
On the Existence of a Cycle of Length at Least 7

in a (1,≤ 2)-Twin-Free Graph

David Auger∗, Irène Charon∗,

Olivier Hudry∗
, Antoine Lobstein†

{david.auger, irene.charon, olivier.hudry, antoine.lobstein}@telecom-paristech.fr
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1 Introduction

We consider a finite, undirected, simple graph G = (X,E), where X is the
vertex set and E the edge set.

If r is a positive integer and x a vertex in G, the ball of x with radius r,
denoted by Br(x), is the set of vertices in G which are within distance r
from x. If Y is a subset of X, the ball of Y with radius r, denoted by
Br(Y ), is defined by

Br(Y ) =
⋃

y∈Y

Br(y).

For x ∈ X, we set B(x) = B1(x) and call this set the ball of x: in other
words, the ball of x consists of x and its neighbours; for Y ⊆ X, we set
B(Y ) = B1(Y ) and call this set the ball of Y .

Two distinct subsets of X are said to be separated if they have distinct
balls with radius r. For a given integer ` ≥ 1, the graph G is said to
be (r,≤ `)-twin-free if any two distinct subsets of at most ` vertices are
separated. In an (r,≤ `)-twin-free graph, for any subset V of X, there is at
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most one subset Y of X, with |Y | ≤ `, such that Br(Y ) = V : the subsets of
at most ` vertices are characterized by their balls with radius r. In this case,
it is also said that G is (r,≤ `)-identifiable or (r,≤ `)-distinguishable, or that
G admits an (r,≤ `)-identifying code. See, among many others, [7]–[11] and
[13] for results on these codes.

Graphs admitting (r,≤ 1)-identifying codes, i.e., (r,≤ 1)-twin-free graphs,
have particular structural properties (see for instance [1],[4] and [5]; see [12]
for references upon these codes). In particular, it was proved in [1] that a
connected (r,≤ 1)-twin-free graph with at least two vertices always contains
as an induced subgraph the path P2r+1 on 2r + 1 vertices; since P2r+1 itself
is (r,≤ 1)-twin-free, it is therefore the smallest (r,≤ 1)-twin-free graph.

Several results have been published about (r,≤ `)-identifying codes in
various graphs (see [7]–[11] and [13]), but little is known about the structure
of these graphs. It is easily seen that the cycles Ck defined on k vertices
are (1,≤ 2)-twin-free and that the smallest (1,≤ 2)-twin-free graph is the
cycle C7. Hence it seems natural to wonder whether a cycle Ck with k ≥ 7
is contained in any (1,≤ 2)-twin-free graph.

Thus we shall restrict ourselves to the case r = 1, ` = 2 and prove in
this article that an undirected connected (1,≤ 2)-twin-free graph of order
at least 2, contains an elementary cycle (not going through a vertex twice)
with length at least 7.

We now give some basic definitions for a graph G = (X,E) (see [2],[3] or [6]
for more). A subgraph of G is a graph G′ = (X ′, E′), where X ′ ⊆ X and

E′ ⊆ {{u, v} ∈ E : u ∈ X ′, v ∈ X ′}.

Such a subgraph is said to be induced by X ′ if

E′ = {{u, v} ∈ E : u ∈ X ′, v ∈ X ′}.

A cut-vertex of G is a vertex u ∈ X such that the subgraph induced by
X \{u} has more connected components than G. A cut-edge of G is an edge
e ∈ E such that the subgraph (X,E \ {e}) has more connected components
than G. If G is connected, the deletion of a cut-vertex or of a cut-edge
makes G disconnected. More generally, a h-connected graph, h ≥ 1, is a
graph G such that the minimum number of vertices to be deleted in order
to disconnect G, or to reduce it to a singleton, is at least h. A h-connected
component of G is an induced subgraph which is h-connected and maximal
(for inclusion) in G.

A block of G is a maximal induced subgraph with no cut-vertex, and a
bridge is an induced subgraph consisting of two adjacent vertices, linked by
an edge which is a cut-edge in G.

Lastly, we shall use the notation Ci (respectively, C≥i) for a cycle of
length i (respectively, at least i), i ≥ 3.
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Figure 1: One example for the graphs G and G′.

