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Abstract—In this paper, a method to solve the multichannel can be used. In this MAP approach, the data term is provided
phase unwrapping problem is presented. MAP approach togettr  py the multichannel likelihood function, while the priorteis
with Markov Random Fields have proved to be effective, alloing modeled by a Markov Random Field. The MAP multichannel

to restore the uniqueness of the solution without introduang h . bl b valent]
external constraints to regularize the problem. The idea isto PaS€ UNWrapping problém can be equivaiently seen as an

develop a fast algorithm to unwrap the interferometric phas in  €nergy minimization problem.
the multichannel configuration, which is, in the main time, ale The idea of this paper is to provide a fast and efficient
to provide the global optimum solution. To reach this target (in term of global optimization) algorithm to unwrap the
an a priori model based on Total Variation is used together jyierferometric phase in the multichannel configuration. T
with optimization algorithm based on graph-cut technique. The . . .
proposed approach has been tested both on simulated and real"€dUCe the computational time needed to unwrap the multi-
data. The obtained results show the effectiveness of our apgach.  channel interferometric phase, we worked in two directions
First, we considered a non-local prior energy function and
secondly, we used optimization algorithms based@ph-cut
technique. For tha priori energy function, the Total Variation
Interferometric Synthetic Aperture Raddn$AR systems (TV) model [4] has been chosen. Even if it is a non-local
allow to generate Digital Elevation ModeDEM) of Earth model, TV model is well adapted when dealing with strong
Surface. This is possible since there is a known relatigliscontinuities. Therefore, it can be used in case of InSAR
between the interferometric SAR phase and the height of tapplications and it particularly well fits to urban scenakor
ground [1]. the optimization step, we used a graph-cut based optiroizati
When dealing with INSAR DEM reconstruction, the mairalgorithm which is able to reach the global optimum (exact
problem we encounter is the phase unwrapping operatiaptimization algorithm). The approach proposed by Ishikaw
since the measured interferometric phase is known in tfg is used for this purpose.
principal interval («, 7] (wrapped phase). In order to restore Our algorithm has been tested on simulated data and on real
the relation between interferometric phase and groundhiheigurban data. The obtained results, for both cases, prove the
necessary to generate the DEM, we need to unwrap the pheffectiveness of the proposed method, both in term of short
(i.e. to know the phase in its absolute values). computational time, effectiveness and optimum qualitye (th
The unwrapping operation is not an easy task. In particul@ipbal optimum is reached) and assess the overall intefest o
if we are not in the so callettoh condition [2] (the absolute the proposed algorithm.
value of phase difference between neighboring pixels is les
than 7), the phase unwrapping operation becomes an ill- . ] i
posed problem. Thétoh condition is easily violated in real N INSAR multichannel systems, a collection of interfero-
INSAR data, due both to the presence of low coheren8EAMS is acquired using a multifrequency or a multibaseline
areas and to the presence of high discontinuities. This ggnfiguration. The interferometric phase signals can be-mod
particularly evident in urban scenarios where buildings c£led as:
be characterized by high phase jumps. To solve the phase

I. INTRODUCTION

II. MAP M ULTICHANNEL PHASE UNWRAPPING

unwrapping problem imon-Itoh condition, an efficient and Pp,c =< achp +wp.e >or @)
robust method is the multichannel phase unwrapping [3]-Mul \yith pef0,..,N—1},ce{0,...,M —1} and
tichannel INSAR techniques exploit the availability offdient _ 4nBt

and independent interferograms referred to the same scene, % = XRysin(p) N CASE of multibaseline method,

L . .
obtained using different channels (baselines or freqeshcdin ~ * @c = x5 in case of multifrequency method.
order to combine these different available channels, &Stz The indexp refers to the pixel position inside the image
approach based on Maximum a PosteridfiAP) estimation of size N, index ¢ to the considered channel which is one



of the M possible interferograms (frequencies or baseline$3]. Our proposal is to apply it to the phase unwrapping
w is the phase decorrelation noise,. >, represents the problem.

modulo — 27 operation,) is the wavelength and is the The prior energy corresponding to the discretizatiormuf
orthogonal baseline of the!” SAR interferogramy is the can be written [9] as follows:

SAR view angle andR; is the distance of the first antenna to

the center of the scene. Defining these notations, the height Eprior = ﬁpr7q|hp — hyl (5)
reconstruction problem consists in estimating the heightes pq

h, of the whole scene, using th¥ x M measured available wherep ~ ¢ denotes two neighboring pixejs and g. The

