
Digital Signatures for Modifiable Collections

Serge Abiteboul
INRIA & LRI-Univ. of Paris-Sud

serge.abiteboul@inria.fr

Bogdan Cautis
INRIA & LRI-Univ. of Paris-Sud

bogdan.cautis@inria.fr

Amos Fiat
Tel-Aviv Univ.

fiat@tau.ac.il

Tova Milo
Tel-Aviv Univ.

milo@cs.tau.ac.il

Abstract

The common assumption about digital signatures is that
they disallow any kind of modification on signed data. How-
ever, a more flexible approach is often needed and has been
advocated lately, one in which some restricted modifica-
tions may still occur, without invalidating the data. This
is made possible by offering signatures which arehomo-
morphic with respect to some operation on the message
domain. Starting from the signature(s) of some data in-
stance(s), computed by the data owner, anybody else can
derive the signature corresponding to a new data instance,
if obtained only via some accepted operation from the pre-
vious one(s). More, updated signatures should beindistin-
guishablefrom the ones computed by the data owner and
this updating step should be applicable as many times as
needed. This paper deals with the signing ofinsert-only
collections, in which element insertions are accepted but no
removals should occur. Newly inserted elements do not have
to be signed or known by the initial signer. We propose two
techniques: one which transposes theinsert-onlyproblem
into a delete-onlyone (which is already solved), and an-
other technique based on zero-knowledge proofs. We also
give performance measures and discuss applications.

1 Introduction

It is conventional wisdom that a main drawback of infor-
mation exchange (e.g., on the Web or in peer-to-peer) is the
lack of security. A partial answer to the problem is provided
by secure protocols such asSSL/TLS[9, 7] that in particu-
lar support the encryption and authentication of information
that is transferred. However, in many information exchange
scenarios, amuch finer controlof security is required, where
information may be partially modified on the way.

Consider a patient medical record that moves from one
party to another (e.g., nurses, doctors, clerks). First, it may
be critical for someone who receives the patient record to
understand the provenance of data. Such provenance guar-
antees can indeed be provided by standard digital signa-
tures. However, someone participating in the exchange of
this record may have to modify it, e.g., add some annota-

tion; or she may have to filter out some classified informa-
tion. Still, even if such modifications can fit in the picture, a
source of information may typically want to control how its
data is modified along the way. For instance, a doctor may
not allow other parties to remove her diagnosis. Equally,
one may want exchange parties to be able to verify data
validity without being able to detect the modifications that
may have happened. For instance, some sensitive data con-
cerning a particular medical test may have been removed
from a patient record. The disclosure of the fact that some-
thing was deleted may in itself be an information leak.

Such scenarios combining security and privacy issues
could be easily supported in the presence of some trusted
authority which controls and authenticates everything that
goes on. The obvious challenge is to support them in a
general, unrestricted case, where no such suppositions
are made. For that, we should rely uniquely on digital
signature techniques which, as usual, provide integrity and
authenticity guarantees, but achieve these guarantees in the
presence of some accepted “legal” modifications.

Our contribution We present cryptographic techniques
for signing modifiable collections, enforcing authorship
while enabling us to verify that only valid modifications
may have been performed. Collection signatures will be
homomorphic with respect to two basic operations, element
insertion (i.e., set to superset transformation) and element
removal (i.e., set to subset transformation). In this context,
by authenticity we mean that a signer’s identity is associ-
ated with the collection (but not necessarily to individual
elements), while integrity will refer to the collection as
a whole, guaranteeing only that a current collection is a
superset (respectively a subset) of an initially signed one. It
is rather straightforward to handle delete-only collections,
using a known signature scheme. We present it here not
only to give a complete picture, but also because this
technique becomes useful when dealing with insert-only
collections. Handling insertion is more challenging and
represents the core of this paper. We present a novel,
conceptually simple, yet effective technique for which
communication costs are very low. Our measures prove
that the technique is usable in practice, even for large

1

sets. We also discuss a zero-knowledge based protocol
which can enforce insert-only or delete-only collections in
a restricted sense. We present two potential applications
which can greatly benefit from insert-only collections and
for which no satisfactory solutions were previously known.

Related work The usefulness of homomorphic signatures
schemes has been firstly advocated by Rivest in [19]. In
[14], Micali et al present a signature scheme for graph edges
which is homomorphic w.r.t. transitive closure: given the
signatures for two edges(u, v) and(v, w), one can derive
the signature for the edge(u, w). Chari et al ([6]) intro-
duce a signature schemes for tree nodes, such that given
the signature of a child node one can derive the signature
of its parent. Using this scheme, they obtain an efficient
solution for the problem of signing aggregated routes in hi-
erarchical routing protocols. Johnson et al ([13]) propose
a set signing scheme which is homomorphic with respect
to set difference (given the signature for a set, one can de-
rive the signature of any subset) and union (give the sig-
natures of two sets, one can derive the signature of their
union). Also, they present a scheme which deals with mes-
sage redaction (given a signed string, one can derive a sig-
nature for any redacted version of it). A signature scheme
homomorphic with respect to bitwise AND and XOR was
proposed in [20]. The need for such techniques for secure
exchange of modifiable information was also raised in the
database community. In [16, 15], Miklau et al provide a
formal model for integrity in data exchange and identify the
challenge we address here (see also the references therein).