Throughout this article, the paths and cycles will be elementary, and
G = (X,E) will be an undirected, simple graph of order at least 2. Moreover,
we shall assume that G is connected: if not, the result would be obtained
by choosing any connected component of G, with at least 2 vertices.

2 Choosing a leaf-block of G

The blocks of G are 2-connected components or bridges. The graph given
in the left part of Figure 1 contains 5 blocks: {a, b, c, d}, {c, e}, {g, h, i},
{e, f, g}, and {f, j}, which are surrounded with dotted lines. Two blocks
of G either do not intersect, or intersect on a cut-vertex of G. Define the
graph G′ whose vertices are the blocks of G and whose edges link blocks
having a nonempty intersection: G′ is a tree. Now a block of G which is a
leaf in G′ is called a leaf-block of G. For instance, the graph G in Figure 1
has 3 leaf-blocks.

We give the following definition:

Definition 1 Let G = (X,E) be an undirected connected graph, Y ⊂ X,
y ∈ Y , and s ∈ X \ Y . A (G, s, Y, y)-path is a path in G whose ends are s
and t ∈ Y \ {y}, and whose vertices other than t are in X \ Y .

We shall use the following proposition repeatedly.

Proposition 1 Let G = (X,E) be an undirected connected graph, H a 2-
connected component of G, Y a subset of at least 2 vertices in H, y a vertex
in Y which is not a cut-vertex of G, and s a neighbour of y which is not
in Y . Then s belongs to H and there is a (H, s, Y, y)-path.

Proof. Let G \ {y} be the induced subgraph obtained from G by with-
drawing the vertex y. Since y is not a cut-vertex, the graph G \ {y} is still
connected: there exists in G\{y} a path between s and a vertex t ∈ Y \{y},
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whose vertices other than t are in X \ Y , i.e., a (G, s, Y, y)-path; if we con-
catenate this path with the edge {s, y}, we get a path P between y and t,
which are two distinct vertices in the 2-connected component H. Therefore,
the union of H and P is still 2-connected, and, by the maximality of H as
an induced 2-connected subgraph, P is a path in H. �

Proposition 1 states that, if we wish to “leave”a subset Y of at least two
vertices in a 2-connected component H, starting from a non cut-vertex y,
then we stay inside H and we “come back” inside Y , on a vertex other
than y.

From now on and throughout this article, we assume that G is
(1,≤ 2)-twin-free.

Note that G cannot have vertices with degree 1: if x has degree 1 and
y is its unique neighbour, then the sets {y} and {x, y} are not separated;
actually, this is part of a more general result on (1,≤ `)-twin-free graphs,
which have minimal degree at least ` [11, Th. 8]. Consequently, a leaf-block
of G cannot be a bridge: all leaf-blocks of G are 2-connected components,
and Proposition 1 can be applied to them. We denote by H one leaf-block
of G. The graph H has at least one cycle.

Also, either H is the whole graph G and in this case has no cut-vertex,
or H has one, and only one, cut-vertex of G, α. In the following, we keep
the notation α for the cut-vertex of G in the 2-connected component H, if
α exists.

3 The length of the longest cycle in H is not 6

Lemma 1 will be used repeatedly to show Lemmas 2–4, which state that
if H admits certain subgraphs, then, under certain conditions, a C≥7 is a
subgraph of H. Lemma 5 concludes this section, establishing that the length
of the longest cycle in H is not 6.

Lemma 1 We assume that the longest cycle in H has length 6. If the
graph L given in Figure 2 is a subgraph of H, with x 6= α and y 6= α, then
t is adjacent to either x or y, and x and y have no neighbours in G other
than z, u, and, for exactly one of them, t.

Proof. We assume that H contains no C≥7 and that L is a subgraph of H,
with x 6= α and y 6= α. Let Y be the set of the 7 vertices in L.

First, we show that the neighbours, in G, of x and y belong to {z, u, t}.
Assume on the contrary that x has a neighbour s ∈ X \ {z, u, t}.

If s belongs to Y , then s = y, s = v, or s = w.
If s /∈ Y , then, since x is not the cut-vertex, we can use Proposition 1:

the vertex s belongs to H and there is a (H, s, Y, x)-path.
So, whether s ∈ Y or not, there is a path P of length at least 1 linking

x and Y \ {x}, other than the edges {x, z}, {x, u} and {x, t}, and whose
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Figure 2: The graph L in Lemma 1.

vertices, but its two ends, do not belong to Y ; now we examine the different
possible cases, represented in Figure 3.

