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Abstract. The current data network scenario makes Traffic Engineer-
ing (TE) a very challenging task. The ever growing access rates and
new applications running on end-hosts result in more variable and un-
predictable traffic patterns. By providing origin-destination (OD) pairs
with several possible paths, load-balancing has proven itself an excellent
tool to face this uncertainty. Most previous proposals defined the load-
balancing problem as minimizing a certain network cost function of the
link’s usage, assuming users would obtain a good performance as a con-
sequence. Since the network operator is interested in the communication
between the OD nodes, we propose instead to state the load-balancing
problem in their terms. We define a certain utility function of the OD’s
perceived performance and maximize the sum over all OD pairs. The
solution to the resulting optimization problem can be obtained by a
distributed algorithm, whose design we outline. By means of extensive
simulations with real networks and traffic matrices, we show that our
approach results in more available bandwidth for OD pairs and a similar
or decreased maximum link utilization than previously proposed load-
balancing schemes. Packet-level simulations verify the algorithm’s good
performance in the presence of delayed and inexact measurements.

1 Introduction

Network convergence is a reality. Many new services such as P2P or HD-TV are
offered on the same network, increasing the unpredictability of traffic patterns.
To make matters worse, access rates have increased at such pace that the old
assumption that core link capacities are several orders of magnitude bigger than
access rates is no longer true. Thus, simply upgrading link capacities may not be
an economically viable solution any longer. This means that network operators
are now, more than ever, in need of Traffic Engineering (TE) mechanism which
are efficient (make good use of resources), but also automated (as much self-
configured as possible), more robust with respect to network variations (changes
in traffic matrix, or characteristics of transported flows) and more tolerant (in
case of node/link failures).

Dynamic load-balancing [1–3] is a TE mechanism that meets these require-
ments. If an origin-destination (OD) pair is connected by several paths, the
problem is simply how to distribute its traffic among these paths in order to
achieve a certain objective. In these dynamic schemes, paths are configured a
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priori and the portion of traffic routed through each of them (traffic distribution)
depends on the current traffic matrix (TM) and network’s condition. As long as
the traffic distribution is updated frequently enough, this kind of mechanism is
robust and their dependence on the network’s condition makes them naturally
tolerant too. Finally, if the algorithm is also distributed (in the sense that each
router makes its choices independent of the others) the resulting scheme will also
be automated.

In intra-domain TE, the network operator is interested in the communication
between the OD nodes, i.e. the performance they get from their paths. The OD
pairs may actually be regarded as the users of the network, sharing its resources
between them. It is natural then to state the load-balancing problem (or TE in
general) in their terms. An analogy can be made with the congestion control
problem [4], where the users are the end-hosts and share link capacities. The
user’s performance (or “revenue”) is the obtained rate and the objective is to
maximize the sum over all users of a utility function of it. In our case the problem
is different since the rate is given and we control only the portion of traffic sent
through each path. In this paper we propose to measure the user’s performance
by the mean available bandwidth (ABW ) the OD pair obtains in its paths, and
then maximize the sum over all pairs of a utility function of this measure. We
will present a distributed algorithm in which the independent adjustments made
by each OD pair lead to the global optimum. Our comparison with previously
proposed load-balancing schemes, using several real networks and TMs, shows
that the resulting traffic distribution improves OD pairs’ perceived performance
and decreases maximum link utilization.

Almost all prior proposals in load-balancing (and in TE in general) define a
certain link-cost function of the link’s capacity and load, and minimize the total
network’s cost defined as the sum over all links of this function. The resulting
traffic distribution will be relatively balanced, in the sense that no single link
will be extremely loaded. However, it is not the situation of isolated links, but
the condition on the complete path(s) connecting OD nodes that counts. Solving
the problem in terms of the links is only an indirect way of proceeding which
does not allow us, for instance, to prioritize a certain OD pair or to enforce
fairness among the OD pairs. For example, consider the network in Fig. 1. In
it, all link capacities are equal and all sources generate the same amount of
traffic. However, only OD pair 1 has more than one path to choose from. It is
relatively simple to verify that if the link-cost function is the same in all links, the
optimum is obtained when traffic from OD pair 1 is equally distributed among
paths. However, since the upper path “disturbs” two OD pairs while the lower
one disturbs only one, depending on our fairness definition it could make more
sense to route more traffic from OD pair 1 through the lower path.