The paper is organized as follows. The next section
introduces notions used in the rest of the paper. Section
3 briefly discusses delete-only collections and Section 4
presents a first solution for insert-only collections, based on
a reduction to the delete-only case. Section 5 discusses an
alternative solution based on zero-knowledge proofs. We
consider applications in Section 6 and Section 7 concludes.

2 Preliminaries

This section introduces the notions used in the rest of this
paper, and it may be skipped at a first reading. To ease
the reading, we present simplified versions of these rather
standard definitions and refer the interested reader to [11]
for more rigorous ones.

Negligible functions We say that a functionf(l) is negli-
gible in l if it decreases to zero faster than any polynomial
in 1/l, for l sufficiently large.

Efficient algorithms An efficient (or feasible)algorithm is
one that is polynomially bounded in the size of its input.

One-way functions A function f is one-way if any
efficient algorithm succeeds in invertingf with negligible
probability in the length of the input. A one-way function
is (t, ε)-secureif, for any given imagey, an attacker limited

to running in time t, succeeds in findingf−1(y) with
probability at mostε.

Public-key signature schemesA public-key signature
scheme is a pair of efficient algorithms(S, V), with
S : D × SK → S being a (probabilistic) one-way signing
algorithm andV : D × S × PK → {true, false} being a
signature verification algorithm.D represents the domain
of signable values (not necessarily distinct fromS), by
SK we denote the domain of secret keys (know only by
the signer), whilePK represents their matching public
keys1 (which can be know by any verifier). We will note
Ssk(..) (resp. Vpk(..)) for S(.., sk) (resp. V (.., pk)). As
a soundness requirement, for a matching pair of public-
private keys(pk, sk) and anys = Ssk(d), Vpk(d, s) should
always output{true}. We note that since the signing
algorithm may be probabilistic (making random choices
during its execution), multiple signatures may be valid for
one particular domain value.

Forgeries Given a pair(d, s) ∈ D × S, with s obtained
without knowledge of the secret key (in particular,s is not
the result of computingSsk(d)), we say that the pair(d, s)
represents aforgery if Vpk(d, s) outputs{true}.
Cryptographic/collision-free hashing In what is known
as the hash-and-sign paradigm, before the signing step, a
cryptographic hash function is used to transpose elements
from a general message domain (say{0, 1}∗) into some
specific domain required by the signing step. A family of
collision-free hash functionsHk : {0, 1}∗ → D is an easy
to sample (keyed) family of efficient functions, such that
it is unfeasible (for keysk sufficiently large) to find two
distinct pre-images mapping to the same output.

Random oraclesare a useful abstraction for cryptographic
hash functions, often used when analyzing schemes where
strong randomness assumptions are required (more on
this paradigm in [3]). A random oracleh (or an ideal
hash function) outputs, for a given new queryx, a value
h(x) chosen uniformly at random from the oracle’s output
domain, independent of the output for any other previous
input x′ 6= x. If a queryx has been previously asked, the
oracle responds with the same value it gave before. Unless
stated otherwise, hash functions will be considered ideal.

Exact security We consider theexact securityof a signing
scheme by quantifying the probability of finding a forgery
with limited time and chosen-message queries [4]. We say
that a public-key signature scheme is(t, qsig, qhash, ε)-
secureif an adversary, provided the public key, running in
time t, asking for at mostqsig chosen message-signature
pairs and invoking at mostqhash times an ideal hashing
function, succeeds in finding a forgery (i.e., a valid signa-

1We ignore here the key generation part of a signing scheme and as-
sume that the domain of keys is sufficiently large.

2

ture for whatever new message) with probability at mostε.
This represents the notion ofexistential forgery under an
adaptive chosen message attack.

Homomorphic signaturesWe say that a signature scheme
(S, V) defined as above is homomorphic with respect to
some binary operation̄ : D2 → D, if there exists an effi-
cient signature update algorithmUP : D2×S2×PK → S
(or UP : D2 × S × PK → S) such that

UPpk(d1, s1, d2, [s2]) = Ssk(¯(d1, d2))

for any pair of matching public-private keys(pk, sk) and
pairs (di, si) such thatVpk(di, si) outputs{true}. An
important requirement is that signatures obtained via the
(secret) signing algorithm and the ones obtained via the
(public) updating algorithm should be indistinguishable (as
defined below). For such signature schemes, we need to
adapt the above notion of security with respect to forgery,
since new signatures can be efficiently computed by
anyone knowing the public key, via the signature updating
procedure. A forgery will now refer to a message which is
not obtainable viā from already signed messages.

