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Multichannel phase unwrapping with Graph-cuts
Giampaolo Ferraioli, Aymen Shabou, Florence Tupin, and Vito Pascazio

Abstract—Markovian approaches have proven to be effective
for solving the multichannel phase unwrapping problem, es-
pecially when dealing with noisy data and big discontinuities.
This paper presents a markovian approach to solve the phase
unwrapping problem based on a newa priori model, the Total
Variation, and graph-cut based optimization algorithms. The
proposed method turns to be fast, simple and robust. Moreover,
compared to other approaches, the proposed algorithm is able to
unwrap and restore the solution in the same time, without any
additional filtering. A set of experimental results on both simu-
lated and real data illustrate the effectiveness of our approach.

I. I NTRODUCTION

In interferometric synthetic aperture radar systems, estima-
tion of the phase is a crucial point since there exists a known
relation between InSAR phase and height values of the ground
[1]. It is known that the measured phase (wrapped phase) is
given in the principal interval[−π, π], so phase unwrapping
(PU) problem has to be solved providing the absolute phase
(unwrapped phase). This problem is known to be an ill-
posed problem if the so-calledItoh condition (the absolute
value of phase difference between neighboring pixels is less
than π) is not satisfied [2]. Usually, in InSAR systems,Itoh
condition is violated due to the presence of discontinuities
and/or interferometric noise.

One of the methods proposed recently to solve thePU
problem in case ofnon-Itoh condition is the multichannel
Maximum a posteriori (MAP) estimation method described
in [3]. In this approach, thea priori statistical term is
modeled by an inhomogeneous Gaussian Markov Random
Field (GMRF), i.e.GMRF with local hyperparameters [4]. The
effectiveness of this method has been proved, even in presence
of discontinuities, high sloped areas and low coherence areas.
Anyway, it suffers of some limits in particular concerning the
computational time and the optimization step (no guaranty of
finding the global optimum).

In this work, we propose to improve this approach through
a new a priori Total Variation (TV) based model and using
energy optimization algorithms based on graph-cut theory.
This new approach presented in this paper, gives similar
solutions to the work of [3] in1/10th of the computation time.
Furthermore, the global optimum for the considered energy
function can be provided. The proposed method is validated
both on simulated and real data, showing its effectiveness.

It is important to mention the work [5] that proposed graph-
cut based optimization algorithms to solve thePU problem
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and [6] which is based on network programming optimization
technique. We underline that these two approaches belong to
minimum Lp norm unwrapping methods. Therefore, they do
not optimally exploit statistical properties of the noise present
on the data and they are not optimal from the information
theoretical point of view. Moreover, differently from these
approaches, we propose an algorithm that is able to unwrap
and restore the solution at the same time.

In the next section, we introduce the multichannel phase un-
wrapping (MCPU) technique with an inhomogeneousGMRF
model. In section III, we present our new approach based on
TV model and graph-cut optimization algorithms. Finally, we
present some results showing the reconstruction obtained on
simulated and real data.

II. M ULTICHANNEL PHASE UNWRAPPING

Multichannel phase unwrapping approach consists in com-
bining two or more independent interferograms. These inter-
ferograms can be obtained in two different ways, multifre-
quency and multibaseline configurations [7]. The interferomet-
ric phase signals can be modeled as:

φp,c =< αchp + wp,c >2π; p ∈ {1, ..., N}; c ∈ {1, ..., M}
(1)

with αc =
4πB⊥

c

λR0sin(θ) in case of multibaseline situation and

αc = 4πB⊥

λcR0sin(θ) in case of multifrequency situation. The
index p refers to the pixel position inside the image of size
N , index c to the considered channel which is one of theM
possible interferograms (frequencies or baselines),w is the
phase decorrelation noise,< . >2π represents themodulo−2π
operation,λ is the wavelength,B⊥ is the orthogonal baseline
of thecth SAR interferogram,θ is the SAR view angle andR0

is the distance of the first antenna to the center of the scene.
Defining these notations, the height reconstruction problem
consists in estimating the height valueshp of the whole scene,
using theN × M measured available wrapped phasesφp,c.
In the case ofM statistically independent channels, the
multichannel likelihood function is given by [3]:

F (Φ|h) =

N
∏

p=1

M
∏

c=1

f(φp,c|hp; αc, γp,c) (2)

where:

f(φp,c|hp; αc, γp,c) = 1
2π

1−|γp,c|
1−d2

(

1 + dcos−1(−d)
(1−d2)1/2

)

(3)

d = |γp,c| cos(φp,c − αchp)

is the single-channel likelihood function andγp,c is the co-
herence coefficient that depends on pixelp and on channel
c. In (2) Φ = [ΦT

0 Φ
T
1 ...ΦT

N ]T is the vector collecting all
available wrapped phase values,Φp = [φp,0φp,1...φp,M ]T is



the vector of the wrapped phases measured in pixelsp for
the M different channels andh = [h0h1...hN ]T is the vector
containing the ground elevation values. Following the Bayes
law, the MultichannelMAP estimation solution is given by:

ĥ = argmaxhF (Φ|h)gβ(h) (4)

where the functiong(.) is the prior probability ofh. A MRF
is used to modelh, whose expression is given in this case by:

gβ(h) =
1

Z(β)
e−Epriorβ

(h) (5)

where Z(β) is a normalization factor called the partition
function,Eprior(.) is the so-called energy function expressing
relationship between pixels andβ = [β0β1...βN ] is the
hyperparameter vector [8] that will be discussed later. The
energy function is defined in such a way to impose some
constraint on the neighboring pixels.

Different prior energy functions can be used to model our
problem. An effective model is the one proposed in [3], where,
the energyEprior is modeled by a localGMRF [9]:

Epriorβ
(h) =

∑

p∼q

(hp − hq)
2

2β2
p,q

(6)

p ∼ q denotes that pixelsp and q are neighbors within the
neighborhood systemN of theMRF model. The hyperparam-
eter vectorβ represents in this case the local spatial variations
of the unwrapped heights.

According to this approach,MAP estimation solution (4)
needs a previous estimation of the local hyperparameters
β which is performed using the Expectation Maximization
algorithm (EM) [8]. Then, optimization step is carried out
using asemi-deterministic solution. TheICM (Iterated Con-
ditional Modes) [8] algorithm is used for this purpose and
it is initialized with high-probability samples of the image
generated in the hyperparameter estimation. This algorithm,
although faster than simulated annealing, could not provide,
in some cases, a global optimum.

III. T OTAL VARIATION MODEL AND GRAPH-CUT

OPTIMIZATION

In this section, we introduce a new, simple and effective
energy function model, which combined with graph-cut based
optimization algorithms allows to develop a fast and robust
MCPU approach.

A. Total Variation based model

GMRF model used in [3] is a model well adapted to any
kind of profile (smooth, non-smooth and big discontinuities)
thanks to its local behavior and it has been proven that this
model combined with theICM optimization step gives good
results. However, this approach suffers of some limits. First,
it needs of estimating a parameterβp,q for each couple of
pixelsp, q which is computational heavy and excessively time
demanding. Secondly, thesemi-deterministic minimization ap-
proach doesn’t guarantee, in case of very noisy and wrapped
interferograms (energy function with many local minima),
to reach the global minimum since theICM is known to

be sensitive to local minima. Therefore, we propose a new
model for the prior energy,TV model, that leads to a faster
phase unwrapping algorithm. This new approach is a trade
off between the computation complexity, optimum quality and
prior model adaptation.

The TV model introduced in 1992 [10] is one of the most
used prior model in image processing due to its adequation
to different contextual information. InSAR applications,TV
model is mainly used for image restoration [11]. Our proposal
is to apply it to thePU problem. The prior energy correspond-
ing to the discretization ofTV [12] can be written as follows:

Eprior = β
∑

p∼q

wp,q|hp − hq| (7)

where wp,q depends on neighbor connexity (1 for 4 −
connexity and 1√

2
for the 4 diagonal ones in the case of

8− connexity). Note that in this expression,β is a scalar and
not a vector of hyperparameters as in theGMRF model. This
makes theTV model a non-local model. The choice of a non-
local prior energy is done in order to have a simplified model
and a faster algorithm since it avoids the estimation of a vector
of local hyperparameters. This choice is not as powerfull as
the local one proposed in [3], since it is not local. However,
between the existing non-local prior energy models,TV has
been chosen because its main advantage, is that it does not
penalize discontinuities in the image while simultaneously not
penalizing smooth functions either [10]. As it is well adapted
when dealing with strong discontinuities, it can be used in
case ofInSAR applications and particularly it well fits to urban
areas.

