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Abstract—Markovian approaches have proven to be effective and [6] which is based on network programming optimization
for solving the multichannel phase unwrapping problem, es- technique. We underline that these two approaches belong to
pecially when dealing with noisy data and big discontinuites. minimum L? norm unwrapping methods. Therefore, they do

This paper presents a markovian approach to solve the phase . . o . .
unwrapping problem based on a newa priori model, the Total not optimally exploit statistical properties of the noisegent

Variation, and graph-cut based optimization algorithms. The ©OnN the data and they are not optimal from the information
proposed method turns to be fast, simple and robust. Moreove theoretical point of view. Moreover, differently from thes

compared to other approaches, the proposed algorithm is ablto  approaches, we propose an algorithm that is able to unwrap
unwrap and restore the solution in the same time, without any and restore the solution at the same time

additional filtering. A set of experimental results on both $mu-

lated and real data illustrate the effectiveness of our appwach. In the next section, we introduce the multichannel phase un-

wrapping MCPU) technique with an inhomogeneoGMRF
model. In section Ill, we present our new approach based on
TV model and graph-cut optimization algorithms. Finally, we

) ) ) ~ present some results showing the reconstruction obtained o
In interferometric synthetic aperture radar systemsmesti gimulated and real data.

tion of the phase is a crucial point since there exists a known
relation between INSAR phase and height values of the ground
[1]. It is known that the measured phaserdpped phase) is
given in the principal interva]—7, 7], so phase unwrapping Multichannel phase unwrapping approach consists in com-
(PU) problem has to be solved providing the absolute phaB#ing two or more independent interferograms. These -nter
(unwrapped phase). This problem is known to be an ill- ferograms can be obtained in two different ways, multifre-
posed problem if the so-calledoh condition (the absolute quency and multibaseline configurations [7]. The intenfieet
value of phase difference between neighboring pixels is le4C phase signals can be modeled as:
than ) is not satisfied [2]. Usually, in INSAR systemisoh o ) )
condition is violated due to the presence of discontinsitie Ope =< @chy +wpe >omi p €{L,.. N} € {1, ”"Mgl)
and/or interferometric noise. . anBLt . . . N

One of the methods proposed recently to solve B with o, = METM in case of multibaseline situation and
problem in case ofon-Itoh condition is the multichannel e = #% in case of multifrequency situation. The
Maximum a posteriori (MAP) estimation method describetdex p refers to the pixel position inside the image of size
in [3]. In this approach, thea priori statistical term is XV, indexc to the considered channel which is one of thie
modeled by an inhomogeneous Gaussian Markov Rand@@ssible interferograms (frequencies or baselines)s the
Field (GMRF), i.e. GMRF with local hyperparameters [4]. Thephase decorrelation noise,. >, represents thewodulo—2m
effectiveness of this method has been proved, even in preseperation\ is the wavelengthB+ is the orthogonal baseline
of discontinuities, high sloped areas and low coherencasareof thec” SAR interferogramd is the SAR view angle an,
Anyway, it suffers of some limits in particular concernidget is the distance of the first antenna to the center of the scene.
computational time and the optimization step (no guaranty Befining these notations, the height reconstruction prable
finding the global optimum). consists in estimating the height valugsof the whole scene,

In this work, we propose to improve this approach througksing theN x M measured available wrapped phaggs.
a newa priori Total Variation V) based model and usingIn the case ofA/ statistically independent channels, the
energy optimization algorithms based on graph-cut theofpultichannel likelihood function is given by [3]:
This new approach presented in this paper, gives similar N M
solutions to the work of [3] in /10" of the computation time. _ .
Furthermore, the global optiinum for the considered energy F(elh) H Hf((bp,clhp,ac,'yp,c) @)
function can be provided. The proposed method is validate
both on simulated and real data, showing its effectiveness./"er€:

It is important to mention the work [5] that proposed graph- . — 1 1= dcos’l(—d))
cut based optimization algorithms to solve tR& problem F(@pclhyi 0 tpe) = 271k (1 ) O