Indistinguishability We consider the privacy of signature
updates by relating the learning advantage of an adversary
to the notion of indistinguishability of distributions. Intu-
itively, two probability distributionsD1, D2 over the same
probability spaceS ∈ {0, 1}l are computationally indis-
tinguishableif no efficient algorithm can tell them apart.
Formally, for any family of efficient boolean algorithmsAl,

ε(l) = |Pr[Al(x) = 1|x ∼ D1]− Pr[Al(x) = 1|x ∼ D2]|
is negligible in l, where byx ∼ Di we denote thatx is
distributed according toDi. We say that a homomorphic
signature scheme achievesperfect (resp. computational)
privacy if, for any matching pair of keys(pk, sk), the dis-
tributions induced bySsk(..) andUPpk(..) are equivalent
(resp. computationally indistinguishable).

Pseudo-randomnessWe say that a distributionD on
{0, 1}n is pseudo-randomif it is computationally indistin-
guishable from the uniform distributionUn. An efficient
functiong : {0, 1}n → {0, 1}m, m > n, is called apseudo-
random generatorif g(Un) is pseudo-random.

3 Delete-only collections

In this section, we recall standard results for delete-only col-
lections. Consider a delete-only collectionU (we will use
the termscollectionandset interchangeably in the rest of
the paper), with initial value{x1, . . . , xn}, and let(S, V)
be some public-key signature scheme. A naive solution is
to sign every element in the original collection and use the
set of signatures as the collection signature. Anyone who
wants to remove elements needs just to remove their corre-
sponding signatures. Verification amounts to checking that
all the current elements in the set have matching signatures.

A more efficient signature scheme can be achieved using
the set-homomorphic signing scheme of [13]. Starting from
an RSA-like scheme, we obtain a public-key set-signing
scheme(S, V) that is homomorphic with respect to both
setdifferenceandunion. More specifically, it provides two
(public) updating functions̃UP andÛP , such that:

(1) ∀U and U ′ ⊆ U, gUP pk(U, Ssk(U), U ′) = Ssk(U ′)

(2) ∀U1, U2, dUP pk(U1, Ssk(U1), U2, Ssk(U2)) = Ssk(U1∪U2)

Now consider that a setU = {a1, ..., an} and the signature
s = Ssk(U) (for some secret keysk) are given. Someone
who wants to remove elements, for instance updateU to the
subsetU ′, will be able to signU ′ by using (1). Note that, by
using (2), we can also obtain signatures of unions of signed
sets. The mathematical details may be found in [13].

In this paper, we will call the above signature scheme
Delete Homomorphic(DH in short). We say that an adver-
sary produces aninsert forgeryif, after obtaining signatures
for some setsU1, . . . , Un, signed by the same secret key, he
can produce a valid signature for some setU *

⋃
i Ui. We

have the following result:
Theorem 1 [13] Assuming that RSA is a(t, εr)-secure one-
way function, the DH signature scheme is(t′, qs, qh, ε)-
secure against insert forgery, whereε ≈ qhεr lg n +
q2
h lg n/n, t ≈ t′, qs ≤ qh andn is an RSA modulus.

The signatures obtained by the homomorphic property
are history independent and this scheme clearly achieves
perfect privacy, since an updated signature is exactly the
one that the signing procedure would yield. Also, the
signature size does not depend on the number of elements
in the collection (see also Section 4.1 on experiments).

Observation Although it may seem that equation (2) af-
fects our aim for delete-only collections (since one can also
perform insertions if they refer to elements from another
signed set), homomorphism w.r.t. union can have little im-
pact if distinct (fresh) public-private key pairs are used each
time a delete-only collection is signed.

4 Insert-only collections

This section introduces a novel technique for signing
insert-only collections. We first give the intuition on how
the technique can be built using the DH scheme, by relying
on a “write-only ” memory. We show how to enforce
naively a “write-only” memory. Then, we improve the
technique by using an encoding that is provably optimal.
We then detail the signing of insert-only collections.

Naive write-only Consider a memoryM of N bits, all ini-
tially set to undefined (neither 0 nor 1). To makeM write-
only, we represent it as an arrayAM of 2N bits as follows.
An undefined bit position is represented by00; the value1
by 01 and the value0 is encoded by10. To enforce a write-
only behavior of this memory, we sign the0s in AM using

3

the DH scheme. Then, writing inM amounts to flipping bits
from 0 to 1 (transforming memory positions ofAM from
undefined to encodings of0 or 1). This operation, seen as
a removal of0s, can be supported and made irreversible by
the DH scheme; once one writes a1 in place of a0 it cannot
be changed back (unless DH is broken), whereas0 to 1 is
allowed. Note that this bit-flipping technique presents some
strong analogy with “write-once” disk technology. These
are disks where a0 may be turned into a1 (by piercing a
hole) and the operation is irreversible.

