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Abstract— In this paper, we present a simple and accurate
analytical model for performance evaluation of WiMAX net-
works with multiple traffic profiles. This very promising access
technology has been designed to support numerous kinds of
applications having different traffic characteristics. One of the
QoS parameters considered by the standard for traffic classes
is the maximum sustained traffic rate (MSTR), which is an
upper bound for user throughput. Taking into account MSTR
implies the implementation of a throttling scheduling policy that
regulates the user peak rate. Our models take into account
this policy and provides closed-form expressions giving all the
required performance parameters for each traffic profile at a
click speed. The model is compared with extensive simulations
that show its accuracy and robustness.

I. I NTRODUCTION

WiMAX (Worldwide Interoperability for Microwave Ac-
cess) is a broadband wireless access technology which is based
on IEEE standard 802.16. The first operative version of IEEE
802.16 is 802.16-2004 (fixed/nomadic WiMAX) [1]. It was
followed by a ratification of amendment IEEE 802.16e (mobile
WiMAX) in 2005 [2]. A new standard, 802.16m, is currently
under definition for providing even higher efficiency. On the
other hand, the consortium WiMAX Forum was founded
to specify profiles (technology options are chosen among
those proposed by the IEEE standard), define an end-to-end
architecture (IEEE does not go beyond physical and MAC
layer), and certificate products (through inter-operability tests).

In order to accommodate various traffic types, different
service categories have been introduced for WiMAX networks.
For example, best effort (BE) is a service category that could
handle web traffic. Each service category is characterized by
its quality of service (QoS) parameters. One of the parameters
associated with BE service is the maximum sustained traffic
rate (MSTR). As defined in [2] (section 11.13.6), this is not
the guaranteed rate but an upper bound. The procedure to
implement this rate has been left open in the standard.

Taking into account this limited achievable user data rate is
an important challenge while dimensioning a wireless network.
Existing literature does not speak much about this subject.A
detailed account of simulation based BE traffic performance
evaluation in WiMAX networks can be found in [3], [4] and
[5]. However, MSTR has not been considered in these papers.
Mean information rate (MIR), a notion similar to MSTR, has
been introduced in [6]. Authors have studied the performance
of multi-profile internet traffic in presence of different MIR
values for a WiMAX cell. They have used packet level

simulations to evaluate the cell throughput performance for
different number of users while considering possibility of
multiple modulation schemes.

As far as analytical modeling is concerned, multi-class
processor-sharing queues based models have been proposed
in [7]–[9]. In these models, variability of radio channel con-
ditions, an important property of wireless medium, has been
taken into account. On the other hand, the idea of MSTR has
not been touched in these articles. Earlier we have presented
analytical models for mono-traffic [10], [11] and multi-traffic
[12] BE without considering the parameter MSTR. Three
generic scheduling policies: slot sharing fairness, throughput
fairness and opportunistic scheduling were taken into account.
In contrast to our existing work, models proposed in this
paper are based on a fourth scheduling scheme, the throttling
policy, in which maximum achievable user data rate is limited
to MSTR. This in turn affects the resource utilization. The
models proposed in this paper will offer the flexibility to
network operators to dimension the WiMAX networks.

The organization of this paper is as follows. Modeling
assumptions are presented in section II. The analytical models
for mono/multi profile traffics are given in sections III and
IV. Validation of models is presented in section V. At the
end, section VI gives a conclusion of this work.

II. M ODELING ASSUMPTIONS

In this section, we discuss the assumptions that have been
considered in development of the model. Wherever required,
related details of WiMAX system are also specified. Various
notations are also introduced in this section.

A WiMAX time division duplex (TDD) frame comprises of
slots that are the smallest unit of resource and which occupies
space both in time and frequency domain. A part of the frame
is used for overhead (e.g., DLMAP and UL MAP) and the
rest for user data. The durationTF of this TDD frame is equal
to 5 ms [2].

System assumptions

1) We consider a single WiMAX cell and focus on the
downlink part which is a critical portion of asymmetric
data traffic.

