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Abstract—In this paper, a method to solve the multichannel
phase unwrapping problem is presented. MAP approach together
with Markov Random Fields have proved to be effective, allowing
to restore the uniqueness of the solution without introducing
external constraints to regularize the problem. The idea isto
develop a fast algorithm to unwrap the interferometric phase in
the multichannel configuration, which is, in the main time, able
to provide the global optimum solution. To reach this target,
an a priori model based on Total Variation is used together
with optimization algorithm based on graph-cut technique.The
proposed approach has been tested both on simulated and real
data. The obtained results show the effectiveness of our approach.

I. I NTRODUCTION

Interferometric Synthetic Aperture Radar (InSAR) systems
allow to generate Digital Elevation Model (DEM) of Earth
Surface. This is possible since there is a known relation
between the interferometric SAR phase and the height of the
ground [1].

When dealing with InSAR DEM reconstruction, the main
problem we encounter is the phase unwrapping operation,
since the measured interferometric phase is known in the
principal interval (-π, π] (wrapped phase). In order to restore
the relation between interferometric phase and ground height,
necessary to generate the DEM, we need to unwrap the phase
(i.e. to know the phase in its absolute values).

The unwrapping operation is not an easy task. In particular,
if we are not in the so calledItoh condition [2] (the absolute
value of phase difference between neighboring pixels is less
than π), the phase unwrapping operation becomes an ill-
posed problem. TheItoh condition is easily violated in real
InSAR data, due both to the presence of low coherence
areas and to the presence of high discontinuities. This is
particularly evident in urban scenarios where buildings can
be characterized by high phase jumps. To solve the phase
unwrapping problem innon-Itoh condition, an efficient and
robust method is the multichannel phase unwrapping [3]. Mul-
tichannel InSAR techniques exploit the availability of different
and independent interferograms referred to the same scene,
obtained using different channels (baselines or frequencies). In
order to combine these different available channels, a statistical
approach based on Maximum a Posteriori (MAP) estimation

can be used. In this MAP approach, the data term is provided
by the multichannel likelihood function, while the prior term is
modeled by a Markov Random Field. The MAP multichannel
phase unwrapping problem can be equivalently seen as an
energy minimization problem.

The idea of this paper is to provide a fast and efficient
(in term of global optimization) algorithm to unwrap the
interferometric phase in the multichannel configuration. To
reduce the computational time needed to unwrap the multi-
channel interferometric phase, we worked in two directions.
First, we considered a non-local prior energy function and
secondly, we used optimization algorithms based ongraph-cut
technique. For thea priori energy function, the Total Variation
(TV) model [4] has been chosen. Even if it is a non-local
model, TV model is well adapted when dealing with strong
discontinuities. Therefore, it can be used in case of InSAR
applications and it particularly well fits to urban scenario. For
the optimization step, we used a graph-cut based optimization
algorithm which is able to reach the global optimum (exact
optimization algorithm). The approach proposed by Ishikawa
[5] is used for this purpose.

Our algorithm has been tested on simulated data and on real
urban data. The obtained results, for both cases, prove the
effectiveness of the proposed method, both in term of short
computational time, effectiveness and optimum quality (the
global optimum is reached) and assess the overall interest of
the proposed algorithm.

II. MAP M ULTICHANNEL PHASE UNWRAPPING

In InSAR multichannel systems, a collection of interfero-
grams is acquired using a multifrequency or a multibaseline
configuration. The interferometric phase signals can be mod-
eled as:

φp,c =< αchp + wp,c >2π (1)

with p ∈ {0, ..., N − 1}, c ∈ {0, ..., M − 1} and

• αc =
4πB⊥

c

λR0sin(θ) in case of multibaseline method,

• αc = 4πB⊥

λcR0sin(θ) in case of multifrequency method.
The indexp refers to the pixel position inside the image

of size N , index c to the considered channel which is one



of the M possible interferograms (frequencies or baselines),
w is the phase decorrelation noise,< . >2π represents the
modulo − 2π operation,λ is the wavelength andB⊥ is the
orthogonal baseline of thecth SAR interferogram,θ is the
SAR view angle andR0 is the distance of the first antenna to
the center of the scene. Defining these notations, the height
reconstruction problem consists in estimating the height values
hp of the whole scene, using theN × M measured available
wrapped phasesφp,c.