Observe also that this provides a means to enforce
insert-only collections. Such a collection would have an
associated memory (bit vector) in which memory blocks
record elements of some fixed length (say from{0, 1}k),
such that once an element is written into a block it should
be unfeasible to write it off. We will come back to this in
more detail further on.

Optimal write-only Observe that for now a memory posi-
tion used for recording ak-bit value needs2k bits. This
encoding is hardly optimal, even though it satisfies the cru-
cial requirement(†) that passing from one encoded value
to a different one requires introducing at least one0 (hence
breaking the DH scheme). We can do significantly better by
representing a number from1 to 2k by v bits wherev is the
minimal integer s.t.

(
v

bv/2c
) ≥ 2k.

An element encoding (onv bits) is given bybv/2c bits
set on1 and the remaining bits set on0. For a given number
x ∈ {1, . . . , 2k}, its encoding is the one pointing to thex’th
combination (in lexicographic order) ofbv/2c out of v. So
(†) is preserved since (i) no two values have the same en-
coding; and (ii) it is not possible to move from one encoding
to another because at least one0 would be (re)introduced.
We call the above thehalf-half encoding. Given a valuex,
its mapping into av-bit representation can be constructed
in linear time. Via Sperner’s theorem [5], we can prove the
following2:

Proposition 2 Under the(†) requirement, thehalf-half en-
codingis optimaland yieldsk + O(lg k) long encodings.

Overview of the signing techniqueWe can now describe
the signing technique for insert-only collections. For now,
we assume that the size of the insert-only collection is
bounded by some limitl (we will see further how we can ef-
fectively overcome this restriction). Consider given a fam-
ily of hash functionsHk mapping elements into{0, 1}k and
a functionh chosen uniformly at random from this family.
Let vk be the length of the half-half encoding fork-bit val-
ues. Consider starting with an empty insert-only collection
and an associated, empty (all bits are set to0), “write-only”
memory of total bit lengthl · vk. This array is partitioned
into l contiguous blocks of lengthvk. As above, to enforce
the “write-only” behavior of the collection, the set of0s is

2For space reasons all formal proofs are omitted and can be found in[1].

Input : U = {e1, . . . , el′}, parameters (l, k, vk), l′ ≤ l

1. construct the bit vector of vk · l bits, initialized to 0

2. choose at random a key pair (pk, sk) for the DH scheme

3. choose at random the hash function {h}
4. for each ei in turn

4.1. choose at random an available block bi between 1 and n

4.2. “write” the hash value h(ei) in the selected block

5. let P0 be the set of remaining 0 positions in the bit vector

6. sign with the DH scheme P0 using sk, obtain σ

7. output as a public key for the IH scheme the tuple

(l, k, vk, h, pk)

Input : U = {e1, . . . , el′}, (l, k, vk, h, pk),

a DH signature σ and U ′ = {e′1, . . . , e′
l′′}, with l′ + l′′ ≤ l

1. reconstruct the bit vector and obtain P0

2. verify σ for P0 using the DH public key pk

3. for each e′j in turn

3.1. choose at random an available block bj between 1 and n

3.2. “write” the hash value h(e′j) in the selected block

4. let P ′0 ⊂ P0 be the set of remaining 0 positions

5. compute the DH signature for P ′0 by updating σ to σ′

Figure 1. Initial signing and updating

signed as a delete-only collection. Then, for a new element
e to be inserted in the collection, we choose uniformly at
random an available bit block and write into it the hash
valueh(e) (and update the memory signature accordingly).

Note that, by symmetry, we obtain signatures that are ho-
momorphic for both element insertion and set intersection.

The signing and updating procedures are summarized
in Figure 1. By analogy with the DH scheme, we call
the above schemeInsert Homomorphic(IH). The main
compution cost is the computation of signatures, which
is linear in the number of elements. The communication
overhead is just a fixed part consisting ofσ, h and the
memory parameters. As we will see this scheme turns out
to be usable in practice even for large sets.

Security analysisThe security of this scheme is considered
with respect to a different kind of forgery, namelydelete
forgery. By symmetry with insert forgery, we say that an
adversary finds a delete forgery when, given signatures for
setsU1, . . . , Un, for the same signing key, he computes a
valid signature for a setU s.t.

⋂
i Ui * U .