The rest of the paper is organized as follows. The following section discusses
related work. Section 3 defines the network model and associated notation, fol-
lowed by the presentation of the utility objective function. In Sec. 4 we address
the resolution of the problem. We present some flow-level simulations in Sec. 5,
where we show the performance of the distributed algorithm and the advantages
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Fig. 1. An example in which if the total cost of the network is minimized the resulting
optimum is unfair (popt = 0.5).

of our scheme over other TE techniques. In Sec. 6 we discuss some implemen-
tation issues, and present some packet-level simulations. We conclude the paper
in Sec. 7.

2 Related Work

Load-Balancing can be seen as a particular case of Multi-Path routing. Many
papers fall under this category, but we will highlight only those closely related
to our work, or which inspired us for our proposal. We will further classify
research in this topic into two sub-categories depending on the time-scale under
consideration.

2.1 Long Time-Scale

Here we consider the minute or hour time-scale of routing. A TM is assumed
to exist and is used as an input to the problem. At this time-scale congestion
control is not considered, i.e. the TM is assumed independent of the current
condition of the network. However, it is clear that the TM is not static and
changes over time [5]. Furthermore, some network operators offer their customers
VPN services in which they only have to specify the total maximum rate each
node can receive or send [6]. Load-Balancing has proved itself a very effective
tool to cope with this TM uncertainty, and research in this area differs mainly in
choosing which uncertainty set contains the real TM at all times. Robust routing
considers a well-defined set, while dynamic load-balancing only the current TM.

The objective in robust routing is to find a unique static routing configuration
that fulfills a certain criteria, generally the one that minimizes the maximum link
utilization over all TMs of the corresponding uncertainty set. The set can be for
instance the TMs seen the previous day, or the same day the previous week [7].
A very used option is the polytope proposed in [8] which allows for easier and
faster optimization. In any case, since a single traffic distribution that works
for all TMs is used, resources will be wasted for any specific TM. Shrinking the
uncertainty set results in improved performance, and there are some papers in
this direction [9, 10]. This shrinking should be carefully done though, because
if the selected set is too small and the network faces an unforeseen TM, the
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resulting performance is unpredictable. Finally, optimizing under uncertainty is
more difficult than “normal” optimization. This increased difficulty forces the
use of simpler optimization criteria which can lead to a not so good performance
(e.g. it is known that minimizing the biggest link utilization generally results in
the use of longer paths).

In dynamic load-balancing, each origin node estimates its entries in the TM
and, based on feedback from the network, adapts the portion of traffic it sends
through each path. After some iterations, and if the TM does not change in the
meantime, a global optimum is achieved. The two most well-known proposals
in this area are MATE and TeXCP. In MATE [1], a convex link cost function
is defined, which depends on the link’s capacity and load. The objective is to
minimize the total network cost, for which a simple gradient descent method
is proposed. TeXCP [2] proposes a somewhat simpler objective: minimize the
biggest utilization (ρl/cl) each OD pair sees in its paths. A rough description
of the algorithm is that origin nodes iteratively increase the portion of traf-
fic sent through the path with the smallest utilization. Another load-balancing
scheme which has the same objective but a relatively different mechanism is
REPLEX [3].

2.2 Short Time-Scale

This short time-scale refers to the congestion control time-scale. Possible adap-
tations of TCP to the multi-path case (MP-TCP) have been extensively studied,
where the utility each user perceives is now a function of the total rate he ob-
tains from all his paths. Several propositions exist in this direction. For instance,
in [11–13] the user is responsible of calculating his total rate and how much he
should send through each path. In [14], the user only calculates the total sending
rate and the routers distribute traffic among paths.

A different but related problem is a user downloading the same file from
different sites or hosts (as in Bittorrent). Currently, greedy policies are used
where users change a path only if they obtain a better performance on the
new one. In [15] the authors show that if current TCP flavors are used in such
schemes, the resulting allocation can be both unfair and inefficient, and that a
mechanism similar to MP-TCP should be used instead.