In the case ofM statistically independent channels, the
multichannel likelihood function is given by [6]:

F (Φ|h) =

N−1
∏

p=0

M−1
∏

c=0

f(φp,c|hp; αc, γp,c) (2)

where:

f(φp,c|hp; αc, γp,c) =
1

2π

1 − |γp,c|

1 − d2

(

1 +
dcos−1(−d)

(1 − d2)1/2

)

d = |γp,c|cos(φp,c − αchp)

is the singlechannel likelihood function andγp,c is the
coherence coefficient that depends on pixelp and on channel
c. In (2) Φ = [ΦT

0 Φ
T
1 ...ΦT

N−1]
T is the vector collecting all

available wrapped phase values,Φp = [φp,0φp,1...φp,M−1]
T is

the vector of the wrapped phases measured in pixelsp for the
M different channels andh = [h0h1...hN−1]

T is the vector
containing the ground elevation values. Following the Bayes
law, the MultichannelMAP estimation solution is given by:

ĥ = argmax
h
F (Φ|h)gβ(h) (3)

where the functiong(.) is the prior probability ofh. A
Markov Random Field is used to modelh, whose expression
is given in this case by:

gβ(h) =
1

Z(β)
e
−Epriorβ

(h) (4)

where Z(β) is a normalization factor called the partition
function,Eprior(.) is the so-called energy function expressing
relationship between pixels andβ is the hyperparameter [7]
which is used to tune the prior model. Whenβ is a scalar,
the model is a non-local model, otherwise it is defined as
a local model. The prior energy function is defined in such
a way to impose some constraint on the neighboring pixels.
Different prior energy functions can be used to model our
problem. For our purpose, we chose theTV model, which is
a non-local model that presents some interesting features.In
the next section theTV model is analyzed.

III. E NERGY FUNCTION MODEL

In order to develop a fast and robust multichannel phase
unwrapping algorithm theTV model has been used for the
prior energy. This prior model, introduced in 1992 [4], is
one of the most used prior model in image processing due
to its adequation to different contextual information. In SAR
applications,TV model is mainly used for image restoration

[8]. Our proposal is to apply it to the phase unwrapping
problem.

The prior energy corresponding to the discretization ofTV
can be written [9] as follows:

Eprior = β
∑

p∼q

wp,q|hp − hq| (5)

where p ∼ q denotes two neighboring pixelsp and q. The
coefficient wp,q depends on neighbor connexity (1 for 4 −
connexity and 1√

2
for the 4 diagonal ones in the case of8−

connexity). Note that in this expression,β is a scalar (a single
hyperparameter is used for the whole image). This makes the
TV model a non-local model. The choice of a non-local prior
energy is done in order to make the algorithm faster since it
avoids the estimation of a vector of local hyperparameters as
in [3].

Between the existing non-local prior energy models,TV
has been chosen because its main advantage, towards other
non-local prior energy models, is that it does not penalize
discontinuities in the image while simultaneously not penal-
izing smooth functions either [4].TV, in fact, looks for an
approximation of the original noisy image which has minimal
total variation but without particular bias to discontinuity or
smooth solution. As theTV prior model is well adapted when
dealing with strong discontinuities, it can be used in case of
InSAR applications and particularly it well fits to urban areas.
So, in order to develop a fast algorithm, we considered this
a priori energy. We note that this choice is not as good and
powerful as the local one proposed in [3], since it is not local.
However, compared to other non-local models, it is the best
for our purpose.

Given theTV prior energy model (5), the function to be
minimized to recover the multichannel height reconstruction
solution is given by:

ĥ = argmax
h
F (Φ|h)gβ(h)

= argmin
h

∑

p

∑

c

− log f(φp,c|hp; αc, γp,c) +

+ β
∑

p∼q

wp,q|hp − hq| (6)

In the next section the proposed method to minimize this
energy in order to obtain the global optimum is explained.