In our analysis, we use the following game played be-
tween aSigner (S) and anAttacker (A). For an arbitrary
maximal set sizel and security levelK:

1. S initializes the game by:

• generating a DH public-private key pair(pk, sk);

4

• choosing a random (secret) hash functionh from
a sufficiently large family of hash functions;

• setting the bit array parameters(k, vk) based on
n andK;

• publishing the array parameters andpk;
2. A asks for the signature of a first setU1. S responds by

sending the signature ofU1 and by disclosingh (prac-
tically, this can be achieved by viewingh as part of the
signing public key);

3. A can now either ask for signatures of other setsUi or
evaluateh(uj), for any sets and elements of his choice;

4. A wins if he can output a signature for a setUf of size
at mostn, such that

⋂
iUi * Uf .

This adversary game is almost identical to the standard one
of producing existential forgery under adaptive chosen mes-
sage attacks. The notable difference is that the hash function
h are hidden until a first signature is published. It may seem
that, by imposing this, we affect the chosen-message attack
philosophy (we basically avoid the birthday paradox and
prevent the adversary from taking advantage ofany hash
collisions). However, this is a perfectly reasonable assump-
tion here since the space for forgery will firstly be limited by
the attacker’s initial signature query. Obviously, this is not
the case in other (classic or homomorphic) signing schemes
where the signing queries that are being asked do not limit
in any way the subsequent forging options of an attacker.
There, it makes no difference if the attacker has already ac-
cess to the hash oracle (before asking for chosen message
signatures). It would not affect in any way their proven
security guarantees or the attacker chances in producing a
forgery. We also stress that the this condition affects our
analysis only in a quantitative way. When this is not the
case, it just becomes slightly easier to find a forgery, result-
ing in an increased (but still feasible) signing complexity.

The IH scheme is(t, qs, qh, ε)-secure for deletion
forgery if an adversary running in timet, asking for at most
qsig chosen set signatures and invoking at mostqh times an
ideal hash functions, succeeds in the game above.

Theorem 3 Assuming that RSA is a(t, εr)-secure one-way
function, the IH signature scheme of parameters(l, k, vk)
is (t′, qs, qh, ε)-secure against delete forgery, wheret ≈ t′,
ε ≈ β · εr · lg n+β2 · lg n/n+ l ·qh/2k, β = l ·vk, qs ≤ qh

andn is an RSA modulus.

Privacy analysisWe next consider the privacy guarantees
of updated signatures in this scheme. Indistinguishability
is not immediate anymore, since the signing and updat-
ing algorithms are now probabilistic (in the choice of ar-
ray blocks). Two distinct ways (by sequences of insertions)
of computing a set signature will very likely yield differ-
ent corresponding bit vectors and thus signatures. We need
to make sure that the various signatures cannot be distin-
guished by an adversary. We have the following result.

Proposition 4 Assuming that element representations and
IDs are pseudo-randomly generated, the IH scheme
achieves computational privacy.
Overcoming the size limitationObserve that for now a size
limit l is fixed in advance, and the bit vector used in the sign-
ing procedure is dimensioned accordingly. What happens if
a modifier wants to add more thanl elements? Since a pub-
lic key can be part of a collection, just as any other element,
he can take the following steps:

• generate a new public-private key pair(pk′, sk′) for
the DH scheme.

• introducepk′ in the collection and its current vector.

• create a new bit vector initially signed by the newly
obtained secret key (sk′) (matching the public one in-
troduced in the collection and its existing bit vector).

• gather the new vector and its signature to the existing
one(s) and their signature(s).

• insert whatever element needs to be inserted in the col-
lection using the new bit vector.

This means that by a priori choosing the parameters
(l, k, vk) we are now merely setting a basic bit vector unit,
which does not restrict the overall size of the insert-only col-
lection (which can rely on as many such units as needed).
We call this extensionIHC (IH with chaining). A minor
drawback is that we may now disclose a partial order on the
insertions. We can state the following corollary.

Corollary 5 Under the same assumptions of Theorem1,
if the IH scheme of parameters(l, k, vk) is (t, qs, qh, ε)-
secure against delete forgery, then the IHC scheme is
(t′, qs, qh, ε′)-secure, forε ≈ ε′ andt ≈ t′.

4.1 Experimental evaluation
We analyze now the costs of signing delete-only and

insert-only collections. We used a straightforward C im-
plementation for the two schemes (DH and IH), using the
GMP library [10], and tested them on a low-end machine
(2.4GHz, 1Gb-RAM, Pentium IV). For DH signatures we
used 1024-bit RSA moduli and200-bit exponents. We first
consider the DH scheme. We looked at the overhead of initi-
ating a signature for a given set, the overhead of verification
(depending on how many elements are in the set) and the
overhead of removing some existing elements (see Table 1).
These costs do not depend on the number of elements in the
collection. We used a standard cryptographic hash function
that takes about 1µsec per call.

