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a b s t r a c t

Cancelable biometrics and secure sketches have been introduced with the same purpose
in mind: to protect the privacy of biometric templates while keeping the ability to
match this protected data against a reference. The paradigm beyond cancelable biometrics
is to perform an irreversible transformation over images and to make matching over
transformed images. On one hand, a drawback of this technique is that for biometrics using
a matching algorithm relying on some complex characteristics, such as the ones used for
fingerprints, the irreversible transformation tends to break the underlying structure, thus
degrading the performance accuracy. On the other hand, for secure sketches, matching
is reduced to an error correction and we show here that applying secure sketch error
correction to cancelable biometrics allows one to keep good matching performance.
Moreover, the security’s advantages of both schemes adds up together.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In [28], Ratha et al. introduced the idea of applying an irreversible transformation to a fingerprint’s picture in order
to enhance the privacy of these biometric data. Indeed, this transformation prevents an adversary to find out who this
transformed image belongs to. Moreover, as it is possible to change the transformation used at will, this allows one to renew
it or to have different transformations for different applications. The question of the irreversibility of the transformation is
raised in [1], and feedback on the performance accuracy of the matching is given in [26,27]. In fact, it is easy to understand
that to be irreversible, the transformation has to destroy the characteristics of the biometric data and thiswill have an impact
on the performance of the matching when one exploits this underlying structure.
Wewant to replace traditionalmatching algorithmswith another onewhich can have a good performancewhenworking

with unstructured data. A natural candidate is the error-correcting procedure coming with secure sketches. Secure sketches
are due to Juels and Wattenberg [18]. Since their introduction, some improvements have been made in order to allow their
use with real biometric data. For instance, and as they will be used later in this paper, [6] deals with secure sketches for iris
and [32] explains their application to fingerprints.
Our results show thatwe can have a transformationwhich completely breaks the fingerprint structurewhile still keeping

good matching performances.
This paper is organized as follows. Section 2 recalls some theoretical facts about secure sketches andpresents the practical

constructions [6,32] for biometrics. Section 3 introduces our application of secure sketches to cancelable biometrics and
the security’s advantages. Section 4 describes our algorithm on fingerprints and the results we obtain. Finally, Section 5
concludes.
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2. Secure sketches

2.1. Definitions

In [13], Davida et al. started pioneeringwork by combining error-correcting codes with biometrics tomanage the natural
variations which occur between two different measures of biometric data. A stronger notion, called the fuzzy commitment
scheme, is introduced in [18], in order to handle noisy data in an authentication protocol. Dodis et al. [16] formalized this
notion into two important concepts, namely secure sketch and fuzzy extractor, now widely studied. The general idea is
to absorb the differences occurring between these two captures by viewing them as errors over a codeword. Afterward,
many papers give applications of these techniques for cryptographic purposes in various contexts, e.g. remote biometric
authentication [5] or authenticated key agreement [15]; see also [7,9,10,14,21,30,33].
LetH be a metric space with distance function d. In a few words, a secure sketch allows one to recover a string w ∈ H

from any close string w′ ∈ H thanks to known data P which does not leak too much information about w. The formal
definition of secure sketching functions is the following.

Definition 1. A (H,m,m′, t)-secure sketch is a pair of functions (SS,Rec) where the sketching function SS takes w ∈ H
as input, and outputs a sketch in {0, 1}∗, such that for all random variablesW overH with min-entropy H∞(W ) ≥ m, we
have the conditional min-entropy H∞(W | SS(W )) ≥ m′.
The recovery function Rec takes a sketch P and a vectorw′ ∈ H as inputs, and outputs a wordw′′ ∈ H , such that for any

P = SS(w) and d(w,w′) ≤ t , it holds thatw′′ = w. Here, H∞(X) = − log2maxx P(X = x) stands for themin-entropy and
H∞(X | Y ) = − log2 Ey←Y (2−H∞(X |Y=y)) for the conditional min-entropy.