In [16] the objective is to adapt the sending rates to maximize the total users’
utility minus a network cost. The idea is that users should also take into account
the utilization of the links and leave a margin for future arrivals. We believe that
this is not the best criteria. Congestion control should enable users to consume
all their fair-share of the path. At this time-scale, saving a little bandwidth for
future arrivals is, in our opinion, a waste of resources.

Although MP-TCP constitutes a very interesting long-term objective, no
actual implementations of it exists. Allowing end-hosts to choose their paths, or
even making them aware that several possibilities exist, presents several technical
difficulties in current Internet architectures.
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3 Source-Level Utility Maximization

3.1 Network Model

We represent the network as L unidirectional links, indexed by l, whose capacities
are given by the column vector c = [c1 . . . cL]T . We will reference OD pairs by
index s = 1 . . . S. By abuse of notation we will also reference by s its source
node, defined as the router through which its traffic ingress the network. This
node will be in charge of distributing this traffic among paths, and in the sequel
we will use the terms source and OD pair without differentiation. Each source s
has ns possible paths towards its destination, indexed by i. Rs is a L×ns matrix
whose li entry is 1 only if source s uses link l in its i-th path, and 0 otherwise.
The incidence matrix is then R = [R1 . . . RS ].

All traffic in the network is assumed to be elastic (i.e. controlled by TCP).
We suppose that flows arrive to source s as a Poisson process of intensity λs.
Each of these flows consist of a random arbitrarily distributed workload (with
mean ωs) they want to transfer, generating a demand ds = λsωs. Each flow
is routed through path Psi with probability psi, and it uses it throughout its
lifetime. It is worth noting that we consider a dynamic context, in which flows
appear and have a finite lifetime. It is also important to highlight that we are
enforcing flow-level load-balancing. Packet-level load-balancing (where packets
from the same flow can take different paths) may have a negative impact on
TCP performance due to packet reordering on the receiver’s side.

The demand on path si is then psids = dsi. The traffic distribution is defined
simply as d = [d11 . . . d1n1 . . . dS1 . . . dSnS

]T , and the total load on link l (ρl) can
be easily calculated as the l-th entry of R× d. Under these assumptions, if ρl is
strictly smaller than cl for all l, the number of flows in the network will not go
to infinity [17], meaning that the network supports the given traffic distribution.

3.2 The Utility Function

Since we consider the OD pairs as the users of the network, a single performance
indicator per pair should be used. Even if we considered end-hosts as the users,
a single indicator per OD pair is also adequate since traffic belonging to a given
OD pair is composed of many flows generated by several end-hosts.

Our proposal defines first a revenue function us(d) which indicates the per-
formance perceived by source s when the traffic distribution is d. The question
is how this revenue should be distributed among sources. We could for instance
maximize the average or the smallest of them. Drawing on the work on conges-
tion control [4], we define a concave non-decreasing utility function Us(us) that
represents the satisfaction source s has with its revenue us(d), and maximize the
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sum over all sources. The problem in this most general version reads like this:

maximize
d

S∑
s=1

dsUs(us(d)) (1)

subject to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

We multiply each utility by ds to give more weight to those nodes generating
more traffic. The constraints assure that the number of living flows is finite, that
there are no negative demands and that all traffic is routed.

A typical example of U(x) is the utility function that leads to the so-called
α-fairness [18]:

U(x) =

{
(1− α)−1x1−α, α 6= 1
log(x), α = 1

(2)

Throughout our simulations we will use α = 1, which results in proportional
fairness [19].

Probably the most delicate part of the problem is defining us(d). A relatively
simple path performance measure is its available bandwidth (ABW ). The ABW
of path si is defined as ABWsi = min

l∈si
{cl − ρl}. The meaning of this indicator is

twofold. On the one hand, it is a rough estimator of the throughput TCP flows
will obtain from the path [20, 21]. On the other hand, a path with a big ABW
is a “healthy” path, in the sense that it can accommodate future unexpected
increases in traffic. Our definition for us will be the average ABW seen by
source s in all its paths, which presents a good balance between current good
conditions and prudence. Substituting us in (1) results in:

maximize
d

S∑
s=1

dsUs

(
ns∑

i=1

psimin
l∈si

{cl − ρl}
)

(3)