Turning now to the IH scheme, we need first to set the
minimal array parametervk. In what follows we want to
achieve a forgery probability of as low as2−60 for qh ≈ 260

(usual recommended values). For instance, for hash val-
ues ofk = 128 bits, we obtain thatvk = 132. The num-
ber of array bits per potential collection element (vk) gives

5

Initialization time per element 120 µsecs

Verification time per (existing) element 2.4 msecs

Updating time per removed element 2.4 msecs

Table 1. DH scheme: computation costs

the computation overhead per element. From Table 1, we
can derive the overhead of initiating a signature, the one of
verification (depending on how many elements can still be
inserted), and the overhead of adding new elements to the
signed collection (depending on the number of elements to
be inserted). See the results of Table 2.

Initialization time per (potential) element 15 msecs

Verification time per (potential) element 0.31 secs

Updating time per inserted element 0.31 secs

Table 2. IH scheme: computation costs

Let us consider now the size of the signature, expressed
also in bits per potential collection element. Since the DH
scheme signature size is fixed, regardless of the collection
size, this relative cost decreases with the number of ele-
ments. We stress that the size of the bit array does not affect
in any way communication.

Initialization time per (potential) element 1 msec

Verification time per (potential) element 19 msecs

Updating time per inserted element 19 msecs

Table 3. Parallelized IH: computation costs

Further optimization Observe that although much higher
than for the DH scheme, time remains reasonable and in
particular usable in practice. Furthermore, the IH scheme
can be easily parallelized. For instance, we can sign a set of
maximal size16384 by using16 bit vectors, each of them
containing at most1024 elements (see Table 3). Of course,
this results in a larger overall signature (one per bit vectior),
leading to a computation/communication trade-off.

5 A zero-knowledge protocol

In the case of large collections, the IH scheme may re-
quire an amount of time considered too important for some
applications. That is why in the following we discuss a
zero-knowledge based protocol that may be computation-
ally lighter, but presents other drawbacks.

• First, it can be employed only in 1-step updating set-
ting, involving 3-parties: we have aSignerwho signs
an initial collection, aModifier who adds some ele-
ments and aVerifier who verifies that only insertions
occurred, without being able to distinguish theMod-
ifier’s added elements from theSigner’s initial ones.

• Second, the basic protocol isinteractiveand we devi-
ate significantly from the notion of signature scheme
as used until now. The signing and verifying steps will
be interactive processes.

• Third, communication becomes the main bottleneck.

• And fourth, in its initial form, the protocol discloses
the number of elements introduced by theModifier.

The protocol in itself may not be entirely novel, similar ap-
proaches have been used before in the zero-knowledge area
(see for example [18]), but the problem it solves and setting
are new. We start by a brief introduction on2-party interac-
tive and zero-knowledge proofs. For space reasons we omit
formal definitions and refer the interested reader to [11].

Let us assume two machines that can interact and have
a common input: a prover (P) and a verifier (V) (which is
polytime bounded). The interacting machines run on their
common input and at the end of the run the verifier decides
to acceptor reject it. We consider that the prover’s goal is
to convince the verifier into accepting the input. The pair
(P,V) is called aninteractive proof systemfor a language
L if there is a non-negligible gap between the acceptance
probability of(P, V) (considered for the proverP) on valid
inputs (x ∈ L) and the one of any pair(P ∗, V)(for any
proverP ∗) on invalid inputs (x /∈ L).

Loosely speaking, a zero-knowledge proof of a statement
is an interactive proof that doesn’t disclose anything besides
the validity of the statement. We can see that this fits nicely
our aim here, since we want theModifier to prove to the
Verifier that he produced a superset of what theSignergave
him, without actually disclosing theSigner’s elements. In-
tuitively, an interactive proof system(P, V) is (computa-
tional) zero-knowledgeif for any verifier V ∗, there exists
an efficient simulator (Sim∗) that, without having access to
P , is able to simulateV ∗’s interaction withP . This means
that V ∗ doesn’t learn anything besides the validity of the
prover’s claim, since the same output could have been ob-
tained without interacting withP . For that, the two ensem-
bles below must be computationally indistinguishable.

• {(P, V ∗)(x)}x∈L (the output ofV ∗ after interacting
with P on inputx).

• {Sim∗(x)}x∈L (the output ofSim∗ on inputx).

An auxiliary concept on which the protocol relies is
the notion ofcommitment[11]. A (multi-bit) commitment
scheme can be seen as a two-phase protocol between a
Senderand aReceiver. In the first phase (commit), start-
ing from a bit stringx and a public keypk, the Sender picks
a random valuerx ∈ {0, 1}l (called theproof or witness),
computes a commitment tox (cx = commitpk(rx, x)) and
sends it to the Receiver. In the second phase (opening), the
Receiver demands the opening of the commitment, receiv-
ing the proofrx from which he can (efficiently) learnx. We

6

will say that the commitment scheme issecureif it satisfies
the two following requirements:

• Computationally binding: the probability that a poly-
time bounded Sender finds two distinct pairs(x, rx),
(y, ry) s.t. cx = cy is negligible inl.