In fact, the sketching function SS is a randomized function in order to introduce diversity in the sketches, otherwise
H∞(W | SS(W ))would equal 0.
Let F be a finite alphabet of size q. Let w1, w2 be two equal-length vectors over F , then the Hamming distance

dH(w1, w2) is the canonical metric distance defined as the number of differences between w1 and w2. For some integer
n, the set F n equipped with the Hamming distance dH is a Hamming space. A subset C of F n is an (n, k, dmin)q error-
correcting code over F if it contains exactly qk elements (i.e. codewords) where the smallest distance between any two of
them is dmin. This implies that one can detect up to dmin − 1 errors in a codeword. The capacity of correction t of C is the
radius of the largest ball for which for any w ∈ F n there is at most one codeword in the ball of radius t centered on w. For
the Hamming distance dH , t = b(dmin−1)/2c. The parameters n, k and dmin are called respectively the length, the dimension
and the minimum distance of C .
When F is a field, if C is a vector subspace of F n, then C is known as an [n, k, dmin]q linear code.
In additive Hamming spaces, Juels and Wattenberg [18] have proposed a very practical construction, described below.

Definition 2 (Code-Offset Construction). Given C an (n, k, 2t + 1)q code, the secure sketch scheme is a pair of functions
(SSJW,RecJW)where

• the function SSJW takesw as input, and outputs the sketch P = c − w, where c is randomly taken from C .
• the function RecJW takesw′ and P as inputs, decodesw′ + P into a codeword c ′, and then outputs c ′ − P .

This yields a (F n,m,m− (n− k) log2 q, t)-secure sketch, which means that, given P , the entropy loss directly depends
on the redundancy of the code. There is thus an obvious trade-off between the correction capacity t of the code and the
security of the secure sketch.
The authentication protocol which naturally arises from this construction follows.

• During the registration, we store P = SSJW(w) = c − w, where c is a random codeword in C , together with the hash
value H(c) of c (where H is a cryptographic hash function).
• To authenticate someone, we try to correct the corrupted codewordw′+ P = c+ (w′−w) and if we obtain a codeword
c ′, we then check if H(c ′) equals H(c).

Hence, in this construction, the code dimension must not be too small to reduce the entropy loss, and also to prevent an
attacker from performing an exhaustive search on codewords to find the appropriate hash value.
Unfortunately, for biometric data, the security constraints of secure sketches are difficult to fulfil. First, we know that

biometrics are not random data and that their entropy is hard to measure, so that the effects of entropy loss are not well
understood in practice. Moreover, biometrics are widely considered as public data – think for instance about faces captured
by cameras, fingerprints on glasses, . . . – thus when P and H(c) are known, an attacker would easily check whether it is
associated with one of his own biometric database or try other kinds of cross-matching. Following the same idea, several
works (e.g. [8,10,20,31]) underline the necessity to choose the parameters appropriately with the error rate of the system
in order not to overestimate practical security.
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2.2. Practical biometric schemes

2.2.1. Biometric matching
For typical configurations, a biometric-based recognition scheme consists of an enrollment phase and a verification phase.

To register a user U , a biometric template b is measured from U and stored in a token or a database. When a new biometric
sample b′ is captured from U , it is compared to the reference data via amatching function. According to a similarity measure
m and some recognition threshold τ , b′ will be accepted as a biometric capture of U if m(b, b′) ≤ τ , else rejected. If a
legitimate user is rejected, the error is named a False Reject (FR), whereas a False Acceptance error (FA) is when a non-
matching one, e.g. an impostor, is accepted. The FR and FA rates are the two principal measures of performance associated
to biometric-based recognition. We also use the Equal Error Rate (EER) which is the point where FR and FA rates are equal.
Assuming that the templates live in a Hamming space and that m = dH , the authentication protocol above is straight

applicable to biometrics where the code-offset construction converts the matching step into an error-correcting problem.
To keep the same performance, the correction capacity of the underlying code might thus be close to nτ . However it is a
challenging task in practice to find a good constructionwith respect to the structural constraints on codes and to the security
requirements of secure sketches.
Although there are many propositions made on the subject, we only describe below the two practical constructions on

which our scheme relies. In term of biometric performance, the following two algorithms, the first one for fingerprints and
the second one for irises, are among the best known practical secure sketches constructions that we are aware of.