We propose in the next section a fastMCPU algorithm
based on graph-cut optimization method andTV prior.

B. Graph-cut based optimization

In the recent years, energy optimization with graph-cut
has become very popular in computer vision [13]. Graph-
cut optimization is successful because the exact minimum or
an approximate minimum with certain guaranties of quality
can be found in a polynomial time based on minimum-
cut/maximum flow algorithms [14]. Compared to the classical
optimization algorithm,Simulated Annealing [4], it provides
comparable results with much less computational time and
compared to the deterministic algorithmICM [8], it avoids
the risk of being trapped in local minima solution which can
be far from the global one.

Two families of graph-cut based optimization algorithms
have been developed in the recent years. The first one provides
the global optimum of the Markovian energy with some
constraints on the prior model [15], [12]. The second one
provides a local optimum within a good quality and in more
general cases of prior energies [13].

To solve theMCPU problem, we use two different graph-cut
based algorithms for the optimization scheme. The first one is
the one proposed in [15], that belongs to the exact optimization
algorithm family. The second one is a non-exact optimization
algorithm based onα-expansion move [13]. For the rest of
the paper, we define a set of labelsL which represents the
discretized heights that have to be estimated.
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1) Exact optimization algorithm: The exact optimization
algorithm proposed by Ishikawa is based on two hypothesis,
a linear order on the label set and convexity of thea priori
energy function. The latter is well satisfied in our approach
since theTV function is convex. A particular graph is con-
structed for which we compute the minimum cut. This graph
G containsN × K nodes (N is the size of the image and
K is the size of the label set) plus two special nodess and
t. For each pixelp, we associateK nodes that represent
all the possible labels that the pixelp can take. Besides,G
contains three families of edges: the data edges that represent
the multichannel likelihood energy terms; the constraint edges,
that ensure only one label is affected to a pixelp; the
interaction edges between all neighbor pixels. The general
capacity expressions associated to these edges are given in
[15]. This graph construction ensures that the minimum cut on
the graph provides the optimal configuration for ourMCPU
problem.

2) Non-exact optimization algorithm: α-expansion algo-
rithm has been proposed by Boykov et al. [13]. This ap-
proximate optimization approach is iterative and based on the
concept ofα-expansion move. The latter, consists on changing
a current configurationf by proposing to any set of image
pixels to change their labels toα. It finds a new configuration
f̂ that minimizes the energyE over all labelingsf ′ within
this move. Thus, in each iteration of the algorithm, a particular
graphGα is constructed where the minimum cut is computed.
The structure of the graph is determined by the current labeling
f and the labelα. This graph containsN nodes plus two
special nodess andt. The set of edges contains two families
of edges. Data edges that are related to the multichannel
likelihood function and interaction edges that are relatedto
the a priori function. Graph construction could be seen as a
one level of Ishikawa graph [16]. All nodes are connected
to the source and the sink weighted by the data function
and all neighbour nodes are connected to each others and
weighted by the prior function. To be graph representable, the
a priori function needs to be a metric [13]. It is easy to prove
that TV function satisfies this constraint. At convergence of
the algorithm, it is proved in [13] that the expansion move
algorithm produces a labelingf such that:

E(f∗) ≤ E(f) ≤ 2kE(f∗) (8)

wheref∗ is the global minimum ofE andk is a constant.

IV. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed method,
we present some results obtained both on simulated and real
data. The results presented were obtained with MATLAB
coding (max-flow algorithm is implemented in C++1, using
a PC Core 2 duo 2.66 Ghz with 2G memory). In all the
presented cases, to perform automatic regularization parameter
estimationβ, we used the method based on theL− curve, in
particular, the triangular method described in [17].

1by V. Kolmogorov, http://www.cs.cornell.edu/People/vnk/software.html

A. Simulated data

In this section, we will perform three different experiments.
In the first one, we will show the effectiveness of the proposed
approach concerning both the model and the optimization
algorithms based on graph-cuts. In the second one, we analyze
which kind of optimization algorithm (exact or non-exact) has
to be used for different phases that have to be unwrapped.
Finally a comparison with another multichannel PU method
is presented.