2) We assume that amount of overhead in the TDD frame
is fixed. As a consequence, the total number of slots
available for data transmission in the downlink part is
constant and will be denoted byNS .
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3) The number of simultaneous mobiles that can be mul-
tiplexed in one TDD frame is not limited. As a conse-
quence, any connection demand will be accepted and no
blocking can occur.

One of the important features of IEEE 802.16e is link
adaptation: different MCS allows a dynamic adaptation of the
transmission to the radio conditions. As the number of data
subcarriers per slot is the same for all permutation schemes,
the number of bits carried by a slot for a given MCS is
constant. The selection of appropriate MCS is carried out
according to the value of signal to interference plus noise ratio
(SINR). In case of outage, i.e., if the SINR is too low, no data
can be transmitted without error. We denote the radio channel
states as:MCSk, 1 ≤ k ≤ K, whereK is the number of
MCS. By extension,MCS0 represents the outage state. The
number of bits transmitted per slot by a mobile station (MS)
usingMCSk is denotedmk.

Channel assumption
4) The coding scheme used by a given mobile can change

very often because of the high variability of the ra-
dio link quality. We assume that each mobile sends a
feedback channel estimation on a frame by frame basis,
and thus, the base station can change its coding scheme
every frame. We thus associate a probabilitypk with
each coding schemeMCSk, and assume that, at each
time-stepTF , any mobile has a probabilitypk to use
MCSk.

Traffic assumptions
5) We assume that there is a fixed numberN of mobiles

that are sharing the available bandwidth of the cell.
6) Each of theN mobiles is assumed to generate an

infinite length ON/OFF elastic traffic. An ON period
corresponds to the download of an element (e.g., a web
page). The downloading duration depends on the system
load and the radio link quality, so ON periods must be
characterized by their size. An OFF period corresponds
to the reading time of the last downloaded element, and
is independent of the system load. As opposed to ON
periods, OFF periods must then be characterized by their
duration.

7) We assume that both ON sizes and OFF durations are
exponentially distributed. We denote byx̄on the average
size of ON data volumes (in bits) and bȳtoff the
average duration of OFF periods (in seconds).

Scheduling assumption
8) At each frame, the scheduler tries to allocate the right

number of slots to each active mobile in order to achieve
its MSTR. If a mobile is in outage it does not receive
any slot and its throughput is temporarily degraded. If
at a given time the total number of available slots is not
enough to satisfy the MSTR of all active users (not in
outage), they all see their throughputs equally degraded.

III. M ONO-TRAFFIC ANALYTICAL MODEL

1) Model description: A first attempt for modeling this
system would be to develop a multidimensional Continuous
Time Markov Chain (CTMC). A state(n0, ..., nK) of this

0 1 n-1 n n+1 N

Nλ (N-n+1)λ λ(N-n)λ

µ(1) µ(n) µ(n+1) µ(N)

Fig. 1. General CTMC with state-dependent departure rates.

chain would be a precise description of the current number
nk of mobiles using coding schemeMCSk, 0 ≤ k ≤ K
(i.e., including outage). The derivation of the transitions of
such a model is an easy task. However the complexity of the
resolution of this model makes it intractable for any realistic
value ofK. In order to work around the complexity problem,
we aggregate the state description of the system into a single
dimension n, representing the total number of concurrent
active mobiles, regardless of the coding scheme they use. The
resulting CTMC is thus made ofN + 1 states as shown in
Fig 1.

• A transition out of a generic staten to a staten + 1
occurs when a mobile in OFF period starts its transfer.
This “arrival” transition corresponds to one mobile among
the (N − n) in OFF period, ending its reading, and is
performed with a rate(N − n)λ, whereλ is defined as
the inverse of the average reading time:

λ =
1

t̄off

. (1)

• A transition out of a generic staten to a staten − 1
occurs when a mobile in ON period completes its transfer.
This “departure” transition is performed with a generic
rateµ(n) corresponding to the total departure rate of the
frame whenn mobiles are active.