I. INTRODUCTION

Il. MULTICHANNEL PHASE UNWRAPPING
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the vector of the wrapped phases measured in pigeisr be sensitive to local minima. Therefore, we propose a new
the M different channels anth = [hoh;...hx]|7 is the vector model for the prior energyTV model, that leads to a faster
containing the ground elevation values. Following the Bay@hase unwrapping algorithm. This new approach is a trade
law, the MultichanneMAP estimation solution is given by: off between the computation complexity, optimum qualitglan

N prior model adaptation.

h = argmaznF(2[h)gs(h) " The TV model introduced in 1992 [10] is one of the most
where the functiory(.) is the prior probability ofh. A MRF used prior model in image processing due to its adequation
is used to modeh, whose expression is given in this case byio different contextual information. I$AR applications, TV

1 . model is mainly used for image restoration [11]. Our proposa
gs(h) = Z(ﬁ)e_EP”""ﬁ( ) (5) isto apply it to thePU problem. The prior energy correspond-
ing to the discretization ofV [12] can be written as follows:
where Z(3) is a normalization factor called the partition

function, E,,;..(.) is the so-called energy function expressing Eprior = 3 Z Wp.alhp = hyl (7)

relationship between pixels and = [Gyf51...0n] is the L

hyperparameter vector [8] that will be discussed later. Th¥here w,, depends on neighbor connexity (for 4 —

energy function is defined in such a way to impose somtennexity and — for the 4 diagonal ones in the case of

constraint on the neighboring pixels. 8 — connexity). Note that in this expressiop, is a scalar and
Different prior energy functions can be used to model oumot a vector of hyperparameters as in GBEIRF model. This

problem. An effective model is the one proposed in [3], whergnakes theTV model a non-local model. The choice of a non-

the energyE,, ;. iS modeled by a locaBMRF [9]: local prior energy is done in order to have a simplified model
Y and a faster algorithm since it avoids the estimation of @orec
Epriory(h) = Z (hp = hg)” (6) of local hyperparameters. This choice is not as powerfull as
B 2032 . . L
g D.q the local one proposed in [3], since it is not local. However,

between the existing non-local prior energy moddaMg, has

~ ¢ denotes that pixelp and g are neighbors within the ; i . .
b 4 pixe'® I g been chosen because its main advantage, is that it does not

neighborhood systeoV of the MRF model. The hyperparam- . . T . SO

eter vectors represents in this case the local spatial variatiorpfnal!z_e discontinuities n the Image while s!rr!ultaney)mit

of the unwrapped heights. penalizing .smooj[h functlons_elther_ [191. AS.I'[ is well adzght .
According to this approachyIAP estimation solution (4) when dealing W|th sFrong dlscont_lnwtles,_ it can be used in

needs a previous estimation of the local hyperparamet&f?e ofinSAR applications and particularly it well fits to urban

£ which is performed using the Expectation Maximizatio

algorithm EM) [8]. Then, optimization step is carried out

using asemi-deterministic solution. ThelCM (lterated Con-

ditional Modes) [8] algorithm is used for this purpose and L

it is initialized with high-probability samples of the imag B. Graph-cut based optimization

generated in the hyperparameter estimation. This algorith In the recent years, energy optimization with graph-cut

although faster than simulated annealing, could not pegvidias become very popular in computer vision [13]. Graph-

We propose in the next section a fadiCPU algorithm
based on graph-cut optimization method &nd prior.

in some cases, a global optimum. cut optimization is successful because the exact minimum or
an approximate minimum with certain guaranties of quality
I1l. TOTAL VARIATION MODEL AND GRAPH-CUT can be found in a polynomial time based on minimum-
OPTIMIZATION cut/maximum flow algorithms [14]. Compared to the classical

In this section, we introduce a new, simple and effectiv%m'm'zat'on algorithm Smulated Annealing [4], it provides

. : . : ) comparable results with much less computational time and
energy function model, which combined with graph-cut basegmpared o the deterministic algoritht&M [8], it avoids