Wrappr(]ad phase$?c. istically ind q h | hcoeﬁicientwp_,q depends on neighbor connexity for 4 —
In the case of}{ statistically independent channels, t econne:z:ity andi2 for the 4 diagonal ones in the case 8f

multichannel likelihood function is given by [6]: connezxity). Note that in this expressiop,is a scalar (a single
hyperparameter is used for the whole image). This makes the

N—-1M-1
F(®h) = H H F(bp.clhp; s Tp.c) (2 TV mod_el a non_—local model. The choice o_f a non-local_pnor_
=0 =0 energy is done in order to make the algorithm faster since it
avoids the estimation of a vector of local hyperparametsrs a

where: in [3]
F(be B s pe) = 11— Vp.cl (1 dCOS_l(—d)) Between the existing non-local prior energy moddly,
PPy e IS o 1 — d? (1 —d?)1/2 has been chosen because its main advantage, towards other

d = |[Vp.c|cos(dp.c — achy) non-local prior energy models, is that it does not penalize

) ) o ) ) discontinuities in the image while simultaneously not pena
is the singlechannel likelihood function ang, . is the izing smooth functions either [4]TV, in fact, looks for an
coherence coefficient that depends on pixelnd on channel 5n5roximation of the original noisy image which has minimal

c. In(2) @ = [®] ..} _,]" is the vector collecting all ota) variation but without particular bias to discontityubr
available wrapped phase valuds, = [¢p=0¢P71-'-_¢p=1_Vf*1]T IS" smooth solution. As th&V prior model is well adapted when
the vector of the wrapped phases measured in ppxéis the  yeling with strong discontinuities, it can be used in case o
M different channels ané :_[hohl-"thl]T is the vector | sAR applications and particularly it well fits to urban ase
containing the ground elevation values. Following the Bay&, iy order to develop a fast algorithm, we considered this
law, the MultichanneMAP estimation solution is given by: 4 priori energy. We note that this choice is not as good and
. powerful as the local one proposed in [3], since it is not loca
h = argmay, F'(®|h)gg(h) (3)  However, compared to other non-local models, it is the best
for our purpose.
Given theTV prior energy model (5), the function to be
minimized to recover the multichannel height reconstarcti
solution is given by:

where the functiong(.) is the prior probability ofh. A
Markov Random Field is used to mode] whose expression
is given in this case by:

1 _g
)= g @
h = argmayF(@[h)gs(h)
where Z(3) is a normalization factor called the partition :

. . . . = argmi -1 c h ; Qe c
function, E,,.;.,-(.) is the so-called energy function expressing 9 q‘zz 08 f (@pclhp; ove: Yp.e) +

. . . . p c
relationship between pixels angl is the hyperparameter [7]
which is used to tune the prior model. Whehis a scalar, + 55 :“’p-,q|hp — hy| (6)
the model is a non-local model, otherwise it is defined as pra

a local model. The prior energy function is defined in such In the next section the proposed method to minimize this
a way to impose some constraint on the neighboring pixeknergy in order to obtain the global optimum is explained.
Different prior energy functions can be used to model our
problem. For our purpose, we chose fhi¢ model, which is
a non-local model that presents some interesting featimes. Fast and exact optimization algorithms are needed in many
the next section th&V model is analyzed. computer vision problems. In recent years, new energy opti-
mization approaches have been proposed [5], [9], [10] based
on graph-cut technique, which has become very popular due
In order to develop a fast and robust multichannel phage its low time computation. Compared to the classical op-
unwrapping algorithm th&V model has been used for thetimization algorithm Simulated Annealing [11], it provige
prior energy. This prior model, introduced in 1992 [4], ixomparable results with much less computational time and
one of the most used prior model in image processing daempared to the deterministic algorithm ICM [12], it avoids
to its adequation to different contextual information. IARS the risk of being trapped in a local minimum of the energy that
applications, TV model is mainly used for image restorations far from the global one. We use, in this work, the graph-cut

IV. FAST AND EXACT OPTIMIZATION ALGORITHM

IIl. ENERGY FUNCTION MODEL



optimization algorithm proposed by Ishikawa [5], that ideab
under certain conditions, to provide the global optimumheaf t
considered problem.

