature. However this model can result useful for non-
binary signal that are sufficiently well described by one of these distribution.
An example is given in the experimental section.

6. Experimental Results

6.1. Input data

Even though the MINIMA algorithm is general, we validate it for a par-
ticular problem, that is the encoding of the segmentation maps produced by
a variation of the region-based (RB) video segmentation algorithm proposed
in [12]. We want to compact these maps by a context-based arithmetic en-
coder, and in this case a context quantization step is needed, since the input
alphabet is quite large.

Before giving the experimental results, it is useful to describe the main
characteristics of the data to encode, i.e. the segmentation maps. The seg-
mentation algorithm performs a block-based motion estimation (ME). The
ME algorithm produces a segmentation map which tells for each macroblock
(MB) whether it is composed by one or two regions, and in the latter case,
it gives the initial and final points of the straight-line border between them.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 58 48 3 70 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 29 0 0 0 24 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 44 0 0 0 0 0 15 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 37 0 0 0 0 0 27 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 36 0 0 0 0 0 28 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 37 0 0 0 0 0 17 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 44 0 0 0 0 7 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 54 31 0 0 0 0 0 73 0 0 0 0 0 0 0 0

0 0 0 0 54 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0

0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0

0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1: A sample segmentation map and its representation as bi-dimensional data set.

Preliminary studies prove that a finer description of these borders would have
a high coding cost without a significant reduction of the motion-compensated
error. Therefore we can constrain the initial and final point of each border
segment to lie on only 5 positions per MB side (the corners, the middle point
and two intermediate points). It is easy to show that in this case 80 different
MB splits are possible, and so we represent each split with a numeric label
in {1, 2, . . . , 80} and the one-region case with the label 0. The segmentation
map is then a bi-dimensional array storing for each MB a label which tells
if the MB is split or not, and, in the former case, which is the border be-
tween the two regions. The segmentation maps are then bi-dimensional sets
of data, with a large input alphabet Y = {0, 1, . . . , 80}, and with strong but
highly non-linear dependencies among samples. An example of segmentation
map produced by this algorithm, and the associated label array are in Fig. 1.
We note that in this case, context-based entropy coding will only work with
context quantization, since the alphabet is relatively large, and the statistical
dependence among data is strong, but not linear.

6.2. Coding results

We used the RB ME algorithm to produce the segmentation maps for
several popular test sequences, as “eric”, “flower and garden”, “foreman”,
“mother and daughter”, “paris” and “silent”. These sequences differ one
another in motion content, as some of them are quite static (“head and
shoulders” sequences), others present regular motion, others have irregular
motion content. The segmentation maps were to be encoded by a context-
based arithmetic encoder, with the causal template shown in Fig. 2. With
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Neighbors

Encoded MBs

Not encoded MBs

Current MB

Figure 2: The causal template used for the experiments.

such a neighborhood, the number of possible different contexts would be as
high as 812 = 6561, so context quantization was necessary.

In a first set of experiments, we used two context quantization algorithms
to reduce the number of conditioning states to 20: MCECQ, proposed in
[19], (or the equivalent algorithms in [20] and in [24]), and MINIMA. As
highlighted in section 4, they share the same structure, and only differ in the
definition of the δ function, which is given by (17) for our algorithm and by
(18) for the other one.

The algorithms start from the same initial classification function, chosen
randomly, and then the iterative optimization is performed. The probability
functions needed to run the algorithms were estimated on a training set ob-
tained from the test sequences5. In order to reduce the dependence on the
starting configuration, the entire process (random initialization and itera-
tive optimization) was repeated 20 times and the best resulting classification
function was retained for both algorithms. We note that in each iteration,
MINIMA has reached a lower cost function value than MCECQ. This was
already an interesting experimental result, since just having optimized the it-
erative step within the research algorithm does not assure that a better local
minimum will be found. However, we underline that we carried out similar
experiments for several other sequences, with many different parameter con-
figurations, and, in any test we performed, MINIMA attained a lower cost
function than MCECQ. These results are encouraging about the efficiency of
the proposed algorithm in a general case.