&pggdZZEBTOZ?horlthms allows to develop a fast and robu Pe risk of being trapped in local minima solution which can

be far from the global one.
o Two families of graph-cut based optimization algorithms
A. Total Variation based model have been developed in the recent years. The first one psovide
GMRF model used in [3] is a model well adapted to anyhe global optimum of the Markovian energy with some
kind of profile (smooth, non-smooth and big discontinujtieconstraints on the prior model [15], [12]. The second one
thanks to its local behavior and it has been proven that thisovides a local optimum within a good quality and in more
model combined with théCM optimization step gives good general cases of prior energies [13].
results. However, this approach suffers of some limitsstFir To solve theMICPU problem, we use two different graph-cut
it needs of estimating a parametgy , for each couple of based algorithms for the optimization scheme. The first ene i
pixels p, ¢ which is computational heavy and excessively timthe one proposed in [15], that belongs to the exact optinoizat
demanding. Secondly, tleemi-deterministic minimization ap- algorithm family. The second one is a non-exact optimizatio
proach doesn’t guarantee, in case of very noisy and wrappddorithm based om-expansion move [13]. For the rest of
interferograms (energy function with many local minima)he paper, we define a set of labelswhich represents the
to reach the global minimum since tHEM is known to discretized heights that have to be estimated.



1) Exact optimization algorithm: The exact optimization A. Smulated data
algorithm proposed by Ishikawa is based on two hypothesis,, this section, we will perform three different experiment
a linear order on the label set and convexity of &heriori | the first one, we will show the effectiveness of the propose
energy function. The latter is well satisfied in our approa%proach concerning both the model and the optimization
since theT'V" function is convex. A particular graph is con-yigorithms based on graph-cuts. In the second one, we analyz
structed for which we compute the minimum cut. This graphich kind of optimization algorithm (exact or non-exactsh
g containsN x K nodes (V is the size of the image andy pe ysed for different phases that have to be unwrapped.
K is the size of the label set) plus two special nodeand  Finally a comparison with another multichannel PU method
t. For each pixelp, we associatek’ nodes that represent;g presented.
all the possible labels that the pixglcan take. Besidegy In the first experiment, we consider a height profilé % 64
contains three families of edges: the data edges that Elregixels) with a maximum height ofl40m exhibiting both
the multichannel likelihood energy terms; the constratiges, smooth and discontinuous areas Fig.1(a). We used two fre-
that ensure only one label is affected to a pixel the guencies §GH=> and9GHz=) to generate interferograms and
interaction edges between all neighbor pixels. The genej@d 4qded interferometric noise with a coherence ef 0.5. In
capacity expressions associated to these edges are giveﬁi@jl(b)’ we show théG Hz noisy interferogram. Moreover,
[15]. This graph construction ensures that the minimum out ¢, e5ch working frequency we generatédazimuth looks
the graph provides the optimal configuration for ME€PU  gjowing to generate a total aff = § independent interfero-
problem. grams. It is important to note that the profile is ambiguous fo

2) Non-exact optimization algorithm: a-expansion algo- poth the working frequencies. In fact, there are height jsmp
rithm has been proposed by Boykov et al. [13]. This agf 150 m, corresponding to phase jumps of abbBdr at
proximate optimization approach is iterative and basechen t5G 17, and 2.47 at 9GHz, which violate theltoh condition
concept ofa-expansion move. The latter, consists on changir[g]. For this reason, a classical single frequency phase un-
a current configuratiorf by proposing to any set of imagewrapping method would fail. The multichannel approach can

pixels to change their labels te It finds a new configuration gyvercome this problem. In figures 1(c) 1(d) we show the result
/ that minimizes the energy’ over all labelings’ within

this move. Thus, in each iteration of the algorithm, a paftc
graphg, is constructed where the minimum cut is computed._