In the first experiment, we consider a height profile (64×64
pixels) with a maximum height of140m exhibiting both
smooth and discontinuous areas Fig.1(a). We used two fre-
quencies (5GHz and 9GHz) to generate interferograms and
we added interferometric noise with a coherence ofγ = 0.5. In
Fig.1(b), we show the5GHz noisy interferogram. Moreover,
for each working frequency we generated4 azimuth looks
allowing to generate a total ofM = 8 independent interfero-
grams. It is important to note that the profile is ambiguous for
both the working frequencies. In fact, there are height jumps
of 150 m, corresponding to phase jumps of about1.33π at
5GHz and 2.4π at 9GHz, which violate theItoh condition
[2]. For this reason, a classical single frequency phase un-
wrapping method would fail. The multichannel approach can
overcome this problem. In figures 1(c) 1(d) we show the results

(a) (b)

(c) (d)

Fig. 1. Comparison between results ofGMRF prior model andTV prior
model. (a) Original profile, (b) noisy interferogram, reconstruction with (c)
the multichannel approach of [3], (d) the proposed multichannel approach.

obtained respectively with the multichannel approach of [3]
and with the new proposed algorithm. It can be seen that both
reconstruction profiles appear very similar to the reference
(Fig. 1(a)). Note that the proposed approach works very well
when the profile is flat or when there is a discontinuity,
while the reconstruction quality decreases, compared to the
one provided by the approach of [3], when we face a smooth
but not flat profile, such as the gaussian profile in the top right
corner. The normalized reconstruction square error definedby
eh = ‖ĥ−h‖2

‖h‖2 , whereĥ is the estimated profile andh is the
reference profile is equal to2.05 × 10−2 in the first case and
1.93×10−2 in the second. It is very interesting to see, looking
at the square object at the right bottom of Fig. 1(d), how
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the TV model is well adapted for this kind of profile which
simulates a typical urban building as we will see next in real
data experiments.

Although reconstruction results are mainly the same using
the previous and new approach, their performances in term of
execution time are not comparable. In fact, while the new algo-
rithm takes less than one minute, the classical one is10 times
slower due to the local hyperparameter estimation. Another
point has to be noted. Since the optimization algorithm based
on graph-cut used in this experiment is Ishikawa algorithm,we
are sure to obtain the exact solution. Whereas, usingICM in
the optimization step as in [3] we still risk of being trappedin
local minima solution. Note that in this case, due to the energy
function used in this experiment, alsoα-expansion algorithm
provided the global solution.

In the second experiment, we compare the two graph-cut
based optimization algorithms, Ishikawa andα-expansion. The
analysis will be based on two characteristics of the wrapped
interferogram, size of interferogram and the phase rate. First,
we fix the phase rate and we consider different interferogram
sizes. We use the reference profile of the first experiment
Fig. 1(a) with the same system parameters (coherence, fre-
quencies and channels) and a fixed value ofβ. Results given by
the two optimization algorithms are the same (global solution
is provided). The computational times are shown in table I. We
note two important aspects. First, we can see thatα-expansion
is faster than Ishikawa algorithm in all the considered cases.
Secondly, there exist a threshold after which Ishikawa algo-
rithm becomes extremely time and memory consuming. In
fact, α-expansion based optimization algorithm is computed
in polynomial time, since the graph constructed is linear with
respect to the number of pixels,O(N), and algorithm used for
the maximum flow computation is polynomial. However, for
Ishikawa algorithm, although maximum flow can be computed
in polynomial time, algorithm has only a pseudo-polynomial
time complexity, since the number of nodes grows linearly
with respect to the number of labels (O(N × L) in case of
TV prior model).

TABLE I
OPTIMIZATION TIME IN SECONDS FORα-EXPANSION AND ISHIKAWA

ALGORITHMS USING DIFFERENT INTERFEROGRAM SIZES.

Time / Size 64 × 64 128 × 128 192 × 192 256 × 256

α-expansion (sec) 2 10 30 44
Ishikawa (sec) 24 102 232 350

Then, we fix the size and we consider different interfero-
gram phase rates. In this case, we will base our analysis on
the profile of Fig.2(a) (160× 160 pixels) which is a Gaussian
profile. The maximum height of the profile is90rad. The
system parameters are the same as for the first experiment. In
Fig. 2(b), we show the least ambiguous noisy interferogram.
Due to the large phase rate, large enough to produce aliasing,
the energy function presents many local minima that are very
near to the global one. This property violates the distance
condition (8) needed for theα-expansion algorithm to reach
the global solution. In this case, Ishikawa is more adapted
and provides the best solution for thePU problem. Figures

(a) (b)

(c) (d)

Fig. 2. Comparison between exat and non-exact solutions. (a) Original
Gaussian profile, (b) noisy interferogram, reconstructionwith (c) α-expansion
algorithm, (d) Ishikawa algorithm.