Obviously, the main difficulty of the model resides in
estimating the aggregate departure ratesµ(n) that strongly
depend on the chosen scheduling policy. Focusing in this paper
on the throttling policy, we now explain how to do so when
considering this particular policy. Note that our previousworks
[10]–[12] have considered “full-capacity” policies (slotsharing
fairness, throughput fairness and opportunistic scheduling) and
derived for them very different expressions of theµ(n).

2) Departure rates:In order to estimate the average depar-
ture ratesµ(n), we first define the following quantities.

To compensate losses due to outage, we consider a slightly
greater instantaneous bitrate than the MSTR, the Delivered
BitRate:

DBR =
MSTR

1 − p0
. (2)

A mobile usingMCSk needs a mean number ofḡk slots per
frame to reach itsDBR:

ḡk =
DBR TF

mk

. (3)

Obviously, no slot is allocated to a mobile in outage soḡ0 = 0.

From this, we then deducēg, the average number of slots
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per frame needed by a mobile to obtain its MSTR:

ḡ =

K
∑

k=1

pkḡk. (4)

Knowing ḡ, we can now express the aggregate departure
ratesµ(n) as follows:

µ(n) =
NS

max (nḡ, NS)
n

MSTR

x̄on

. (5)

The last part of this expression (nMSTR
x̄on

) corresponds to the
rate at which any of then active mobiles completes its transfer,
assuming that there are always enough available slots in the
frames to satisfy the MSTR. The first part of this expression
( NS

max(nḡ,NS) ) represents the ratio of the global departure rate
achieved by then concurrent active transfers. Indeed, when
there aren active mobiles, they neednḡ slots in average to
obtain their MSTR.

The steady-state probabilitiesπ(n) can easily be derived
from the birth-and-death structure of the Markov chain (de-
picted in Fig. 1):

π(n) =
N !

(N − n)!

ρn

n!

n
∏

i=1

NS

max (iḡ, NS)

π(0), (6)

whereρ is given by:

ρ =
x̄on

t̄off MSTR
, (7)

andπ(0) is obtained by normalization.
The performance parameters of this system can be derived

from the steady-state probabilities as follows.
The average number̄Q of active users is:

Q̄ =

N
∑

n=1

n π(n). (8)

The average number̄D of departures (i.e., mobiles complet-
ing their transfer) per unit of time is given by:

D̄ =

N
∑

n=1

µ(n)π(n). (9)

From Little’s law, we can derive the average durationt̄on

of an ON period (duration of an active transfer):

t̄on =
Q̄

D̄
, (10)

and compute the average throughputX̄ obtained by each
mobile in active transfer as:

X̄ =
x̄on

t̄on

=

x̄on

N
∑

n=1

µ(n)π(n)

N
∑

n=1

n π(n)

. (11)

Finally, we can express the average utilizationŪ of the
TDD frame, as a weighted sum of the ratios between the mean
number of slots needed by then mobiles to reach their MSTR

and the mean number of slots they obtain:

Ū =

N
∑

n=1

nḡ

max (nḡ, NS)
π(n). (12)

Lastly, note that whenmax (Nḡ, NS) = NS , i.e., when the
resources of the system are sufficient to satisfy theMSTR
even if all theN mobiles of the cell are in active transfer,
we can easily demonstrate that the average throughput of
each active mobile (obtained from relation 11) becomesX̄ =
MSTR.

IV. M ULTI -TRAFFIC EXTENSION

We now consider that users are divided intoR classes of
traffic with specific traffic profiles(MSTRr, x̄

r
on, t̄roff ). Each

mobiles of a given classr thus has a maximum instantaneous
throughputMSTRr and generates an infinite-length ON/OFF
traffic, with an average ON size of̄xr

on bits and an average
OFF duration of̄troff seconds.

We assume that there is a fixed numberNr of mobiles
belonging to each class in the cell. Finally, mobiles of different
classes may have different channel models. A mobile of class
r thus has a probabilitypkr of usingMCSk.