• (a) If P links x and z, P has length at least 2; by concatenating it with
the path z, v, t, w, u, x, we obtain a C≥7, given in bold in Figure 3(a);
this case is impossible, as is the case when P links x and u.

• (b) If P links x and y, this path concatenated with the path y, z, v, t, w,
u, x yields a C≥7: this case is impossible.

• (c) If P links x and v, this path concatenated with the path v, t, w, u, y,
z, x yields a C≥7. Similarly, P cannot link x and w.

• (d) Finally, if P links x and t, then P has length at least 2 and by
concatenating it with the path t, w, u, y, z, x, we get a C≥7, still a con-
tradiction.

None of the above cases is possible, the neighbours of x are in {z, u, t} and
the same is true for y. Furthermore, we have: B({z, x}) ⊃ {x, y, z, u} and
B({z, y}) ⊃ {x, y, z, u}. In order to separate the sets {z, x} and {z, y}, it is
necessary to use t, and so, one, and only one, vertex in {x, y} is linked to t,
which ends the proof of Lemma 1. �

Lemma 2 If the graph L given in Figure 2 is a subgraph of H, with x 6= α
and y 6= α, then C≥7 is a subgraph of H.

Proof. We assume that no C≥7 is a subgraph of H, that L is a subgraph
of H, and that x 6= α, y 6= α. We still denote by Y the set of the 7 vertices
in L.
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Figure 3: Illustrations for the proof of Lemma 1.

One can assume that, if α /∈ Y , then the path z, α, t does not exist:
indeed, if the path z, α, t exists with α /∈ Y , then we delete in L the path
z, v, t and replace it with the path z, α, t, and α is renamed as v. Similarly,
one can assume that, if α /∈ Y , then the path u, α, t does not exist.

If α = z or α = w, we rename the vertices, exchanging the names z
and u as well as v and w, and so we can assume, without loss of generality,
that α 6= z and α 6= w.

The graph L we shall consider from now on has the following properties.

• L corresponds to Figure 2,

• x 6= α, y 6= α, z 6= α, and w 6= α,

• if the path z, α, t exists, then α belongs to Y ,

• if the path u, α, t exists, then α belongs to Y .

Using Lemma 1, we can moreover assume that y is linked to t, and we then
know that x and y have no neighbours in G other than those in Figure 4.
The graph represented in Figure 4 is a subgraph of H.

In order to prove Lemma 2, we proceed step by step, with intermediate
results, from 1 to 7.

1. The vertex w has no neighbour outside Y .
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Figure 4: The graph L, with the edge {y, t}.
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Figure 5: Lemma 2, illustrations for Result 1.

Assume on the contrary that w has a neighbour s /∈ Y (see Figure 5);
since w 6= α, there is a (H, s, Y, w)-path P . By Lemma 1, x and y
have their neighbours in Y , so P cannot end in x or y. It cannot end
in u or t either, since this would yield a C≥7, represented in bold in
Figure 5(a) when P ends in u. If P ends in v, then we have a C≥8,
and if it ends in z, then we have a C≥7: the path P cannot end in any
vertex of Y . Consequently, w has no neighbour outside Y .

2. If v 6= α, then v has no neighbour outside Y .

This result is obtained in exactly the same way as Result 1.

3. There is no vertex outside Y , different from α and adjacent to both z
and u.

Assume on the contrary that there exists s /∈ Y , with s 6= α and s
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Figure 6: Lemma 2, illustration for Result 3.

adjacent to z and u (see Figure 6); by Lemma 1, since x is not adjacent
to t and neither x nor s is the cut-vertex α, s is adjacent to t; but now
s 6= α, y 6= α, and both s and y are adjacent to t: this contradicts
Lemma 1.

4. If v 6= α and if z has a neighbour s /∈ Y , then s = α and the path
z, α, u exists.

We assume that v 6= α and that z has a neighbour s /∈ Y . We recall
that z 6= α, so that by Proposition 1, there is a (H, s, Y, z)-path, P .