2(c) 2(d) represent respectively the reconstruction obtained
using α-expansion and Ishikawa algorithms. Using Ishikawa
approach, we obtain a normalized square reconstruction error
of 9.4 × 10−4.

Finally, we compared the proposed approach to another
MCPU method, the Phase Difference (PD) based algorithm
proposed by Fornaro et al [18]. We considered a realistic
profile of 458× 157 pixels representing the mountains around
the Isolation Peak in Colorado (see Fig. 3(a)). Starting from
the latter, we simulatedM = 6 interferograms (different
baselines), with a coherenceγ = 0.5. The vector containing
the used baseline lenghts, normalized to a reference one,
is [ 8

13 , 11
13 , 1, 17

13 , 20
13 , 23

13 ]. Note that such data sets can be
unwrapped using a single channel interferograms only in case
of very high coherence values. Fig. 3(b) shows the least
ambiguous noisy interferogram (the one obtained using a
baseline ratio equal to813 ). The unwrapped results, obtained
using the PD algorithm and Ishikawa + TV algorithm are
shown respectively in Figures Fig. 3(c) 3(d). The Ishikawa
+ TV method is able to unwrap and restore the profile in
the same time with a better accuracy compared to the PD
algorithm. The good restoring capabilities of our approach
can be appreciated, considering Figures 3(e) 3(f), where the
reconstruction error maps obtained using the two methods are
shown. In the case of PD reconstruction, a5× 5 median filter
has been applied before calculating the reconstruction error
map. This has been done in order to compare our result with
the best achievable result by PD algorithm. Even after median
filtering, the PD solution is still not as accurate as the one
provided by our method. Note that, no additional filtering is
required by our algorithm to provide the shown results.

B. Real data

We tested our new proposed algorithm on a real data
set of an urban scenario. We used a set of8 L-Band E-
SAR interferograms (2 interferograms for each of the four
polarizations) acquired on the city of Dresden. The smallest
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison between PD algorithm and the proposed approach. (a)
Original profile, (b) least ambiguous noisy interferogram,(c) reconstruction
using the PD algorithm, (d) reconstruction using the proposed algorithm, (e)
reconstruction errors map for the PD algorithm solution, after filtering with a
5×5 median filter, (f) reconstruction errors map using the proposed approach.

orthogonal baseline is of about8.42m and the biggest is of
about 28.34m. We applied our new approach based on the
TV model and Ishikawa algorithm. Even if the height of the
building in the first interferogram is less than the ambiguous
height (hamb ∈ {38.5m, 11.5m}) Fig.4(a), due to the presence
of noise, the Itoh condition is violated in some areas. So, ifwe
apply a classic single channel approach, the solution will show
some errors in these areas. Using our approach, it is possible to
retrieve the correct height of the building. Note that the height
of the roof building is almost constant Fig. 4(c). Moreover,it is
possible to note the goodness of theTV model since contours
of buildings are recovered very efficiently Fig.4(d).

(a) (b)

(c) (d)

Fig. 4. 3D reconstruction of real data. (a) Noisy interferogram (least ambigu-
ous one), (b) coherence map of the previous interferogram, (c) reconstruction
with the proposed approach, (d) 3D view of the reconstruction.

V. CONCLUSION

In this paper, we developed a new multichannel phase
unwrapping methodology based on TV prior model and graph-
cut optimization algorithms. The proposed algorithm over-
comes the limits that characterize otherMCPU approaches.
Moreover, with Ishikawa optimization algorithm, we are able
to reach the exact energy optimum. We have tested this ap-
proach on simulated data and we obtained good results both in
term of reconstruction error and computational time. As it has
been proved to be effective dealing with high discontinuities,
we also tested the proposed method on realInSAR urban data.
Future work will focus on the implementation of the proposed
method using graph cut based algorithms that are both robust
and not excessively memory consuming.
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