We saw in the mono-trafic model, when expressing the
steady-state probabilitiesπ(n), that these probabilities as well
as all performance parameters mostly depend on the traffic
profile (MSTR, x̄on, t̄off ) through a single aggregated pa-
rameterρ given by relation 7. The key assumption of this
multi-traffic extension is to suppose that all the performance
parameters of the resulting multi-class model are still de-
pendent of the traffic profiles through a set of aggregated
parametersρr given by:

ρr =
x̄r

on

t̄roffMSTRr

. (13)

As a consequence, we can transform any class-r
profile (MSTRr, x̄

r
on, t̄roff ) into an equivalent profile

(MSTR, x̄on, t̄′
r

off), such that:

x̄on

t̄′
r

offMSTR
=

x̄r
on

t̄roffMSTRr

. (14)

By doing so for all classes, we transform the original system
into an equivalent system where all classes of traffic have the
same maximum instantaneous throughputMSTR, the same
average ON sizēxon, and different average OFF durations
t̄′

r

off .
With this transformation, the equivalent system can be

described as a multi-class closed queuing network with two
stations (see Fig. 2):

1) An IS (infinite-server) station that models mobiles in
OFF periods. This station has class-dependent service
ratesλr given by:

λr =
1

t̄′
r

off

; (15)

2) A PS (processor sharing) station that models active
mobiles. This station has class-independent service rates
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λr

Station 1: IS

Station 2: PS µ(n)

Fig. 2. Closed-queueuing network.

µ(n) that in turn depend on the total number active
mobiles (whatever their classes).

However, we cannot directly use the same expression of
the average departureµ(n) obtained in the mono-traffic case
(Eq. 5). Indeed, if we look at the expression of the steady-state
probabilities derived for the mono-traffic model (Eq. 6), we
can see that they not only depend on the traffic profile through
the aggregated parameterρ, but also through the parameterḡ
that represents the average number of slots per frame needed
by a mobile to obtain itsMSTR. We thus propose to use a
very similar expression forµ(n):

µ(n) =
NS

max (ḡ(n), NS)
n

MSTR

x̄on

, (16)

in which MSTR and x̄on are the common values of the
equivalent multi-class profiles, and̄g(n) is the average number
of slots per frame needed byn mobiles to obtain their
maximum throughput.

In order to derive an expression for̄g(n) that takes into
account the different classes of traffic, we first expressDBRr,
the actual bitrate needed by a mobile of classr in order to
reach itsMSTRr (while compensating losses due to outage):

DBRr =
MSTRr

1 − p0r

. (17)

We then definēgr, the mean number of slots needed by a
mobile of classr to obtain itsMSTRr, as:

ḡr =
K

∑

k=1

pkr

DBRr TF

mk

. (18)

Secondly, we estimate the probabilitiesαr(n) that an active
mobile belong to classr knowing thatn mobiles are active
(i.e., n customers are in the PS station). These probabilities
are obvious whenn = N :

αr(N) =
Nr

N
, (19)

and closely approximated whenn = 1 by:

αr(1) =
Nrρr

∑R

i=1 Niρi

. (20)

Knowing αr(1) andαr(N), we then suppose that theαr(n)
are a linear function ofn:

αr(n) = an + b, (21)

with

a =
αr(N) − αr(1)

N − 1
, (22)

and

b =
Nαr(1) − αr(N)

N − 1
. (23)

Lastly, we express the average parameterḡ(n) as:

ḡ(n) =

R
∑

r=1

n αr(n)ḡr. (24)

Note that theαr(n) probabilities can alternately be obtained
by considering a multi-dimensional Markov chain which states
(n1, ..., nR) correspond to the detailed distribution of the
current active mobiles of each class in the system. From the
numerical resolution of this chain we can derive the exact
values of theαr(n) probabilities. We have checked on several
examples that the exactαr(n) probabilities are very well
estimated by the linear approximation we propose above. In
addition, the impact of this approximation is very limited as it
only matters statesn such thatnḡ(n) < NS (see Eq. 16).
Finally it is important to emphasize that the use of this
approximation enables to avoid the exponential complexityof
solving a multi-dimensional Markov chain.