This version of problem (1) is very important for the elastic traffic case.
Although TCP takes care of path’s resource sharing, routing constitutes a degree
of freedom in the obtained rate that may be taken into account. Since the mean
obtained rate depends on the amount of traffic the flow is sharing its path with,
this obtained rate may be indirectly controlled through routing. Let us assume
that this relation is simply that TCP flows traversing path si achieve a mean
rate equal to ABWsi. Then problem 3 is very similar to the multi-path TCP
one (see Eq. 4 in [15]) where each OD pair is seen as serving ds MP-TCP flows.
Notable differences are that the decision variable is the portion of traffic sent
through each path (and not the amount of traffic), and that the mean of the
flow rate is used. However, by using standard TCP and changing the ingress
nodes only (not all end-hosts), users can now be regarded as if they were using
MP-TCP, with all the advantages that this means (better performance and more
supported demands).
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4 Solving the Problem: Distributed Algorithm

As the network’s size increases, a centralized algorithm that solves (3) for the
current TM does not scale well. In this context, a distributed algorithm is not
only desirable but, if the network’s size is considerable, necessary. In this section
we present a distributed solution for our problem.

Let us rewrite (3) introducing the auxiliary variable tsi:

maximize
d,t

S∑
s=1

dsUs

(
ns∑

i=1

psitsi

)
(4)

subject to tsi ≤ cl − ρl ∀s, i ∀l : l ∈ si

tsi > 0 , d ≥ 0 and
ns∑

i=1

dsi = ds

Although all constraints are affine, the objective function is not concave,
meaning that methods solving the dual problem will only find a lower bound for
the optimum. How tight is this lower bound (i.e. how small is the duality gap)
is closely related to the lack of concavity of the function [22]. Our estimations
indicate that in this case the lack of concavity is relatively small and decreases
with the number of paths. In view of these results, we applied the well-known
Arrow-Hurwicz method [23] and confirmed that the resulting traffic distribution
is a very tight approximation to the optimum.

This method is iterative and at each step updates the value of the dual
(primal) variables moving them in the direction of (opposite to) the gradient of
the Lagrangian function. In this case, the Lagrangian function is:

L(p, t, θ) = −
S∑

s=1

dsUs

(
ns∑

i=1

psitsi

)
+

S∑
s=1

ns∑

i=1

∑

l:l∈si

θsil(tsi − cl + ρl) (5)

Paths with zero ABW will not be used by the algorithm and the conditions
on psi will be necessarily true (normalization should be carefully done, though).
Since the constraints are enforced by the algorithm (presented below), we omit-
ted the Lagrange multipliers associated with the positiveness of psi and tsi, and
the normalization condition on psi. However, θsil plays a very important role
since it represents the cost of link l generated by source s in its path i, resulting
in a total cost of θ̂l =

∑S
s=1

∑
i:l∈si θsil.

The derivatives of (5) with respect to ps0i0 and θs0i0l0 are:

∂L

∂ps0i0

= −ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ts0i0 + ds0

∑

l∈s0i0

θ̂l

∂L

∂θs0i0l0

= ts0i0 − cl0 + ρl0
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The auxiliary variable tsi does not have much physical meaning, except that
for any given p its optimal value is ABWsi. The derivative on θsil does not tell
us much then, except that it should decrease when l is not the bottleneck of
si (meaning that in such case its value should tend to zero). This forces us to
estimate the value of θsil. Before discussing possible estimations, we will present
the distributed algorithm:

Link algorithm . At times t = 1, 2, . . . link l:

1. Receives path demands dsi(t) from all sources using it, and estimates its
total load ρl(t).

2. Computes its cost for each path θsil(t) and its total cost θ̂l(t).
3. Communicates this last value and its ABW to all traversing sources.