In order to complete the comparison, we ran a context-based arithmetic
encoder using the context classifications obtained with both the algorithms.
In both cases, the CQ was embedded into the encoder, and they are known
at the decoder side as well. However, even if the CQ should be sent to the
decoder, its cost is fixed and independent from the data length, so it becomes

5The data used as training set were not used again to evaluate the compression perfor-
mance
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Coding rate [bits/sample]
Sequence MINIMA MCECQ

“eric” 1.61 1.67
“flower and garden” 3.22 3.25

“foreman” 3.32 3.33
“mother and daughter” 0.94 0.95

“paris” 1.50 1.52
“silent” 1.38 1.39

Table 1: Coding rates [bits/sample] achieved with the proposed and the MCECQ [18]
algorithms.

negligible if enough data are coded.
The achieved coding rates are shown in Tab. 1. These results tell that

the proposed algorithm allows some gain, even though the difference with
MCECQ is often small. Afterwards an extensive experimentation, which also
comprised stochastic relaxation methods, we believe that the small difference
between the two algorithms is ascribable to the fact that in this case the
mutual information loss L(f) has many local minima, but all of them at
quite close levels.

As far as the choice of the optimal number of classes is concerned, we
repeated the above experiment for each F from 2 to 200. The MINIMA al-
gorithm is consistently better than MCECQ (the obtained results are similar
to those of Tab. 1), and we noticed that little or no gain is obtained when
more than 50 conditioning contexts are used, and that anyway performances
do not change a lot for F > 20. We conclude that for a given kind of data
to be coded, a good value for F can be determined by off-line preliminary
tests, and then the MINIMA algorithm can be used to find the corresponding
optimal classification.

6.3. The model-based algorithm

In a second set of experiments, we tested the model-based algorithm
described in section 5, which consists in applying a DP algorithm to the
scalar parameters of a set of distributions like the one in (22). In facts, the
DP model-based algorithm was suggested just by the statistical analysis of
segmentation maps. It results that, for many contexts x, as for example
the one illustrated in Fig. 3(a), the symbol “0” (meaning no split, i.e. one
region in the MB) is quite more probable than all other symbols, which in
their turn result almost equiprobable. Therefore, the conditional probability
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(a) (b)

Figure 3: Segmentation maps: examples of contexts for the current MB (in red).

of the segmentation symbols p(Y |x) has a structure like in (22). However,
we are aware that this model does not perfectly match our signal: if we
consider a context as the one in Fig. 3(b), it is reasonable that some non-zero
symbols are more probable than others (namely those representing North-
West border). We underline that the segmentation maps have just inspired
our effort towards a model-based algorithm which could attain the global
optimum even for non-binary sources, but they are not completely fit with
the statistics described by Eq. (22). As a consequence we do not expect a
large improvement of performances using the model-based algorithm on the
segmentation maps.6

On the other hand, we validated the model-based algorithm with syn-
thetic data generated so that their statistics exactly match the proposed
model. This is of course a favorable case for the model-based algorithm,
but anyway it provides some useful insights about the potentialities of the
method. In particular, we used a bi-dimensional random process with con-
ditional distributions described by equation (22). The input alphabet has a
variable cardinality (values as M = 4, 6, 8, 10, 15 have been tested), and the
template is made up by the left and the upper sample (as shown in Fig. 2).
We used MINIMA and the model-based algorithm to look for the minimal
point of the cost function L, with a number of classes F variable from 2 to
MN −1. In this case the model-based algorithm is able to find the global op-
timum, and so the corresponding value L∗ of the cost function is lower than
the local minimum L0 we can find with MINIMA. In particular we computed
the relative reduction η = L0−L∗