2.2.2. Reliable component scheme on fingerprints
Traditionally, fingerprint matching is made thanks to minutiae extraction [25] and comparisons of unordered sets of

variable length. It is not well suited to secure sketches which are easier to construct for the Hamming distance with a q-ary
code via Definition 2. To overcome this difficulty, Tuyls et al. [32] describe a smart algorithm, in the line of the previous
works [21,33], to extract stable binary vectors from fingerprints and to apply secure sketches on it.
Firstly, the idea is to deal with fingerprint patterns rather than minutiae. It makes use of the techniques described in

[3,2,4] to pre-align a fingerprint image thanks to its core [3] and to extract a real vector of length L = 1536. The first 512
coordinates are the values of the squared directional field defined in [2] taken on 256 positions. The remaining, inspired by
[4] is the Gabor response of 4 complex Gabor filters with orientation 0, π4 ,

π
2 and

3π
4 .

Secondly, to increase the stability of the vectors, an enrollment database containing N users and M images per user is
considered. From theNM real vectors (Xi,j)i=1..N,j=1..M obtained as above, binary fixed-length strings are generated following
some statistics.

• Statistical analysis: For each coordinates, the means by user and the mean of all the enrollment vectors are computed.
The within-class covariance matrixΣw and the between-class covariance matrixΣb are also estimated.

∀i ∈ {1, . . . ,N}, µi =
1
M

M∑
j=1

Xi,j, µ =
1
N

N∑
k=1

µk. (1)

• Quantization: For each feature Xi,j, the binary string Q (Xi,j) is defined by comparing the values of Xi,j with the mean µ:

∀t ∈ {1, . . . , L}, (Q (Xi,j))t = 0 if (Xi,j)t ≤ (µ)t , 1 if (Xi,j)t > (µ)t .

• Selecting reliable components: Two notions of reliability are attached to a coordinate t ∈ {1, . . . , L}. For a user i, a
coordinate t is said p-soft reliable if, for all j, all the (Q (Xi,j))t but p have the same value. Moreover the Signal-to-Noise

Ratio (SNR) of the coordinate t is defined by (ξ)t =
(Σb)t,t
(Σw)t,t

.
Let n < L be the number of reliable bits to select. For a user i, the strategy is to take the p-soft reliable components

with highest SNR starting from p = 0 by increasing p progressively until it gives exactly n components. These indexes
are saved in a vector P1,i and a new vectorWi of length n is constructed with the corresponding reliable bit values.

Finally, the code-offset construction is applied with a [n, k, d]2 linear binary code. For a random codeword ci, P2,i =
SSJW(Wi) = ci ⊕Wi is computed and the public data (i, P1,i, P2,i,H(ci)) are stored.
When a new fingerprint vector Yi is captured and extracted for a user i, then the verification is straightforward. The

quantized vector Q (Yi) is computed according to the comparison with the enrollment mean µ, and the vector W ′i is
constructed by keeping only the indexes of P1,i. Then we use the recovery function RecJW to check if H(RecJW(P2,i,W ′i ) ⊕
P2,i) = H(ci).
Some results are given on two fingerprint databases. The first one is the second FVC2000 database [23] which contains

8 images of 100 different fingers. For enrollment,M = 6 images per user are chosen and the 2 others for verification. They
succeed in obtaining an Equal Error Rate (EER) of 5.3% with an [511, 76, 171]2 BCH code (the EER decreases to 4.5% when
the 13worst reliable users are not taken in account). The second database, from the University of Twente, contains 5 images
of 500 different fingers; with M = 4, the best EER is 4.2% for a secret size about 40 bits. In [32], it is also compared with a
more classical matching algorithm on the original data without binarization nor secure sketches: a likelihood ratio-based
algorithm yields an EER of 1.4% for the first database and 1.6% for the second one.
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2.2.3. Optimal Iris fuzzy sketches
Iris biometrics are better suited to secure sketches: the matching, which is already made on binary vectors, is close to a

Hamming distance classifier, and thus code-offset construction is easier to apply than for fingerprints. From one iris image, a
256-bytes iris template and a 256-bytesmask can be constructed (cf. [12])where themask filters out the unreliable positions
of the iris template, such as eyelashes, eyelids and reflection positions. And matching between two irises merely consists of
computing the relative binary Hamming distance over all the non-erased positions.
Hence, contrary to the fingerprint case above, we can try to use secure sketcheswithout any restriction on the enrollment

database. There are very few existing works [6,17] which investigate what are the best codes for the underlying decoding
problem. Here, the real difficulty is the number of errors and erasures that an error-correcting codewould be able to correct.
For instance, classical binary linear codes such as BCH codes are not sufficient for attaining low FR rates (lower than 10%)
with a non-negligible transmission rate (k/n). To overcome this problem, [6] describes a specific coding/decoding scheme
which succeeds in being close to classical matching performances.
The idea is to use an iterative min-sum decoding algorithm on a 2D product code. The product code C is constructed