The path P cannot end in x, y, or v, otherwise we would have a C≥7.
On the same grounds, it cannot end in w either, cf. Figure 5(c).

Assume now that P ends in t; necessarily, P has length 1 (P = {s, t}),
otherwise there would be a C≥7; but L has been chosen so that, if
the path z, α, t exists, then α ∈ Y : we can conclude that s 6= α; by
Lemma 1, applied to s and v, either v or s is adjacent to u, and s
and v have no neighbours outside {z, t, u}. We are going to show that
v cannot be adjacent to u; assume on the contrary that {v, u} exists.
Since y has no neighbour outside {z, u, t}, we have (see Figure 7):

B({t, y}) = B({t, v}) = {y, z, t, u, v} ∪ B(t).

The sets {t, y} and {t, v} are not separated, and therefore v is not
adjacent to u. In a similar way, if it is s which is adjacent to u, then
the sets {t, y} and {t, s} are not separated. So neither v nor s can be
adjacent to u and we have just proved that P cannot end in t.
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Figure 7: Lemma 2, illustration for Result 4, when P ends in t.

There remains the possibility that P ends in u. Then, as previously, P
has necessarily length 1, and we have the path z, s, u. Result 3 shows
that s = α, which ends the proof of Result 4.

5. If u 6= α and if u has a neighbour s /∈ Y , then s = α and the path
u, α, z exists.

We assume that u 6= α and have assumed previously that w 6= α. The
proof of Result 4 used the assumptions z 6= α, v 6= α; we can rerun
this proof and obtain Result 5, symmetrically.

6. α = u or α = v.

Assume that α 6= u, α 6= v. By Results 1 and 2, v and w have no
neighbours outside Y ; by Results 4 and 5, z and u can possibly have
only one neighbour outside Y , that is α, which they share in this case
(see Figure 8). We have:

B({w, z}) = B({v, u}) = Y or B({w, z}) = B({v, u}) = Y ∪ {α}.

The pairs {w, z} and {v, u} are not separated, so α = u or α = v.

7. The sets {x, t} and {z, w} are not separated.

By the previous result, t 6= α. We have:

B({x, t}) ∩ Y = B({z, w}) ∩ Y = Y.

Remember that x, y, and w have no neighbours outside Y (Lemma 1
and Result 1). To separate the pairs {x, t} and {z, w}, t or z must
have a neighbour outside Y which separates them.
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Assume first that t has a neighbour s /∈ Y which separates {x, t} and
{z, w}; by Proposition 1 and since t is not the cut-vertex, there is a
(H, s, Y, t)-path P , which can end neither in v nor w, because this
would give a C≥7; it cannot end in x or y either, because these vertices
have no neighbours outside Y . Assume now that P ends in u, see
Figure 9(a); this means that P is the path u, s, t (otherwise, existence
of a C≥7), and, using the hypotheses on L or Result 6, s 6= α. By
Lemma 1 applied to w and s, either w or s is adjacent to z. Assume
first that it is w. We have:

B({t, y}) = B({t, w}) = {y, z, t, u, v, w} ∪ B(t).

Since y and w have no neighbours outside Y , only x could separate
{t, y} and {t, w}, but we already know that the only neighbours of x
in G are z and u: the sets {t, y} and {t, w} cannot be separated, and
w is not adjacent to z. Similarly, if it is s which is adjacent to z,
then the sets {t, y} and {t, s} are not separated. We have just proved
that P cannot end in u, and the only possibility left is that it ends
in z, in which case it has length 1, see Figure 9(b), where s and z
are neighbours. This however contradicts the choice of s, which was
supposed to separate {x, t} and {z, w}.

Assume now that z has a neighbour s /∈ Y , which separates {x, t} and
{z, w}; by Proposition 1, and because z 6= α, there is a (H, s, Y, z)-
path P , which cannot end in v, x, or y, otherwise there would be
a C≥7; using Result 1, P cannot end in w either. If P ends in u, then
it has length 1 and, since s 6= α, this contradicts Result 3. Therefore,
P ends in t, and it has length 1: s and t are neighbours, which again
contradicts the choice of s.

The sets {x, t} and {z, w} cannot be separated.