L0
. The results are shown in Fig. 4, where on

the horizontal axis there is the ratio between the number of class F and the
number of contexts MN , so that we can report on the same graph different
values of M . On the vertical axis there is the relative reduction η. We note
that η consistently increases with the number of classes, irrespectively to the

6This is confirmed by some preliminary tests we have performed.
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Figure 4: Cost function relative improvement of the DP model-based algorithm with
respect to MINIMA for the synthetic data.

alphabet cardinality M . This can be interpreted as an evidence that the op-
timal classification becomes harder when the number of contexts increases,
and so an algorithm which can only find the local minimum is disadvantaged.
For larger M ’s, η(F/MN) grows faster because for the same ratio F/MN the
actual number of classes is higher.

However it should be noted that while the relative difference between
L∗ and L0 increases with F , as expected, their absolute difference (together
with their values) decreases and tends to zero for F tending to MN . As
an example, we report in Tab. 2 some experimental values of L∗ and L0 for
M = 15 and for various values of F .

As a final evaluation of the model-based algorithm, we computed the
impact of the different classifications over the arithmetic encoder rate. Of
course, the coding rate gain is less than η, since theoretically R = H(Y |X)+
L. Yet, we found a non-negligible rate reduction over our synthetic data
sequences, as shown in Tab. 3. These results allow us to conclude that the
model-based approach is worth when the input signal statistics are exactly
expressed by (21), while when this equation holds only approximately, it is
difficult to foretell which algorithm between MINIMA and the DP model-
based one will have the better performance.

7. Conclusions

In this work we review the current methods for solving the important
problem of context quantization, which arises when data sets with large al-
phabet or large causal template are to be encoded with context-based entropy
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Classes L0 L∗

2 0.097 0.080
5 0.070 0.010
7 0.063 0.005
10 0.057 0.003
15 0.047 0.002
20 0.040 0.001
25 0.034 < 0.001
30 0.029 < 0.001
35 0.024 < 0.001
40 0.021 < 0.001
50 0.015 < 0.001
60 0.011 < 0.001

Table 2: Cost function values [bits] achieved by MINIMA and by the DP model-based
algorithm, for M = 15.

M MINIMA DP Model-Based Gain

4 1.85 1.76 4.9%
6 2.15 2.13 0.9%
8 2.26 2.23 1.3%
10 2.51 2.45 2.4%
15 3.20 3.10 3.1%

Table 3: Coding rates [bit per sample] for synthetic data.

methods. We provide a detailed mathematical analysis of the problem, which
sheds light on some fine details of it. This allows a fine comprehension of the
process of context grouping, and also to discover a suboptimal step in the
popular MCECQ algorithm proposed in [19], [20], and [24]. Moreover our
analysis directly suggests how to modify this algorithm to follow the steepest
descent path in the minimization of the cost function. Additionally, we show
that the global minimum is achievable not only for binary-distributed input
symbols, but also for M-ary distributions, provided that some conditions
are fulfilled. This happens for example when the conditional probabilities
can be expressed as in (21). This model has been suggested by the motion
segmentation map problem.

Even though this work is rather a theoretical one, we perform some ex-
periments in order to look for confirmation to the proposed techniques. We
use our algorithm in order to find a context classification for the encoding of
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some video segmentation maps produced by a region-based ME algorithm.
The peculiarity of these data prevents an efficient use of generic image lossless
coding algorithm, because of the complex non-linear dependencies. In this
case, MINIMA provides slightly better results than MCECQ. We also try to
apply the model-based version, and encouraging results are obtained in the
case of a synthetic signal produced accordingly to our statistical model.

Future work will be devoted to use the proposed algorithm into a com-
plete video coder using segmentation maps in order to perform an accurate
motion compensation. In this context, an efficient coding of the segmentation
map is of crucial importance in order to achieve competitive rate-distortion
performances. We are also investigating several models for conditional prob-
abilities, in order to determine whether there exist other cases in which the
DP approach can be used to find the global minimum of the cost function L.
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