A direct extension of the BCMP theorem [13] for stations
with state-dependent rates can now be applied to this closed
queueing network. The population vector is denoted by

−→
N =

(N1, ..., NR). The detailed steady-state probabilities can then
be expressed as follows:

π(−→n ) = π(−→n1,
−→n2) =

1

G
f1(

−→n1)f2(
−→n2), (25)

where−→ni = (ni1, ..., niR), nir being the number of class-r
mobiles present in stationi,

f1(
−→n1) =

1

n11!...n1R!

1

(λ1)n11 ...(λR)n1R

(26)

and

f2(
−→n2) =

(n21 + ... + n2R)!

n21!...n2R!

1
n2
∏

k=1

µ(k)

, (27)

andG is a normalization constant:

G =
∑

−→n1+
−→n2=

−→
N

f1(
−→n1)f2(

−→n2). (28)

All the performance parameters of interest can be derived
from the steady-state probabilities as follows. The average
number of customers of classr in station2, i.e., the average
number of class-r active mobiles, denoted bȳQr, is given by:

Q̄r =
∑

−→n1+−→n2=
−→
N

n2r π(−→n1,
−→n2). (29)

Let D̄r be the average number of class-r customers depart-
ing from station2 by unit of time, i.e., the average number
of class-r mobiles completing their download by unit of time.
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D̄r can be expressed as:

D̄r =
∑

−→n1+
−→n2=

−→
N

µr(
−→n2)π(−→n1,

−→n2), (30)

whereµr(
−→n2) is the departure rate of class-r mobiles when

there are−→n2 active mobiles:

µr(
−→n2) =

NS

max (ḡ(−→n2), NS)
n2r

MSTRr

x̄r
on

, (31)

with

ḡ(−→n2) =
R

∑

r=1

n2r ḡr. (32)

The average download duration of class-r mobiles, t̄ron, is
nothing but the average sojourn time of class-r customers in
station2, and is obtained from Little law:

t̄ron =
Q̄r

D̄r

. (33)

We can then calculate the average throughputX̄r obtained
by customers of classr during their transfer as:

X̄r =
x̄r

on

t̄ron

=

x̄r
on

∑

−→n1+
−→n2=

−→
N

µr(
−→n2)π(−→n1,

−→n2)

∑

−→n1+
−→n2=

−→
N

n2r π(−→n1,
−→n2)

. (34)

Finally, we can express the utilization̄U of the TDD frame
as:

Ū =
∑

−→n1+
−→n2=

−→
N

ḡ(−→n2)

max (ḡ(−→n2), NS)
π(−→n1,

−→n2). (35)

V. VALIDATION THROUGH SIMULATIONS

In this section we discuss the validation of our analytical
models through extensive simulations. We also study the effect
of more complex traffic and channel models. We start with
details of simulator followed by results for mono/multi-traffic
models.

A. Simulation Details

1) System Parameters:System bandwidth is assumed to
be 10 MHz. The downlink/uplink ratio of the WiMAX TDD
frame is considered to be approximately 2/3 (32 OFDM sym-
bols on the downlink and15 on the uplink). We assume for the
sake of simplicity that the protocol overhead is of fixed length
(2 symbols) although in reality it is a function of the numberof
scheduled users. Considering subcarrier permutation PUSCon
the downlink, there are30 sub-channels and a slot is defined as
2 OFDM symbols and one subchannel. With above parameters,
the total number of data slots (excluding overhead) per TDD
downlink sub-frame isNS = 30(32 − 2)/2 = 450.

2) Traffic Parameters:Values of MSTR, mean ON data
volume (main page and embedded objects) and OFF period
(reading time) for both mono and multi-traffic are given in
Tab. I.

In the validation study, we assume that the ON sizes are
exponentially distributed as it is the case in the analytical

model assumptions. Although well adapted to Markov theory
based analysis, exponential law does not always fit the reality
for data traffic. This is the reason why we consider truncated
Pareto distributions in the robustness study. Recall that the
mean value of the truncated Pareto distribution is given by:

x̄on =
αb

α − 1

[

1 − (b/q)α−1
]

, (36)

whereα is the shape parameter,b is the minimum value of
pareto variable andq is the cutoff value for truncated pareto
distribution. Two values ofq are considered: lower and higher.
These have been taken as hundred times and thousand times
the mean value respectively. The mean value in both cases
(higher and lower cutoff) is3 Mbits for the sake of comparison
with the exponential model. The value ofα = 1.2 has been
adopted from [14]. The corresponding values of parameter
b for higher and lower cutoff are calculated using Eq. 36.
Pareto parameters, used in simulations forx̄on = 3 Mbps, are
summarized in Tab. II.