The assumption that no C≥7 is a subgraph of H led to a contradiction, and
Lemma 2 is proved. �

Lemma 3 Consider the graph K given in Figure 10 and assume that, if α
exists, then α = u or α = v. If K is a subgraph of H, then C≥7 is a subgraph
of H.

Proof. Denote by Y the set of the 8 vertices in K and assume that we are in
the conditions of Lemma 3. Since G is (1,≤ 2)-twin-free, the sets {x, t} and
{y, p} are separated. By symmetry between {x, y} and {p, t}, then between
x and y, it suffices to assume that x has a neighbour not in B({y, p}). Now
B({y, p}) ⊇ {x, y, z, p, t, w}, and we have the following possibilities:

• x is adjacent to s ∈ X \ Y , s 6= α. Since x 6= α, there is a (H, s, Y, x)-
path P . If P ends in w, y, p, t, v, or u, then we have a C≥7; and if
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Figure 11: The graph K ′ in Lemma 4.

P ends in z, then either we directly obtain a C≥7, or P has length 1,
which means that the edges {x, s} and {s, z} exist, with y 6= α, s 6= α,
and Lemma 2 can be applied.

• {x, v} is an edge or {x, u} is an edge. In both cases, there is a C≥7.

In all the above cases, there is a C≥7, and Lemma 3 is proved. �

Lemma 4 Consider the graph K ′ given in Figure 11 and assume that, if
α exists, then α = u or α = v. If K ′ is a subgraph of H, then C≥7 is a
subgraph of H.

Proof. Denote by Y the set of the 7 vertices in K ′ and assume that we are
in the conditions of Lemma 4. Since G is (1,≤ 2)-twin-free, the sets {p, x}
and {p, y}, whose balls both contain x, y, z, w, and p, are separated; without
loss of generality, we can assume that x has a neighbour not in B({p, y}).
Then we have the following possibilities:

• (a) x is adjacent to s ∈ X \ Y , s 6= α. Since x 6= α, there is a
(H, s, Y, x)-path P . If P ends in w, y, p, v, or u, then there is a C≥7;
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Figure 12: Illustration for the proof of Lemma 4, with the edge {x, v}.

and if P ends in z, then either we have a C≥7 directly, or P has length 1,
and we can apply Lemma 2, see the proof of Lemma 3.

• (b) {x, u} is an edge; then there is a C≥7.

• (c) {x, v} is an edge, see Figure 12; the sets {z, x} and {z, w}, whose
balls contain Y , being separated, w or x must have a neighbour not
in Y . If it is x, we can use case (a) above. Therefore we study the
vertex w, a neighbour s ∈ X \Y of w which is adjacent neither to x nor
to z, and a (H, s, Y, w)-path P . If P yields a path of length 3 between
w and z with only its ends, w and z, in Y , we apply Lemma 3; all
other cases directly give a C≥7.

In all possible cases, we are led to the existence of a C≥7: Lemma 4 is proved.
�

We can now prove the following result.

Lemma 5 The length of the longest cycle in H is not 6.

Proof. Assume on the contrary that the longest cycle in H has length 6. If
H admits a C6 containing α, we choose this cycle, otherwise we pick any C6,
whose vertices we name a, b, c, d, e, and f , and we set Y = {a, b, c, d, e, f}. If
the cycle contains α, we assume that α = f (see Figure 13). Lemmas 2, 3,
and 4 as well as the nonexistence of a C≥7 show that the only paths with
length at least 2 with their ends in Y and their other vertices outside Y are:

• a possible path of length 2 between a and e;

• a possible path of length 2 or 3 between c and f .

Indeed, if a path links two consecutive vertices of the cycle, it gives a C≥7; if
it links two vertices at distance 2, other than a and e, either there is a C≥7

or Lemma 2 applies; if it links two opposite vertices, other than c and f ,
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Figure 14: The graph M in Lemma 6.

either it gives a C≥7, or Lemma 3 or 4 applies; finally, if it has length at
least 4 between c and f , then there is a C≥7 in H.

Now the balls of the sets {a, d} and {b, e} contain Y ; these sets are not
separated, since we have just seen that b and d have no neighbour outside Y ,
and that a and e either have no neighbour outside Y , or have exactly one
neighbour outside Y , which they share. �

4 The length of the longest cycle in H is not 5

Lemma 6 If the graph M given in Figure 14 is a subgraph of H, with x 6= α
and y 6= α, then C≥6 is a subgraph of H.