from two binary Reed–Muller codes (see [24,29]) of order 1, to form a code of length 2048 bits. A binary Reed–Muller
code of order 1 in m variables, RM(1,m), is an [2m,m + 1, 2m−1]2 code. The example given in [6] is the product code
C = RM(1, 6) ⊗ RM(1, 5), which means that codewords of C are matrices of size 26 × 25 whose rows are codewords
of RM(1, 6) and columns are codewords of RM(1, 5). It is an [2048, 7 × 6, 25 × 24]2 code. The principle of the iterative
min-sum decoding algorithm is to alternate iterations on lines and on columns to update progressively some cost functions
which represent the cost to put a 0 or a 1 at a given position.
Starting with a received message (mi,j), an initial cost function is defined as κ0ij (x) = x ⊕ mi,j or 1/2 if mi,j is erased,

x ∈ {0, 1}. And each iteration takes input costs κ inij and produces output costs κ
out
ij . For instance, a row iteration updates the

costs by computing

κoutij (x) = min
c∈RM(1,6),cj=x

26∑
k=1

κ inik (ck)

while a column iteration works with codewords of RM(1, 5) and computes the sum of costs by column. After an iteration,
the decoding message m′ defined by m′i,j = x if κ

out
ij (x) < κoutij (1⊕ x) is constructed. If it is a codeword then the algorithm

ends else it continues, with a maximum number of iterations.

3. Applying secure sketches to cancelable biometrics

3.1. Cancelable biometrics

Although cancelable biometrics [28] have been introduced with similar objectives to biometric secure sketches, i.e. to
limit the privacy threats raised by biometric authentication, the methods are somewhat opposed. The idea is to transform
biometric data with an irreversible transformation and to perform the matching directly on the transformed data. The
advantage pointed out by [28,26,27] is the capability of using existing feature extraction andmatching algorithms. However,
the main drawback is that, with classical matching algorithms, the performance quickly decreases when the transformation
breaks the structure of biometrics. For instance for fingerprints, if the matching uses minutiae then a random permutation
of image’s blocks leads to bad FR rates (cf. [26, Fig. 7(a) Cartesian case]). There is thus a compromise between irreversibility
and performances.
More precisely, let a matching algorithm associated with the similarity measure m and f be a transformation, which

acts either on biometric images or on biometric features. Given two biometric data w and w′, the matching score will be
computed directly on transformed data bym(f (w), f (w′)). One first constraint is for f not to degrade the performances too
much, and from a security point of view the requirements are:

• w and f (w) do not match together,
• for two different transformations f1, f2, f1(w) and f2(w) do not match together,
• a pre-image of f (w)must be hard to compute.

In practice, these requirements are difficult to estimate and it seems hard to achieve a good irreversibility with good
performances. Anyway, these security properties are really interesting as it allows diversity and revocability of biometric
templates when they are verified.

Remark 1. As an attacker, who tries to match two data, may choose himself the similarity measure, the two first conditions
should be satisfied for any similarity measurem. It means that, for anym, it should be hard to distinguishm(w, f (w)) from
m(w, f (w′)) andm(f1(w), f2(w)) fromm(f1(w), f2(w′)) for two non-matching biometric dataw, w′.

Note that the security does not concern the same layer as secure sketches does. Indeed, with cancelable biometrics the
matching is performed on transformed data and so the original data are never computed after the enrollment. Thus, it
protects the representation of biometrics whereas secure sketch is a clever way to protect the storage of your biometric
data until you present a close template.
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3.2. Cancelable and secure biometrics

We now apply secure sketches to cancelable biometrics. In so doing, our goals are to add the security of both schemes
together and to switch from the matching step of cancelable biometrics to an error-correction problem. It helps to keep
good biometric performance.
Assume that the biometric templates are in the metric space H , let f be a transformation on H , we propose to use an

(H,m,m′, t)-secure sketch with functions (SS, Rec) as follows. We define the enrollment function Enrol by

Enrol(w; f ) = SS(f (w)).