3) Channel Models:A generic method for describing the
channel between the BS (Base Station) and a MS is to model
the transitions between MCS by a finite state Markov chain
(FSMC). The chain is discrete time and transitions occurs
everyL frames, withL TF < t̄coh, the coherence time of the
channel. In our case, and for the sake of simplicity,L = 1.

Such a FSMC is fully characterized by its transition matrix
PT = (pij)0≤i,j≤K . Note that an additional state (state 0) is
introduced to take into account outage (SINR is below the
minimum radio quality threshold). Stationary probabilitiespk

provide the long term probabilities for a MS to receive data
with MCS k.

In our analytical study, channel model is assumed to be
memoryless, i.e., MCS are independently drawn from frame to
frame for each user, and the discrete distribution is given by the
(pi)0≤i,j≤K . This corresponds to the case wherepij = pj for
all i. This simple approach, referred as thememoryless channel
model, is the one considered in the validation study. LetPT (0)
be the transition matrix associated to the memoryless model.

In the robustness study, we introduce two additional channel
models with memory. In these models, the MCS observed for
a given MS in a frame depends on the MCS observed in the
previous frame according to the FSMC presented above. The
transition matrix is derived from the following equation:

PT (a) = aI + (1 − a)PT (0) 0 ≤ a ≤ 1,

whereI is the identity matrix and parametera is a measure
of the channel memory. A MS indeed maintains its MCS for
a certain duration with mean̄tcoh = 1/(1 − a). With a =
0, the transition process becomes memoryless. On the other
extreme, witha = 1, the transition process will have infinite
memory and MS will never change its MCS. For simulations
we have takena equal to0.5, so that the channel is constant in
average2 frames. This value is consistent with the coherence
time given in [15] for45 Km/h at 2.5 GHz. We call the case
where all MS have the same channel model with memory
(a = 0.5), theaverage channel model. Note that the stationary
probabilities of the average channel model are the same as
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TABLE I

TRAFFIC PARAMETERS.

Parameter Mono-traffic Multi-traffic

Class 1 Class 2

MSTR [Kbps] 512 & 2048 1024 2048
x̄on [Mbps] 3 3 3
t̄off [s] 3 3 6

TABLE II

PARETO PARAMETERS FOR̄xon = 3 MBPS.

Parameter Value
Shape parameterα 1.2
Lower cutoff q 300 Mbits
Higher cutoffq 3000 Mbits
b for lower cutoff 712926 bits
b for higher cutoff 611822 bits

those of the memoryless model.
As the channel depends on the BS-MS link, it is possible

to refine the previous approach by considering part of the
MS to be in a “bad” state, and the rest in a “good” state.
Bad and good states are characterized by different stationary
probabilities but have the same coherence time. In the so called
combined channel model, half of the MS are in a good state,
the rest in a bad state, anda is kept to0.5 for both populations.
For the sake of comparison, the overall MCS probabilities in
the combined model are the same as those of the memoryless
and average models.

Three models are thus considered: the memoryless, the
average, and the combined channel models. Corresponding
stationary probabilities are given in Tab. III. Stationaryprob-
abilities for the combined model are obtained by averaging
corresponding values of good and bad model stationary prob-
abilities. Considered MCS and for each of them, the number
of bits transmitted per slot are given in Tab. IV.

B. Simulation Results

In this section, we first present the validation/robustness
study results for mono-traffic model and then validation study
results for multi-traffic model. The output parameters in con-
sideration arēU , X̄ , Q̄, andπ(n) (see Sections III and IV).