Proof. Assume that M is a subgraph of H, with x 6= α, y 6= α. The sets
{z, x} and {z, y} being separated, x or y must have a neighbour s performing
the separation. Assume, without loss of generality, that it is x. If there is
an edge between x and v or w, we have a C≥6; if not, x has a neighbour s
outside M . Since x 6= α, there is a (H, s,M, x)-path which in all cases will
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Figure 16: The length-4 cycle for Lemma 8.

yield a C≥6. �

Lemma 7 The length of the longest cycle in H is not 5.

Proof. Assume on the contrary that the longest cycle in H has length 5. If
H admits a C5 containing α, we choose this cycle, otherwise we pick any C5,
whose vertices we name a, b, c, d, and e, and we set Y = {a, b, c, d, e}. If the
cycle contains α, we assume that α = e (see Figure 15).

As previously, the nonexistence of a C≥6 and Lemma 6 show that the
only path with length at least 2 whose ends are in Y and other vertices
are not in Y , is a path of length 2 between a and d. This however does
not separate the sets {a, c} and {b, d}, which, together with the fact that
a, c, b, d are not the cut-vertex, ends the proof of Lemma 7. �

5 The length of the longest cycle in H is not 4 or 3

Lemma 8 The length of the longest cycle in H is not 4.

Proof. Assume on the contrary that the longest cycle in H has length 4.
Pick such a cycle, name its vertices a, b, c, d and assume, without loss of
generality, that the cut-vertex is not a, b, or c (see Figure 16).

The sets {b, a} and {b, c} being separated, there is a path of length at
least 2 whose first end is a or c, whose second end, different from the first
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one, is on the cycle, and whose other vertices are not on the cycle. The
only possibility, in order not to have a C≥5, is a path a, s, c where s does not
belong to the cycle, but then s does not separate the sets {b, a} and {b, c},
which proves Lemma 8. �

Lemma 9 The length of the longest cycle in H is not 3.

Proof. Assume on the contrary that the longest cycle in H has length 3.
Pick such a cycle, name its vertices a, b, c and assume, without loss of gen-
erality, that the cut-vertex is not a or b. Then it is impossible to separate
the sets {c, a} and {c, b} without creating a C≥4. �

6 Existence of a cycle of length at least 7

Theorem 1 Any undirected connected (1,≤ 2)-twin-free graph of order at
least 2 admits an elementary cycle of length at least 7 as a subgraph.

Proof. We have seen before Section 3 that the graph H admits a cycle; by
Lemmas 5,7–9, its longest cycle cannot have length 6, 5, 4, or 3: the longest
cycle in H, hence the longest cycle in G, has length at least 7. �

7 Conclusion: Remarks and open issues

We already mentioned in the introduction the parallel between the result we
just proved and the fact that any connected (r,≤ 1)-twin-free graph of order
at least 2 admits the path with 2r + 1 vertices as an induced subgraph [1].
We could wonder whether our result for (1,≤ 2)-twin-free graphs could be
extended to the existence of an induced cycle with length at least seven.
But considering the two graphs in Figure 17, one can see that they are
(1,≤ 2)-twin-free and have no chordless C≥7 as an induced subgraph. Thus
in Theorem 1, one cannot add the property “as an induced subgraph”. Also
observe that the shortest possible cycle, C3, can be contained in a (1,≤ 2)-
twin-free graph, as shown, for instance, by the second graph in Figure 17.

Next, we state the following conjecture:

Conjecture 1 For all r ≥ 2, the smallest connected (r,≤ 2)-twin-free graph
with at least two vertices is the cycle on 4r + 3 vertices and all connected
(r,≤ 2)-twin-free graphs with at least two vertices contain a cycle of length
at least 4r + 3.

For ` = 3, T. Laihonen gives in [9] an example of a connected (1,≤ 3)-
twin-free cubic graph with 16 vertices. It is, as far as we know, the smallest
example of a nontrivial (1,≤ 3)-twin-free graph, but is remains unknown if
these graphs always contain particular subgraphs. We do not dare for now
to conjecture on this issue.
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Figure 17: Two (1,≤ 2)-twin-free graphs with no chordless C≥7 as induced
subgraph.
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