IV. FAST AND EXACT OPTIMIZATION ALGORITHM

Fast and exact optimization algorithms are needed in many
computer vision problems. In recent years, new energy opti-
mization approaches have been proposed [5], [9], [10] based
on graph-cut technique, which has become very popular due
to its low time computation. Compared to the classical op-
timization algorithm Simulated Annealing [11], it provides
comparable results with much less computational time and
compared to the deterministic algorithm ICM [12], it avoids
the risk of being trapped in a local minimum of the energy that
is far from the global one. We use, in this work, the graph-cut
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optimization algorithm proposed by Ishikawa [5], that is able,
under certain conditions, to provide the global optimum of the
considered problem.

SupposeG = (V , E) is a directed graph with non negative
edge weights, whereV is the set of vertices andE the set of
edges. This graph has two special vertices (terminals) called
the sources and thesink t. We define ans-t-cut C = {S, T }
as a partition of the vertices into two disjoint setsS and T
such thats ∈ S andt ∈ T . The cost of this cut is the sum of
weights (costs) of all edges that go fromS to T .

|Cs,t| =
∑

u∈S
v∈T

(u,v)∈U

w(u, v) (7)

The minimums-t-cut problem consists in finding a cutC
with the smallest cost. This problem is exactly equivalent to its
dual problem which consists in computing the maximum flow
growing from the source to the sink [13]. Many algorithms
have been proposed to solve the maximum flow problem with
a polynomial time [14]. In our work, we will use the maximum
flow algorithm given by [15] which is the most adapted to
computer vision problems.

The exact optimization algorithm proposed by Ishikawa is
based on two hypothesis: convexity of thea priori energy
function and a linear order on the label set. We suppose in
the following that the labels can be represented as integersin
the range{0, 1, .., K − 1} , whereK is the size of the label
set. Ishikawa method is based on computing a minimum cut
in a particular graph. This graphG = (V , E) containsN ×K

nodes (N is the size of the image andK is the size of the
label set) denoted by

{

vp,i; p = 0..N − 1; i = 0..K − 1
}

plus
two special nodess and t. For each pixelp, we associateK
nodes

{

vp,i; i = 0..K−1
}

that represent all the possible labels
that the pixelp can take. Besides,G contains three families of
edgesE = ED ∪ EC ∪ EI .
ED is a set of directed edges called data edges. It represents

the multichannel likelihood energy terms and is defined by:

ED =
⋃

p=0..N−1

Ep
D

Ep
D =

{

(s, vp,0)
}

∪
{

(vp,i, vp,i+1); i = 0..K − 2
}

∪
{

(vp,K−1, t)
}

Each edge inEp
D has a capacity defined by:

c(s, vp,0) = +∞ (8)

c(vp,i, vp,i+1) = F (p, i); i = 0..K − 2 (9)

c(vp,K−1, t) = F (p, K − 1) (10)

whereF (p, i) is the multichannel likelihood value that the
pixel p assumes for all the possible heights{0, 1, ..., K − 1},
i.e. F (p, i) =

∑

c − log f(φp,c|hp = i; αc, γp,c).
EC is a set of directed edges called constraint edges defined

by:

EC =
⋃

p=0..N−1

Ep
C

Ep
C =

{

(vp,i+1, vp,i); i = 0..K − 2
}

The capacity of each edge inEp
C is set to be infinity to

ensure that only one data edge is in the minimum cut for each
pixel p. This constraint ensures the one-to-one correspondence
between configurations of the MRF and cuts on the graph.

Finally, EI is a set of interaction edges between all neighbor
pixels defined by:

EI = {(vp,i, vq,j); (i, j) = 0..K−1, (p, q) = 0..N −1; p ∼ q}

To obtain a correspondence between interactions edges in a
cut and the energy regularization terms, capacity of each edge
in EI connecting two neighboring pixelsp andq is set to:

c(vp,i, vq,j) =
1

2

(

g(i−j+1)−2g(i−j)+g(i−j−1)
)

(11)

where the functiong(.) is defined by:

Eprior(hp, hq) = wp,qg(hp − hq) (12)

The convexity ofg(.) is necessary and sufficient for the non
negativeness of all edge capacities inG which is sufficient for
computation of minimum cuts in polynomial time [5]. This
hypothesis is satisfied consideringEprior = TV.