1) Mono-Traffic: To validate the mono-traffic model, sim-
ulations take into account the same traffic and channel as-
sumptions as those of the analytical model. However, in
simulator, MCS of users are determined on per frame basis
and scheduling is carried out in real time, based on MCS at
that instant. The analytical model on the other hand, considers
stationary probabilities of MCS only. Distributions of ON size
and OFF period are exponential and the memoryless channel
model is considered.

Results from performance validation are shown in Fig. 3.
For different number of users in the cell, the values of
analytical model and simulation differ only by 2% at most.

We now move to the robustness study, where assumptions
concerning traffic and channel models made by the analysis
are relaxed in simulations. The results for this analysis are

TABLE III

STATIONARY PROBABILITIES FOR THREE CHANNEL MODELS.

Channel
model

Memoryless Average Combined

50% MS good 50% MS bad

a 0 0.5 0.5 0.5

p0 0.225 0.225 0.020 0.430
p1 0.110 0.110 0.040 0.180
p2 0.070 0.070 0.050 0.090
p3 0.125 0.125 0.140 0.110
p4 0.470 0.470 0.750 0.190

TABLE IV

CHANNEL PARAMETERS.

Channel state MCS and Bits per slot
{0, ..., K} outage mk

0 Outage m0 = 0
1 QPSK-1/2 m1 = 48
2 QPSK-3/4 m2 = 72
3 16QAM-1/2 m3 = 96
4 16QAM-3/4 m4 = 144

shown in Fig. 4. As can be noticed on Fig. 4(a), our model
works well for different values of MSTR.

It is also clear (see Fig. 4(b)) that considering a truncated
Pareto distribution has little influence on the design parame-
ters. The average relative error between analytical results and
simulations stays below 10% for all sets. This is mainly due
to the fact that the distribution is truncated and is thus not
heavy tailed. But even with a high cutoff value, the exponential
distribution provides a very good approximation.

Similarly, the results illustrated on Fig. 4(c) also prove that
even for a complex wireless channel, our analytical model
shows considerable robustness with an average relative error
below 7%. We can thus deduce that for designing a WiMAX
network, channel information is almost completely included
in the stationary probabilities of the MCS.

2) Multi-Traffic: In multi-traffic scenario, we consider two
different classes of traffic. Each class is characterized by
particular values of MSTR,̄xon and t̄off (see Tab. I). Fig. 5
shows that simulation and analysis provide similar resultsnot
only for the overall system performance but also for each class
(maximum difference is below 6%). As expected, users obtain
their respective MSTR at low load and when load increases,
they see their throughput proportionally degraded (Fig. 5(c)).

VI. CONCLUSION

As deployment of WiMAX networks is underway, need
arises for operators and manufacturers to develop dimension-
ing tools. In this paper, we have presented an analytical model
for WiMAX networks taking into account multiple data traffic
profiles and the QoS parameter MSTR defined by the standard.
Our model, based on a product-form closed queueing network,
is able to instantaneously provide Erlang-like performance
parameters such as throughput per user for each profile or
channel utilization. Therefore it will render possible efficient
and advanced dimensioning studies. Moreover, the simple
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Fig. 3. Validation study with MSTR= 512 Kbps, x̄on = 3 Mbits and t̄off = 3 s.
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(b) Average throughput per user for MSTR=
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2048 Kbps and different channel models.

Fig. 4. Robustness study with̄xon = 3 Mbits and t̄off = 3 s.

0 10 20 30 40
0

5

10

15

20

No. of users: N=N
1
+N

2
 (such that N

1
=N

2
)

Q̄

 

 

Model (class 1)
Sim (class 1)
Model (class 2)
Sim (class 2)

(a) Average number of active users.
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(b) Average utilization.
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Fig. 5. Performance validation for multi-traffic with class1 parameters: MSTR= 1024 Kbps, x̄on = 3 Mbits and t̄off = 3 s and class 2 parameters:
MSTR = 2048 Kbps, x̄on = 3 Mbits and t̄off = 6 s.

nature of our model makes it flexible to be customized to
scenario specific requirements. Extensive simulations have
validated the model’s assumptions and showed its robustness
towards more complex traffic distributions and channel mod-
els.
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