And the verification function Verif takes an enrolled data P , a vector w′ ∈ H and the function f as inputs and outputs
Rec(P, f (w′)), i.e. f (w)whenever d(f (w′), f (w)) ≤ t .
It keeps the correction’s principle of secure sketches and the recovery of w from Enrol(w; f ) is at least as hard as the

recovery of f (w) from the sketch SS(f (w)). And the more f helps to hidew, the more the security increases. A more formal
analysis is done in Section 3.3 to discuss these points. Another advantage of this construction is to enhance the diversity of
the enrolled data, as different functions can be used for different users or for different applications by the same user.
As for classical cancelable biometrics, transformations can be applied either on the biometric images, or on the extracted

features inH . It can also be applied on both at the same time to increase the irreversibility.

Remark 2. Here, one additional benefit compared with Section 3.1, from converting matching into a decoding procedure,
is that an attacker cannot compute directly the distance between transformed and original data. Thus, even if f (w) is closer
to w than to another biometric data w′, it is not straightforward to distinguish (w, f (w)) from (w′, f (w)) if decoding fails
in both cases.

Moreover, it is worth noting that in some applications, f could be stored in a token directly by the user – especially
when f is invertible – so that the transformation is unknown to the server and from the outside. Indeed, the cancelable
transformations can be computed by the user before sending data for enrollment or verification.

3.2.1. Anonymous protocol
To avoid any tracking of authentications, we can also change the transformation used for a user after each succeeded

verification. The transmitted data f (w′) will then be unrelated to the next ones and thus it allows one to achieve an
anonymous authentication protocol. This can be done by applying a new transformation g on the recovered data f (w) and
thereafter to transmit g ◦ f for the next verification.

3.3. Security analysis

We consider the functions Enrol and Verif which are defined in Section 3.2 via an (H,m,m′, t)-secure sketch with
functions (SS, Rec) and a transformation f onH . Two situations are possible: f can be public or secret.
In both cases, the following lemma is straightforward. We underline that it implies that the protection ofw is at least as

strong as the protection of f (w) achieved by the secure sketch, under the condition that the entropy of f (w) is sufficiently
high.

Lemma 1. For all random variables W onH ,

H∞(W | Enrol(W ; f )) ≥ H∞(f (W ) | SS(f (W ))).

If f is invertible, it is an equality.

Proof. Forw ∈ H , we have P(W = w) = P(W = w ∧ f (W ) = f (w)) ≤ P(f (W ) = f (w)), which implies that

H∞(W | Enrol(W ; f )) ≥ H∞(f (W ) | Enrol(W ; f ))

with SS(f (W )) = Enrol(W ; f ). �

Via Definition 1, we deduce that for all random variablesW onH with H∞(f (W )) ≥ m, then

H∞(W | Enrol(W ; f )) ≥ m′.

We also see that the more f is irreversible, the more it would be difficult to recoverw in general. For instance, if f is such
that

P(W = w) ≤
P(f (W ) = f (w))

λ

with λ ≥ 1, we obtain

H∞(W | Enrol(W ; f )) ≥ H∞(f (W ) | SS(f (W )))+ log2 λ. (2)

If the entropy of f (W ) is sufficiently large, it means that the security of both schemes are added together.
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However, as we stated before, the entropy of biometric data is difficult to estimate, and the more f will be irreversible,
the more the entropy of f (w) will decrease. In terms of entropy, there is thus a kind of compensation between security
of secure sketches and security of cancelable transformation. In this way, for the code-offset construction where the loss
of entropy does not depend on the input’s entropy, the loss of entropy stays the same after introduction of the cancelable
transformation:

Proposition 1. Given a code-offset (F n,m,m − (n − k) log2 q, t)-secure sketch, let α ≥ 0 such that for all random variables
W on F n, H∞(f (W )) ≥ H∞(W )− α, then

H∞(W | EnrolJW(W ; f )) ≥ H∞(W )− (n− k) log2 q.

Proof. We have H∞(f (W ) | SSJW(f (W ))) ≥ H∞(f (W ))− (n− k) log2 q. And, as in (2),

H∞(W | EnrolJW(W ; f )) ≥ H∞(f (W ) | SSJW(f (W )))+ α,

so it leads to the result. �

For the specific case where f is invertible and secret, the security of secure sketches and cancelable biometrics also add
up together: an attacker would try to recover f (w) from the sketch and thereafter to constructw from f (w).
Moreover, the construction brings to secure sketches the advantages of cancelable biometrics, of which an important

one is the protection against cross-matching attacks. Indeed, starting from 2 sketches SS(f1(w)) and SS(f2(w)), it seems
difficult to establish a link between them as f1(w)might not match with f2(w). Finally, contrary to secure sketches where a
successful attack of a sketch compromises forever the underlying biometric data, here cancelable biometrics act as a second
layer of protection.