Source algorithm . At times t = 1, 2, . . . source s:

1. Estimates its current demand ds(t).
2. Receives from the network the cost θ̂l(t) of all links it uses and their ABW.
3. Computes the available bandwidth of its paths (ABWsi(t)) and its mean

ABW (us(t)).
4. For each of its paths, it calculates the number:

∆si(t) = ds(t)U ′
s (us(t)) ABWsi(t)− ds(t)

∑

l∈si

θ̂l(t)

5. It finds the path imax with the biggest ∆si(t) (∆max
s (t)). It then updates

each psi in the following manner (where γ is a small constant):

psi(t + 1) = [psi(t) + γ(∆si(t)−∆max
s (t))]+

psimax(t + 1) = 1−
∑

i=1...ns
i 6=imax

psi(t + 1)

We will now discuss possible estimations of θsil. The Karush-Kuhn-Tucker
(KKT) conditions [23] state that the derivative of (5) with respect to tsi evalu-
ated at the optimum should necessarily be zero. This means that at optimality:

∂L

∂ts0i0

= −ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ps0i0 +

∑

l:l∈s0i0

θs0i0l = 0

If path si only has one bottleneck, there would only be one nonzero θs0i0l in
the addition, a fact that may be used to make a first estimation of θsil. However,
the link does not know the source’s mean ABW. To maintain communications
between elements in the network as restricted as possible, links will assume that
all the sources that use them have a mean ABW equal to their ABW. The link’s
estimation of θsil will then be:

θsil =





dsiU
′ (cl − ρl) if l = argmin

l∈si
{cl − ρl}

0 otherwise
(6)
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We have assumed, for simplicity’s sake, that all sources use the same known
utility function. This is the cost function we will use, thus finishing the spec-
ification of the algorithm. As we will see in Sec. 5.1, the consequences of this
approximation are not significant and the algorithm yields a very good esti-
mation of the optimum. Details on how to implement this algorithm in a real
network are discussed in Sec. 6.

5 Fluid-Level Simulations

5.1 Distributed Algorithm Performance

In this section we shall present some simple examples to gain some insight into
the proposed framework and to verify that the resulting traffic distribution of
the distributed algorithm is not far from the actual optimum. We first present
fluid-level simulations to verify its behavior in an idealized context. We have
also included some packet-level simulations to analyze the effect of imprecise
and delayed measurements, which are presented in the next section.

The first example we will consider is the simplest one: a single source has
two possible paths to choose from. The two paths have a capacity of 3.0 and
4.0 respectively. In Fig. 2 we can see the value of p1 (the portion of traffic
routed through the path with the biggest capacity) obtained by the distributed
algorithm and the actual optimum, as a function of the demand generated by
the source.
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Fig. 2. Portion of traffic through the widest path in a two path single source scenario

We first remark that the distributed algorithm approximates very well the
optimum, being the biggest difference less than 0.05. The second aspect that is
worth noting is that the distributed algorithm always tends to “over-use” the
widest path. This can be explained by the approximation we made in (6). Since
U(x) is concave, U ′(x) is a non-increasing function, meaning that if x1 > x2

then U ′(x1) ≤ U ′(x2). So, when a link has an ABW bigger than the source’s
average, its estimation of the price will be smaller than it should. In this example,
it means that link 1 will calculate a smaller price, which results in the source
sending more traffic through it than at optimality.
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Consider now the example in Fig. 3. In it, all links have a capacity of 4.0.
Source 2 generates a total demand d2 = 1.0, and we analyze the optimum traffic
distribution while varying d1 (the demand generated by source 1). Notice how,
even if the ABW source 1 sees on the lower path is the same as in the last
example, it concentrates more traffic in the wider path than before. The presence
of source 2 makes the lower path more “expensive”. Also note that in this case
the distributed algorithm approximates even better the global optimum.

1

2

p 1 2 * d 1

d 2

p 1 1 * d 1
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Fig. 3. The example topology, and its optimum traffic distribution as a function of d.

Finally, we analyze some examples in the network of Fig. 1. In particular,
we will consider the case of cl = 5.0 ∀l where source 1 generates a demand d1

and the rest a demand d. The two graphs in Fig. 4 shows the optimum traffic
distribution for d = 2, 4 as a function of d1. The three curves represent the actual
optimum, the value obtained by the distributed algorithm, and the one obtained
by both MATE and TeXCP. We can see that while d1 is relatively small and the
ABW is enough, source 1 uses only the lower path. If any of these conditions is
not true, p will rapidly go to 0.5, but always privileging better conditions on the
upper path.
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Fig. 4. Some case-scenarios for the network in Fig. 1

5.2 The Benefits of Utility Maximization

In this section we will assess the performance gain achieved by our proposal (UM
from now on, as in Utility Maximization) over two well-known load-balancing
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techniques: MATE and TeXCP, which we already presented in Sec. 2. It is im-
portant to highlight that the results shown in this section were obtained by the
distributed algorithm. We tried some centralized numerical optimization meth-
ods and obtained very similar results, verifying that approximations we did had
little effect.