The structure of the graph is determined by the currentiiagpel v A :
special nodes andt. The set of edges contains two families - o0 gt
@)

f and the labela. This graph containgV nodes plus two

of edges. Data edges that are related to the multichann:
likelihood function and interaction edges that are relaied

the a priori function. Graph construction could be seen as a
one level of Ishikawa graph [16]. All nodes are connected
to the source and the sink weighted by the data functior
and all neighbour nodes are connected to each others ar

a (b)
weighted by the prior function. To be graph representabke, t - H E H
() (d)

a priori function needs to be a metric [13]. It is easy to prove
Fig. 1. Comparison between results @MRF prior model andTV prior

that TV function satisfies this constraint. At convergence of
the algorithm, it is proved in [13] that the expansion move

E(f*) < E(f) < 2kE(f*) (8) model. (a) Original profile, (b) noisy interferogram, restmction with (c)
the multichannel approach of [3], (d) the proposed muliicted approach.

algorithm produces a labelinfy such that:

where f* is the global minimum off andk is a constant.

obtained respectively with the multichannel approach ¢f [3
and with the new proposed algorithm. It can be seen that both
reconstruction profiles appear very similar to the refegenc

In order to prove the effectiveness of the proposed methdfig- 1(2)). Note that the proposed approach works very well
we present some results obtained both on simulated and AN the profile is flat or when there is a discontinuity,
data. The results presented were obtained with MATLABhile the reconstruction quality decreases, compared ¢o th
coding (max-flow algorithm is implemented in C+#+ using ©ne provided by the approach of [3], when we face a smooth
a PC Core 2 duo 2.66 Ghz with 2G memory). In all theut not flat profile, such as the gaussian profile in the toptrigh
presented cases, to perform automatic regularizatiompztea  COrner. ATheQnormaIizEad reconstruction square error defiryed
estimation3, we used the method based on the curve, in  en = ”lﬂ;ﬁlzn , whereh is the estimated profile anl is the
particular, the triangular method described in [17]. reference profile is equal .05 x 102 in the first case and

1.93x 1072 in the second. It is very interesting to see, looking

by V. Kolmogorov, http:/mwww.cs.cornell.edu/Peoplefistftware.ntml  at the square object at the right bottom of Fig. 1(d), how

IV. EXPERIMENTAL RESULTS




the TV model is well adapted for this kind of profile which
simulates a typical urban building as we will see next in real
data experiments.

Although reconstruction results are mainly the same using
the previous and new approach, their performances in term ¢
execution time are not comparable. In fact, while the new-alg S
rithm takes less than one minute, the classical ond ismes @ (b)
slower due to the local hyperparameter estimation. Anothe
point has to be noted. Since the optimization algorithm thase
on graph-cut used in this experiment is Ishikawa algoritiva,
are sure to obtain the exact solution. Whereas, ukilg in
the optimization step as in [3] we still risk of being trapgad
local minima solution. Note that in this case, due to the gyer
function used in this experiment, alseexpansion algorithm
provided the global solution.

In the second experiment, we compare the two graph-cut
based optimization algorithms, Ishikawa an@xpansion. The F19- 2. Comparison between exat and non-exact solutionsO(@inal

. . L. Gaussian profile, (b) noisy interferogram, reconstructidth (c) a-expansion
analysis will be based on two characteristics of the Wrappgéorithm, (d) Ishikawa algorithm.
interferogram, size of interferogram and the phase ratst,Fi
we fix the phase rate and we consider different interferogram
sizes. We use the reference profile of the first experime2(c) 2(d) represent respectively the reconstruction abthi
Fig. 1(a) with the same system parameters (coherence, figing a-expansion and Ishikawa algorithms. Using Ishikawa
guencies and channels) and a fixed valug.dkesults given by approach, we obtain a normalized square reconstructiam err
the two optimization algorithms are the same (global sotuti of 9.4 x 10—*.
is provided). The computational times are shown in tabled. W Finally, we compared the proposed approach to another
note two important aspects. First, we can see dhakpansion MCPU method, the Phase Difference (PD) based algorithm
is faster than Ishikawa algorithm in all the considered sasroposed by Fornaro et al [18]. We considered a realistic
Secondly, there exist a threshold after which Ishikawa -algprofile of 458 x 157 pixels representing the mountains around
rithm becomes extremely time and memory consuming. the Isolation Peak in Colorado (see Fig. 3(a)). Startingnfro
fact, a-expansion based optimization algorithm is computatie latter, we simulated/ = 6 interferograms (different
in polynomial time, since the graph constructed is lineahwibaselines), with a coherenee= 0.5. The vector containing
respect to the number of pixel9,(V), and algorithm used for the used baseline lenghts, normalized to a reference one,
the maximum flow computation is polynomial. However, fors [%,%,17%7%%} Note that such data sets can be
Ishikawa algorithm, although maximum flow can be computeshwrapped using a single channel interferograms only ie cas
in polynomial time, algorithm has only a pseudo-polynomiaf very high coherence values. Fig. 3(b) shows the least
time complexity, since the number of nodes grows linearlymbiguous noisy interferogram (the one obtained using a
with respect to the number of label®(V x L) in case of baseline ratio equal tg). The unwrapped results, obtained