• Unconditionally hiding: for anyx, y, the distributions
of {cx}r∈{0,1}l and{cy}r∈{0,1}l are statistically indis-
tinguishable.

We first argue that enforcing insert-only collections is very
similar to the following proof game (which we callsubset
selection) between the second party (Modifier) and the third
one (Verifier), on a common input representing a setU : the
Modifier picks a set of valuesU ′, claims thatU ′ ⊆ U and
proves in zero-knowledge the claim.

With the (for now) artificial assumption that theModifier
choosesU ′ and then never changes it, the zero-knowledge
proof of the above could be constructed as follows:

• Modifier: for eachx ∈ U ′, compute some fresh com-
mitmentscx andccx

. Send (in any permuted order) the
set of commitments{ccx

}.
• Modifier: complete the set of commitmentscx with

commitments for the elements inU \ U ′. Let the en-
tire set of element commitments be{cy}. Send in any
permuted order{cy}, claiming they correspond to each
y ∈ U .

• Verifier: make a random bit choice (0/1). If1, ask for
the opening of{cy}. If 0, ask for the opening of the
{ccx} commitments.

• Modifier: sends the requested openings.

• Verifier: verifies the opened commitments and accepts
if they are valid. More precisely, if he opens the{cy}
commitments, he verifies they correspond toU ’s ele-
ments. Otherwise, he verifies that the{ccx} commit-
ments correspond to a subset ofcy.

If the Modifier’s claim is true, then theVerifier will always
accept. However, if the claim is false, the overall probability
of erroneous acceptance is less than1/2 plus the probability
of finding some two openings for the same commitment. By
sequentially repeating the protocol we can make the overall
probability arbitrarily low.

Proposition 6 Assuming that the commitment scheme is se-
cure, the above protocol is a zero-knowledge interactive
proof system for subset selection.

Passing now to the 3-party setting, we need some minor
modifications. TheSignerwill be the one choosing a setU ′

(the collection she sends to theModifier), without know-
ing anything aboutU (besides supposing it will be a super-
set of U’). Basically, he will play the role of a trusted third
party, since we can reasonably assume him to be honest (he

doesn’t take part in theModifier’s cheating attempt, soU ′ is
fixed, and he doesn’t disclose her elements to theVerifier).

We can avoid interactionsSigner↔Verifier or Modifier
→Signerby assuming that theSigner is the one comput-
ing the{ccx

} and{cx} commitments. He signs the ones
that he has to send to theVerifier (with any standard signing
scheme) and sends them through theModifier. We’ll need
two-way interaction only between theModifier and theVer-
ifier. The protocol’s analysis is straightforward.

Unfortunately, this technique reveals the exact size of the
original set. If hiding this size is important, one can use
a “padding” strategy, even though the modified technique
would still leak some bound on the size of the original set.

Initialization per existing element (Signer) 0.04 secs

Updating per existing element (Modifier) 0.04 secs

Updating per inserted element (Modifier) 0.02 secs

Verification per element (Verifier) 0.02 secs

Communication costs per existing element105 bits

Communication costs per inserted element7 · 104 bits

Table 4. Cost estimates

For now the protocol is interactive. First, we can collapse
the sequential repetitions into a single, parallelizing one.
It is well known that by doing this we do not necessarily
obtain a zero-knowledge proof system. However, since here
it is mainly important not to leak anything about the history
of changes (what was added), we believe that our approach
maintains privacy even in the parallelized version. Second,
we can obtain in a rather standard way a non interactive
protocol by using the Fiat-Shamir technique [8]. Finally
note that an analogous zero-knowledge protocol can be
employed for delete-only sets.

Practical instantiations We estimated the costs of an
instantiation of the above protocol, when using a com-
mitment scheme that is both unconditionally hiding and
practical (producesO(l) long commitments), namely the
one of Halevi-Micali [12]. Its commit phase involves
two collision-free hashes and one universal hash. The
verification phase is similar. If the collision-free hash func-
tion is a standard cryptographic one, we can consider the
commit/opening steps as fairly inexpensive (say0.1ms).
Without presenting all the details of the cost model, in order
to obtain the same security guarantees as before, we get the
cost estimates of Table 4. We ignored the time overhead
induced by communication. Note that computation costs
are lower than the ones of the IH scheme but higher than the
ones of its parallelized version. However, communication
complexity, even if linear in the security parameters and set
size, becomes the dominant factor.