The comparison will be made in two real networks, with several real TMs,
calculating for each of these demands two performance indicators: mean ABW
perceived by sources (us) and link utilization (ρl/cl), whose importance we
have already discussed. We could consider other performance indicators, such
as queueing delay or path propagation delay. However, calculation of the for-
mer depends heavily on the assumed traffic model, and we shall suppose that
the latter has already been taken into account by the operator in the choice of
paths.

For each TM we measured a weighted mean us, where the corresponding
weight is ds/

∑
ds. This average provides us with a rough idea of the performance

as perceived by traffic. A good value of this average indicator could however hide
some pathological cases where some OD pairs obtain a bad performance. That is
why we also measured the 10% quantile and the minimum us. The comparison
will be made by dividing the value obtained by UM by the one obtained by the
other load-balancing technique in each case.

For each TM we also calculated the mean, 90% quantile and maximum uti-
lization on the network for each of the mechanisms. The difference between the
TeXCP indicators and the other mechanisms is presented.

Comparison in Abilene Our first case study is Abilene [24], a well-known
academic network which consists of 12 nodes and 15 bidirectional links all with
the same capacity. The topology comes as an example in the TOTEM toolbox
[25] and we used 388 demands (spanning a complete week) of dataset X11 from
[26]. The paths we used in this case were constructed by hand, trying to give
sources as much path diversity as possible, but limiting the hop count.

In Fig. 5 we can see the boxplots of the us indicators. We first note that the
weighted mean us is always bigger in UM than in MATE, being generally be-
tween 1-2% and at most 4%. On the other hand, TeXCP obtains a much smaller
mean us, generally between 4-7% and as much as 12% smaller. No conclusive
results can be obtained from the quantile us. In the minimum us, UM achieves
a minimum us that is generally between 6-12% (and can be as big as 20%) big-
ger than MATE. As expected, TeXCP obtains the best results in this aspect,
although its gain over UM is not so large.

Fig. 6 shows the results on link utilization. Both the mean and the quantile
do not present any substantial difference between the three mechanisms (except
for a relatively bigger mean utilization for TeXCP). It is in the maximum uti-
lization that we can see a clearer distinction between them, where as expected
TeXCP always obtains the best results. However, and in concordance with the
us indicators, its gain over UM is smaller than over MATE, the former being
generally 1-2% and the latter between 3-7%.
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Fig. 5. us for UM, MATE and TeXCP in the Abilene network
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Fig. 6. Link utilization for TeXCP, UM and MATE in the Abilene network

Comparison in Géant The second case scenario is Géant [27]. This European
academic network connects 23 nodes using 74 unidirectional links, with capacities
that range from 155 Mbps to 10 Gbps. The topology and TMs (477 in total,
covering a three week period) were obtained from TOTEM’s webpage [5,25]. In
this case paths were constructed by a shortest path algorithm, where we used
the inverse of the capacity as the link’s weight. For each OD pair we computed
two paths. The first is simply the shortest path, we then prune the network of
the links this path uses, and compute the second shortest path.

Results for the us in this case can be seen in Fig. 7. This time, results of both
UM and MATE are more similar, where the mean and quantile us are somewhat
bigger for UM than MATE (although in some cases the difference easily exceeds
5%), and the minimum is relatively bigger for MATE than UM. However, the
results of the comparison between UM and TeXCP are clearly in favor of the
former. The mean ABWP is generally 7-10% bigger, going as high as 13%. With
respect to the minimum ABWP , the results are logically better for TeXCP, but
the difference is not significant.