4. An example for fingerprints

To underline the feasibility and the interest of this construction, we experiment it on the fingerprint FVC2000 second
database [23]. In fact, we merge three techniques, a cancelable biometrics transformation is applied and both schemes
described Section 2.2 are used: an enrollment algorithmadapted from the reliable component scheme [32], slightlymodified
with techniques from [19], to extract binary features and the coding/decoding algorithm of the optimal iris fuzzy sketch [6]
for the secure sketch.

4.1. Algorithm

4.1.1. Feature extraction
We use similar methods to Section 2.2 (pre-alignment,1 directional field and Gabor response) but with a slight

modification. In the second FVC2000 database, the image size is 256 by 364 pixels and we observe that pre-alignment can
be very important in some cases, so we decide to embed images in larger images of 768 by 1092 pixels to avoid any loss of
information. Moreover, the images are rectangular thus we do not restrict ourselves to squared directional field and Gabor
response, which gives us real vectors with 1984 components of information embedded in a vector of length L = 17 952. All
the 15968 null components are marked as erasures for the sequel.

4.1.2. Enrollment
It follows three steps below.

• Cancelable transformation: As in Section 2.2, we set an enrollment database with NM real vectors (Xi,j)i=1..N,j=1..M from
N users. For all i ∈ {1, . . . ,N}, a random permutation fi of {1, . . . , L} is chosen and we applied them on the database to
obtain the transformed database containing new vectors (Yi,j)i=1..N,j=1..M where for all i, jwe set

∀t ∈ {1, . . . , L}, (Yi,j)t = (Xi,j)fi(t),

which means that we applied2 the transformations fi on all templates of user i to construct cancelable templates Yi,∗.
These transformations are stored either by a server or by the relating users for future verifications. Here, wewill consider
them as secrets.

1 Note that here this pre-alignment was done manually for all the database to simplify the experiment.
2 This operation is in fact equivalent to the application of a random permutation of {1, . . . , n} on the binary templateWi after reliable bit selection.
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• Reliable bit selection: This step is similar to the one from [32] but we use instead the method described in [19] for face
recognition, which is quite softer to adapt to our context. The statistical analysis is not modified except that the erased
positions of a vector are not counted. Hence, for a given user i, the number (Mi)t of non-erased components at an index
t is no more constant:

∀i ∈ {1, . . . ,N}, t ∈ {1, . . . , L}, 0 ≤ (Mi)t ≤ M.

We also compute the variance σi of the components of the user i:

(σi)t =
1

(Mi)t

(Mi)t∑
j=1

(
(Xi,j)t − (µi)t

)2
,

if (Mi)t ≥ 1, otherwise we will consider the position as an erasure. Now, the quantization step is to construct the binary
string Qi by comparing the values of the mean µi with the overall mean µ:

∀t ∈ {1, . . . , L}, (Qi)t = 0 if (µi)t ≤ (µ)t , 1 if (µi)t > (µ)t ,

if (Mi)t ≥ 1. Then we select the n most reliable components thanks to the reliability vector Ri which coordinate t is
defined as

(Ri)t =
1
2

(
1+ erf

(
|(µi)t − (µ)t |
√
2(σi)t

))
when (Mi)t ≥ 1, where erf is the error function. Hence, we obtain for a user i the binary templateWi of length n < L and
the vector P1,i of indexes, potentially with a few erasures if the number of non-erased components was insufficient.
• Sketching: The code-offset construction is applied with a binary product code C of length n. Let ci be a random codeword
of C and compute P2,i = ci ⊕Wi. The data (i, P1,i, P2,i,H(ci)) are stored in a database.

4.1.3. Verification
When a user iwants to authenticate itself, a new fingerprint image is captured and a real vector Zi of length L is extracted,

once again with 1984 components of information and 15968 erasures.