This graph construction ensures that the minimum cut on the
graph provides the optimal configuration for ourPU problem.
In term of memory occupation, for a general prior energy
function, this graph has a number of vertices that isO(N×K)
and a number of edges that isO(N×K2). However, in the case
of TV prior energy function, the number of edges is reduced
dramatically and reachesO(K × N).

V. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed method,
we present some results obtained both on simulated and real
data. The results presented were obtained with MATLAB
coding (max-flow algorithm is implemented in C++1).

A. Hyperparameterβ estimation

As we deal with regularization problem, we need to es-
timate the hyperparameterβ in order to avoid over or under
regularization. Optimal value of the hyperparameter may differ
from one application to other and the range of possible values
depends on both the log-likelihood and the prior terms and itis
usually large. So, automatic method to estimate this parameter
is necessary.

Various methods have been developed for the optimal se-
lection of the regularization parameter, especially in thecase
of Tikhonov regularization form: discrepancy principle [16],
generalized cross-validation,L−Curve [17]. TheL−Curve

1by V. Kolmogorov, http://www.cs.cornell.edu/People/vnk/software.html
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Fig. 1. Ishikawa graph for exact optimization in case ofTV prior. On the
left, a part of the graphG defined on three pixels. Nodes are colored related
to the label setL in a linear order. We show also two types of edges, the
dotted ones are in the cut, whereas the continuous ones are not in the cut.
The red line shows the cut. A part of the graph is highlighted on the right.
We distinguish the three families: data edges (vertical edges oriented to the
top), constraint edges (verticals edges oriented to the bottom) and penalty
edges connecting all label nodes of two 4-connexity neighbor pixels

“

p =

(x, y) ; q ∈ {(x, y + 1), (x, y − 1), (x − 1, y), (x + 1, y)
o

. i refers to the
level of node label.

method has gained attention in recent years [18], [19]. The
L−Curve is the graphical representation of the regularization
term with respect to the likelihood energy term. In this curve,
under-regularization can be seen in the steep part of the
curve, where the regularization energy term can be largely
improved with minor likelihood modification. Whereas, over
regularization can be seen in the slowly varying part of this
curve, where no longer improvement is possible whatever the
likelihood price. The corner of theL − Curve, which is the
maximum curvature point, corresponds to a good trade-off
between under and over regularization. To fix it automatically,
we used the triangle method described in [20].

B. Simulated data

Based on simulated data, we tried to prove the effective-
ness of the proposed approach concerning both the proposed
model for PU problem and the graph-cut based optimization
algorithm. We performed two experiments. The first one
shows the effectiveness of this method when we deal with
simulated urban scenario and the second one shows the power
of this method when very difficult interferograms have to be
unwrapped.

In the first experiment, we considered a height profile
image (128 × 128 pixels) with a maximum height of160m

exhibiting discontinuous areas (Fig.2(a)) that characterizes an
urban area. We used two frequencies (5GHz and9GHz) to

(a) (b)

(c) (d)

Fig. 2. MCPU results based onTV model and Ishikawa exact optimization
algorithm. (a) Original urban profile, (b) Noisy interferogram at5GHz with
γ = 0.5, (c) Reconstructed profile, (d) Difference between ground truth and
estimated profiles.

generate interferograms and we added interferometric noise
with a coherence ofγ = 0.5. In Fig.2(b), we show the5GHz

noisy interferogram. Moreover, for each working frequency
we generated4 azimuth looks allowing to generate a total
of M = 8 independent interferograms. It is important to note
that the profile is ambiguous for both the working frequencies.
In fact, there are phase jumps of about1.3π at 5GHz and
2.4π at 9GHz which violates theItoh condition. For this
reason, a classical single frequency phase unwrapping method
[21] would fail. The multichannel approach can overcome this
problem.