Fig. 8 shows that the results for the link utilization are also very similar
between UM and MATE. The difference between the two and TeXCP is not very
significant, specially in the mean and quantile. With respect to the maximum
utilization, TeXCP obtains only subtle improvements over the rest. However,
there are some cases where the difference with MATE is more than 10%.
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Fig. 8. Link utilization for TeXCP, UM and MATE in the Géant network

6 Implementation Issues

In this section we will discuss some practical issues of the distributed algorithm.
Its first clear requirement is that border routers have to be able to send arbitrary
portions of traffic through the different paths. Secondly, in order to measure dsi,
interior routers should distinguish between traffic belonging to a given path that
is traversing its links.

These requirements are accomplished for instance by MPLS. Hashing can
be used in order to load-balance traffic with an arbitrary distribution. Packets
belonging to a given si can be identified by its label header. A counter for each of
them should be kept by interior routers, indicating the number of routed bytes
belonging to a given label. Periodically, each router calculates the corresponding
dsi by dividing its counter by the measurement interval, after which they reset
it. In order to avoid noisy measurements, some filtering should be applied. In
our simulations a simple exponential filter was sufficient. The total load ρl is
then calculated as the sum of all dsi that use the link. The ABW of link l can
be easily calculated as the difference between the total capacity and this value.
However, in order to avoid numerical problems, the maximum between the ABW
and a relatively small value (for instance cl/100) should be used.

Another important aspect is the communication between link and source.
Explicit messages from the source to the link are not necessary, since commu-
nication in that sense is simply how much traffic source s is sending through
link l. It is true that what actually reaches the link will always be smaller or
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equal than originally at the source, but this approximation does not affect the
algorithm’s performance.

The most challenging communication is from the link towards the source. We
will use the same approach as TeXCP and use probe packets, which in our case
will contain the path’s ABW and total cost (

∑
l:l∈si θ̂l). Periodically, the source

sends a probe packet, initially indicating as the path’s ABW and cost ∞ and 0.0
respectively. As the probe advances towards the destination node, each interior
router checks the ABW indicated in it. If this value is bigger than that of the
outgoing link, the router overwrites it with the link’s ABW (and “remembers”
it). When the destination node receives the probe packet, he sends it back to
the source through the same path but in the opposite direction. As it is going
back, each interior router checks whether the final ABW indicated on the probe
packet is the one its link had when the packet first passed. If this is the case, it
means that he is the bottleneck of the particular path. He then calculates θsil

accordingly, updates the link’s total cost θ̂l, and adds this value to the total path
cost indicated on the packet. Finally, the source receives the path’s ABW and
total cost, and updates his load distribution.

When applying the distributed algorithm, one rapidly realizes that the value
of γ (the adaptation step) is very important. This value indicates how fast the
probabilities adapt. A very big value makes the algorithm unstable, while a
very small one makes it unresponsive. The problem is that a “good” choice of
γ depends on the network topology, but also on the current load. A value that
works when the network is too congested may make the network unresponsive
when the network is lightly loaded. In this last case one may think that it is not
very urgent to change the traffic distribution to the optimum. Research on this
direction will be the object of future work.

As a final remark we will emphasize the importance of load measurement
periods being smaller (several times smaller) than the inter-probe period. This
way, the source can clearly appreciate the effects of the last load distribution up-
date. If this is not the case, the distributed algorithm will either be too unstable
or unresponsive.

6.1 Packet-Level Simulations

In order to verify the correct operation of the algorithm in a realistic context
(i.e. delayed and unprecise measurements), we implemented it in an ns-2 [28]
simulation script. The first example we will present is again the one of Fig. 1.
This time, all links have a capacity of 1.0 Mbps, except for the “access” ones
which have 2.0 Mbps, and all transmission delays are 20ms. Traffic consists of
elastic flows with an exponentially distributed size with mean 20 kB, arriving
as a Poisson process of the corresponding intensity so as to generate a demand
d = 400 kbps for all sources. The exponential filter’s parameter is set to β =
0.7, and γ is set to 250 × 10−9 (although it may seem like a small value, we
measured everything in bps). Probabilities are updated every 60 seconds and
load measurements are made every 20 seconds. Fig. 9 shows the evolution of p
(the upper path’s portion of source 1 traffic) over time for several initial values.
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Two important aspects of the algorithm are highlighted in this example. First,
the initial condition has virtually no effect on the stationary behavior of p.
Secondly, the distributed algorithm converges to the optimum very fast (less
than 15 iterations). Finally, the simulations indicate that, although they traverse
a more congested link, flows on the lower path are transferred faster than those
in the upper one. This can be explained by the bigger queueing delay in the
upper path. The second router on the lower path has no queueing delay, because
packet size is constant, and their interarrival time is shaped by the previous
router. This means that, by preferring less shared links, the algorithm avoids
the use of links with big queueing delays.
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Fig. 9. Evolution of p over time in the example of Fig. 1