(d)

TV prior model). using the PD algorithm and Ishikawa + TV algorithm are
shown respectively in Figures Fig. 3(c) 3(d). The Ishikawa
TABLE | + TV method is able to unwrap and restore the profile in
OPTIMIZATION TIME IN SECONDS FORa-EXPANSION AND | SHIKAWA . .
ALGORITHMS USING DIFFERENT INTERFEROGRAM SIZES the same time with a better accuracy compared to the PD

algorithm. The good restoring capabilities of our approach
[ Time/Size [ 64x64 | 128x 128 | 192x 192 | 256 x 256 | can be appreciated, considering Figures 3(e) 3(f), wheze th
a]gﬁ?gﬂo&g‘;c) 224 11(;)2 233?2 ??5?0 reconstruction error maps obtained using the two methoels ar
shown. In the case of PD reconstructiori a 5 median filter
has been applied before calculating the reconstructioor err
Then, we fix the size and we consider different interfergnap. This has been done in order to compare our result with
gram phase rates. In this case, we will base our analysis {8 pest achievable result by PD algorithm. Even after nmedia
the profile of Fig.2(a) 160 x 160 pixels) which is a Gaussian fiitering, the PD solution is still not as accurate as the one
profile. The maximum height of the profile 80rad. The provided by our method. Note that, no additional filtering is

system parameters are the same as for the first experimentdguired by our algorithm to provide the shown results.
Fig. 2(b), we show the least ambiguous noisy interferogram.

Due to the large phase rate, large enough to produce aljasing

the energy function presents many local minima that are vé)’y Real data

near to the global one. This property violates the distanceWe tested our new proposed algorithm on a real data
condition (8) needed for the-expansion algorithm to reachset of an urban scenario. We used a set8ofE-Band E-

the global solution. In this case, Ishikawa is more adapt&RR interferograms 2 interferograms for each of the four
and provides the best solution for thRtJ problem. Figures polarizations) acquired on the city of Dresden. The smalles
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Fig. 3. Comparison between PD algorithm and the proposecbapp. (a)
Original profile, (b) least ambiguous noisy interferograt), reconstruction
using the PD algorithm, (d) reconstruction using the pregaalgorithm, (e)
reconstruction errors map for the PD algorithm solutioterafiltering with a

(e) ®

5x 5 median filter, (f) reconstruction errors map using the psggbapproach.

orthogonal baseline is of abo&t42m and the biggest is of
about28.34m. We applied our new approach based on th%
TV model and Ishikawa algorithm. Even if the height of the

V. CONCLUSION

In this paper, we developed a new multichannel phase
unwrapping methodology based on TV prior model and graph-
cut optimization algorithms. The proposed algorithm over-
comes the limits that characterize othdCPU approaches.
Moreover, with Ishikawa optimization algorithm, we are abl
to reach the exact energy optimum. We have tested this ap-
proach on simulated data and we obtained good results both in
term of reconstruction error and computational time. Asai$ h
been proved to be effective dealing with high discontimgiti
we also tested the proposed method on B8AR urban data.
Future work will focus on the implementation of the proposed
method using graph cut based algorithms that are both robust
and not excessively memory consuming.
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