The normalized square reconstruction error is equal2 ×
10−3, using the estimated hyperparameterβ = 0.7. To
obtain the result presented in figure 2(c), the algorithm took
24 seconds. For the same data set, the multichannel phase
unwrapping method proposed in [3], based on a local model
and on ICM algorithm for the optimization step provides
similar results but in approximately300 seconds.

We can show also the effect ofTV prior when dealing with
discontinuities. The Total Variation regularization is able to
well preserve the discontinuities in original image, even if it
is a local model. Anyway, a trade off of theTV is the loss
of contrast between gray level of an homogeneous object and
its background. This is a well known problem related to our
energy function model which was discussed in other works
solving image restoration problem such as [22].

In the second experiment, we considered a Gaussian refer-
ence profile (100 × 160 pixels) with maximum height of60
rad (Fig.3(a)). We used the same system parameters as the
previous experiment. The interferogram is simulated usinga
coherence equal to0.6. In Fig.3(b), we show the5GHz noisy
interferogram. The considered interferogram is noisy, shows
large phase rate and presents a large discontinuity. In these

4



(a) (b)

(c) (d)

Fig. 3. MCPU results based onTV model and Ishikawa exact optimization
algorithm. (a) Original Gaussian profile, (b) Noisy interferogram at5GHz
with γ = 0.5, (c) Reconstructed profile by our approach, (d) Difference
between ground truth and estimated profiles by our method

condition a classic phase unwrapping algorithm would fail
to retrieve the correct solution. Even the method proposed
by Bioucas [23], based on aLp norm phase unwrapping
method using graph-cuts, is not able to properly unwrap
the considered interferogram. In our case, the unwrapping
operation is possible since the multichannel configurationis
exploited. Figures 3(c) 3(d) represent respectively the recon-
struction obtained by our proposed approach and the difference
between the original profile and the estimated profile. The
normalized square reconstruction error is of2.2×10−3, using
the estimated hyperparameterβ = 0.25.

C. Real data

We tested our new proposed algorithm on real data set of
an urban scenario. We used a set of8 L-Band E-SAR inter-
ferograms (two interferograms for each of the four available
polarizations) acquired on the city of Dresden. The smallest
baseline is of about10m and the biggest is of about40m.
We applied the fast unwrapping approach previously exposed.
Note that the height of the considered building is less than
the ambiguous height in the smallest baseline interferogram.
Ambiguity height ishamb = 37.5m in the first interferogram
and hamb = 11.1m in the second. Anyway, it can be
considered as a good test, since due to the presence of noise,
the Itoh condition is violated in some areas, as it can be seen
in Fig.4(a). So, applying a classic single channel approach, the
solution will show some errors in that areas Fig.4(b). Usingthe
proposed approach, it is possible to retrieve the correct height
of the building. For example, note that the height of the roof
building is almost constant Fig. 4(c), differently from Fig.4(b).
Moreover, using these interferograms, it is possible to test
the goodness of theTV prior model concerning the capacity
of recovering discontinuities. Figure 4(c) and 4(d) show how

(a) (b)

(c) (d)

Fig. 4. 3D reconstruction of real data. (a) Noisy interferogram (smallest
baseline), (b) reconstruction with branch-cut algorithm,(c) reconstruction with
the proposed multichannel approach, (d) 3D view of the reconstruction with
the proposed multichannel approach.

efficiently the contours of the building are recovered.

VI. CONCLUSION

In this paper, we developed a new multichannelMAP phase
unwrapping methodology based on exact graph-cut optimiza-
tion algorithms (Ishikawa algorithm) and Total Variation prior
model. The proposed algorithm is able to provide the solution
of the multichannel phase unwrapping problem in very short
time. Moreover, with Ishikawa optimization algorithm, we are
sure to reach the exact energy optimum. We have tested this
approach on simulated data and we obtained good results
both in term of reconstruction error and computational time.
Comparisons with other approaches in the literature show the
contribution of this paper in the considered field, since it
provides both robust model and fast running algorithm. As
it proved to be effective dealing with high discontinuities, we
also tested the proposed method with realInSARdata of urban
scenarios.
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