We will now present an example where two UM load-balancing algorithms
interact. In Fig. 10 we can see a simple case scenario. There are two sources and
each of them can use two paths, one of which is shared. Links as well as the traffic
characteristics are the same as in the previous example. The initial probabilities
are set on both sources so that the shared link is not used, maximizing the like-
lihood of oscillations. Probabilities are updated every 50 seconds (γ = 5× 10−9)
and the load measurements are made every 10 seconds. Sources are however not
coordinated and update their probabilities at different moments. Both sources
generate the same demand, approximately 1.1Mbps, which the network cannot
initially support. The optimal distribution is then that both sources send a third
of their traffic through the shared path.

In Fig. 10 we see that both sources at first rapidly change their probability
to start using the middle path. It takes them a little while to realize that an-
other source is using this path, and start augmenting the direct path probability,
but slower than before, since the price difference between them is not big now.
The probabilities finally converge to the optimum after some few minutes. This
whole process takes approximately 15 min. (only 20 iterations). Notice that load
measurements need not be very precise, and that the algorithm supports some
noise.
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Fig. 10. The example topology, and the traffic distribution and links’ load as a function
of time

7 Concluding Remarks

In this work we presented a load-balancing mechanism that takes into account
the needs of both the network operator and the users. We achieved this by
defining an objective function that is not a cost at the link level, but a utility
at the OD pair level. This lead to an optimization formulation very similar in
spirit to Multi-Path TCP [15], where we maximize the sum of a utility function
whose argument is the average ABW each OD pair sees in its path. Although
the resulting optimization problem was not convex, a distributed algorithm was
outlined which finds very tight approximations to the optimum in a relatively
short time.

Along with our proposal (noted as UM), we considered two previously pro-
posed dynamic load-balancing mechanisms: MATE [1] and TeXCP [2]. From our
study, conducted over two real networks along with several real traffic demands,
some conclusions can be drawn. Firstly, performance as perceived by traffic (mea-
sured as the mean ABW ) is always better in UM than both MATE and TeXCP.
More specifically, the improvement over MATE is generally not very big for the
mean value, but can be important, specially in the worst ABW. This difference
comes from the implicit unfairness among OD pairs of the social cost function of
MATE. With respect to TeXCP, UM obtains a significantly better performance,
specially when the link capacities are not similar. Secondly, results on link uti-
lization are very similar for UM and TeXCP. MATE obtains similar results in
the mean and quantile link utilization. However, maximum link utilization can
be significantly bigger in MATE than the other two mechanisms. All in all, UM
is the most balanced mechanism, in the sense that it generally outperforms the
rest (though in some cases the difference may not be large), and when it does
not there is only a small difference.

Much remains to be done. For instance, we have considered only elastic traffic
but the performance obtained by streaming traffic should be studied. Moreover,
the stability of the algorithm should be analyzed, specially considering that
several approximations were used.



A Fair and Dynamic Load-Balancing Mechanism 17

References

1. A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic engi-
neering,” INFOCOM 2001, vol. 3, pp. 1300–1309, 2001.

2. S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: respon-
sive yet stable traffic engineering,” in ACM SIGCOMM ’05, 2005, pp. 253–264.

3. S. Fischer, N. Kammenhuber, and A. Feldmann, “Replex: dynamic traffic engi-
neering based on wardrop routing policies,” in CoNEXT 2006, pp. 1–12.

4. R. Srikant, The Mathematics of Internet Congestion Control. Birkhäuser Boston,
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24. “The Abilene Network,” http://www.internet2.edu/network/.
25. “TOTEM: TOolbox for Traffic Engineering Methods,”

http://totem.info.ucl.ac.be/.
26. Yin Zhang, “Abilene Dataset,” http://www.cs.utexas.edu/∼yzhang/re-

search/AbileneTM/.
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