A radical instantiation We conclude with a remark that it
may be possible to lower these communication costs if we

7

view collision-free hashing as a satisfactory commitment
scheme. More precisely, we can commit to the ensemble
{xi} by computinghr(xi) = h(xi||r), wherer would be
the unique witness for each and everyxi. This would lower
significantly communication costs. However, while such a
commit scheme would be both computationally binding and
hiding under the random oracle assumption, the protocol
would no longer meet the definition of zero-knowledge and
its not clear how its privacy guarantees could be stated.

6 Some applications

Application1: Access Control Access control in general,
and update control in particular, have been studied ex-
tensively for both relational and semi-structured data, yet
mostly in highly centralized settings. The presented work
has been motivated by the design of completely decentral-
ized access control (with no strings attached). In such an
approach, a document “travels” (e.g., being published or
exchanged), carrying access rights specifications and all the
needed means to enforce these specifications. This problem
raises important new issues, especially for semi-structured
data and XML [21], which are considered de facto stan-
dards for data exchange. Considering updates, and ignoring
the somewhat orthogonal issue of read access, it becomes
immediately clear that only via digital signatures one could
constrain the ways in which published data is modified.
The techniques presented here could form an essential
component of a full-fledged access control mechanism in
a non-centralized setting. For instance, they complement
read access techniques such as the ones of [17], which are
typically based on the encryption of subtrees.

Application2: Secure Data Integration Data integration
is one of the most studied topics in data management re-
cently. Some security aspects of data integration have been
considered in this context, such as secure data mining or
OLAP [2]. In secure data integration it is commonly re-
quired that an integrating site provides integrity guarantees
about the unified data coming from various sources, without
disclosing the actual provenance of data. For instance (see
Fig. 2), a warehouse may need to prove that its data is a
subset (or superset) of the overall one coming from some
sources, without disclosing any association between data
items and their corresponding sources. Previous solutions to
this problem were built by assuming collaborating sources
and complex randomized protocols among them. By using
digital signatures for insert-only and delete-only collections
the above integration scenario can be fully supported, with-
out imposing any additional requirement on the sources.

Details may be found in [1].

7 Conclusion
We considered in this paper signing techniques for modi-
fiable collections, in particular delete-only and insert-only

Source 1

Warehouse

D
1

D
I

D
1

 D
2

 D
3

OR

D
3

D
2

D
I

D
1

 D
2

 D
3

Source 1

Source 1

D
I

Figure 2. Secure data integration

collections. For the latter, we proposed a novel and unre-
stricted approach which can be efficiently employed even
for large collections. The security and privacy guaran-
tees, as well as the optimality of the element encoding in-
volved, were formally proven. We also discussed a zero-
knowledge based protocol which works in a restricted set-
ting but presents some advantages regarding computation
costs. We believe that many data management problems
can greatly benefit from the techniques discussed here and
we are currently exploring potential applications of digital
signatures for modifiable collections.

References

[1] S. Abiteboul, B. Cautis, A. Fiat, and T. Milo. Secure ex-
change of modifiable collections. INRIA Technical Report.
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/
GemoReport-452.ps .

[2] R. Agrawal. Data privacy. InLNCS, volume 3202, 2004.

[3] M. Bellare and P. Rogaway. Random oracles are practical: a para-
digm for designing efficient protocols. InCCS, 1993.

[4] M. Bellare and P. Rogaway. The exact security of digital signatures
— how to sign with RSA and Rabin. InLNCS, 1996.

[5] B. Bollobás. Combinatorics: Set systems, hypergraphs, families of
vectors, and combinatorial probability, 1986.

[6] S. Chari, T. Rabin, and R. Rivest. An efficient signature scheme for
route aggregation. Technical report, 2002.

[7] T. Dierks and C. Allen. The TLS protocol. RFC 2246. 1999.

[8] U. Fiege, A. Fiat, and A. Shamir. Zero knowledge proofs of identity.
In STOC, 1987.

[9] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 protocol. 1996.

[10] The GNU MP Bignum library.http://www.swox.com/gmp/ .

[11] O. Goldreich.Foundations of Cryptography. Cambridge University
Press, 2000.

[12] S. Halevi and S. Micali. Practical and provably-secure commitment
schemes from collision-free hashing.LNCS, 1996.

[13] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic
signature schemes. InCT-RSA, 2002.

[14] S. Micali and R. Rivest. Transitive signature schemes. InCT-RSA,
2002.

[15] G. Miklau. Research problems in secure data exchange. U. of Wash-
ington, 2004.

[16] G. Miklau and D. Suciu. Modeling integrity in data exchange. In
SDM, 2004.

[17] Gerome Miklau and Dan Suciu. Controlling access to published data
using cryptography. InVLDB, 2003.

[18] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs
for generalized queries on a committed database. InICALP, 2004.

[19] R. Rivest. Two signature schemes., 2000.

[20] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing
for NC 1. InFOCS, 1999.

[21] Extensible Markup Language 1.0 (2nd Edition).
http://www.w3.org/TR/REC-xml .

8