• Cancelable transformation: In order to compute the cancelable representation of Zi, the transformation fi is recovered
from its storage location – e.g. a server or the user’s token – then we construct Ti as (Ti)t = (Zi)fi(t) for all t ∈ {1, . . . , L}.
• Quantization and selection of n bits: From Ti, the quantized vector Q (Ti) is constructed thanks to the comparisons with
the meanµ and the binary stringW ′i of length n is obtained by restricting Q (Ti) to the indexes of P1,i. Here, an important
difference with the enrollment is that more erasures may be selected.
• Recovery and verification: P2,i ⊕W ′i = ci ⊕ (Wi ⊕W

′

i ) is computed and the min-sum decoding algorithm of Section 2.2
is run to recover a message c ′i . One nice feature is that it enables efficient decoding of errors and erasures at the same
time. Finally, we compare the value H(c ′i )with the stored value H(ci).

Note that here the use of secret permutations of {1, . . . , n} to transform the extracted features fulfills the condition of
cancelability. It is clear that, with a high probability, it allows to match neither a data xwith a transformed version f (x) nor
two transformed versions f1(x) and f2(x) together. And, even if they are not irreversible functions by construction, they are
computationally irreversible thanks to their secrecy and randomness.
Following an observation of [26], for each individual, we assume that a new random permutation is assigned at each

enrollment. Hence, due to the large number of possibilities, a given permutationwill only, with an overwhelming probability
for n large (e.g. n > 500), be used once during the system’s life (for all users together). So that, given a transformed template
f (x), there is no other available information on f which would have permit to interpolate f and to recover x. Moreover, it
implies that an adversary could distinguish (x1, f (x1)) from (x2, f (x1)) only with a negligible probability when x1 and x2
have the same binary weight.
Of course, a truly irreversible function would be preferable than a secret one for some applications but we think that the

results achieved below worth considering this slight constraint.

4.2. Results

To follow the cancelable biometrics configuration, all the results are always computed by assuming that the right
transformation is used in verification; i.e. that when the verification involves the reference data of a user i, then the new
template is always3 transformed via fi, even if it concerns a non-legitimate user j 6= i.

3 Otherwise, with the wrong transformations fj , the FA rate would be almost 0%.
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We choose randomlyM = 6 images per user for enrollment and the 2 remaining for the verification.We construct binary
templates of length n = 2048 and we consider the [2048, 42, 512]2 product code C = RM(1, 6)⊗ RM(1, 5). It yields a FR
rate of 3% and a FA rate of 5.53%. With respect to the performance announced in [32, Fig. 5] (for comparable FR rate or FA
rate), it compares favourably to the results obtained with the [511, 67, 175]2 BCH code, 5.2% of FR for 5.5% of FA, and it is
even sligthly better than the 3.4% of FR and 6.1% of FA given by the restriction to the 87 most reliable users.
We also check the Hamming distance distribution to evaluate the performance of a Hamming distance classifier, which

has the same effect of a BCH decoder, by adding the number of errors to the half of erasures. For similar rates, we need a
very large threshold: with a threshold of 0.4 × 2048 it gives a FR rate of 3% for a FA rate of 6.40%. First, it means that we
cannot achieve this performance with a BCH codewith the same dimension: for the length 2048 and a capacity of correction
of 0.4× 2048, the dimension must be smaller than 2 thanks to the Plotkin bound — cf. [22]. And it also underlines that the
min-sum algorithm helps to improve the performance.
Note that, even if here the dimension of the code could appear as quite small, it has the merit of proving that to include

cancelable biometrics into secure sketches still permits having good discrimination between matching fingerprints and
non-matching fingerprints.
At last, we underline that these error rates improvement are reported when biometric templates are binarized and the

similarity measure uses Hamming distance whereas, without any quantization, biometric templates such as fingerprints
can be compared with more efficient matching mechanisms. For instance, as explained in [32], a likelihood ratio-based
algorithm would yield here an EER of 1.4%.

5. Conclusion

We showed how to apply secure sketches to cancelable biometrics in order to take advantage of both schemes. From
a security point of view, it allows one to augment the protection of biometric data by combining together the security
properties of each scheme. We also explained a specific algorithm which gives good performance on a fingerprint database
by mixing several sketching techniques and a cancelable transformation. We really think that this first example underlines
the interest and the feasibility of the technique. In our opinion, it will help to greatly improve the security of biometric data.
One can also think of adding aphysical layer of protectionby embedding an enrolled template and thematching algorithm

in a smart card, as in general, computations rely on a decoding algorithm.
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