Supposej = (V,€) is a directed graph with non negative
edge weights, wher® is the set of vertices anél the set of & = {(vp,i+1,vp7i);z' =0.K— 2}
edges. This graph has two special vertices (terminalsg¢dall _ o o
the sources and thesink t. We define ars-t-cutC = {S, 7} The capacity of each edge i, is set to be infinity to
as a partition of the vertices into two disjoint séfsand7 €nsure that only one data edge is in the minimum cut for each

such thats € S andt € 7. The cost of this cut is the sum ofPiXel p. This constraint ensures the one-to-one correspondence

g = I3
p=0..N—1

weights (costs) of all edges that go frafhto 7. between configurations of the MRF and cuts on the graph.
Finally, &7 is a set of interaction edges between all neighbor
ICot| = Z w(u,v) (7) Pixels defined by:
u€ES
’UGT . .
(u,0)EU &1 ={(vp,i,vq,5);(4,§) =0.K—1,(p,¢) =0.N—1;p ~ ¢}

The minimums-¢-cut problem consists in finding a cat To obtain a correspondence between interactions edges in a

with the smallest cost. This problem is exactly equivalents .+ and the energy regularization terms, capacity of eage ed
dual problem which consists in computing the maximum floyy, &z connecting two neighboring pixejsandq is set to:
growing from the source to the sink [13]. Many algorithms

have been proposed to solve the maximum flow problem with 1
a polynomial time [14]. In our work, we will use the maximum c(v,, ;, vq, ;) = 3 (g(z’—j—i-l) —2g(i—j)+g(i—j— 1)) (11)
flow algorithm given by [15] which is the most adapted to

The exact optimization algorithm proposed by Ishikawa is
based on two hypothesis: convexity of taepriori energy Eprior (hp, hq) = wp,qg(hp — hq) (12)

function and a linear order on the label set. We suppose inThe convexity ofy(.) is necessary and sufficient for the non
the following that the labels can be represented as integers,egativeness of all edge capacitieginvhich is sufficient for
the range{0, 1,.., K — 1} , where K is the size of the label compuytation of minimum cuts in polynomial time [5]. This
set. Ishikawa method is based on computing a minimum Mpothesis is satisfied considerig),;,, = TV.
in a particular graph. This graph = (V, £) containsV x K This graph construction ensures that the minimum cut on the
nodes (V is the size of the image andl is the size of the graph provides the optimal configuration for dRi problem.
label set) denoted b{vp,i;p =0.N-1;i=0.K — 1} plus In term of memory occupation, for a general prior energy
two special nodes andt. For each pixep, we associatdS function, this graph has a number of vertices thad{sv x K)
nodes{v,,,i;i = 0..K—1} that represent all the possible label&nd a number of edges thai N x K *). However, in the case
that the pixelp can take. Besides] contains three families of Of TV prior energy function, the number of edges is reduced
edgest = Ep U Ec U Ey. dramatically and reach&8(K x N).

Ep is a set of directed edges called data edges. It represents
the multichannel likelihood energy terms and is defined by:

V. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed method,
we present some results obtained both on simulated and real

E&p = U &y data. The results presented were obtained with MATLAB
p=0..N—1 coding (max-flow algorithm is implemented in C+}.
&y = {(57%0)} U {(Up.,ivvp,wl);i =0.K — 2} A. Hyperparametep estimation
U{(v K1 t)} As we deal with regularization problem, we need to es-
P ’ timate the hyperparametgrin order to avoid over or under
Each edge irt?, has a capacity defined by: regularization. Optimal value of the hyperparameter mé#fgdi

from one application to other and the range of possible wlue

e(s,tp0) = +oo 8) depends on both the log-likelihood and the prior terms aigd it
c(Vp,iyUpit1) = F(pi);i=0.K —2 (9) usually large. So, automatic method to estimate this paieme
c(vpx-1,t) = F(p,K—1) (10) is necessary.

. ) . Various methods have been developed for the optimal se-
~where F(p, i) is the multichannel likelihood value that theetion of the regularization parameter, especially in ¢hee
pixel p assumes for all the possible heights 1,..., K — 1}, of Tikhonov regularization form: discrepancy principles]1

i.e. F_(p’ i)=2 —log f(@p.clhp =50, Yp.e)- ) _generalized cross-validatiof,,— Curve [17]. The L — Curve
&c is a set of directed edges called constraint edges defined
by: by V. Kolmogorov, http://iwww.cs.cornell.edu/People/isaftware.html



(b)

Fig. 2. MCPU results based oV model and Ishikawa exact optimization
algorithm. (a) Original urban profile, (b) Noisy interferagh at5G H z with

. . S ) ~v = 0.5, (c) Reconstructed profile, (d) Difference between grounthtand
Fig. 1. Ishikawa graph for exact optimization in caseTaf prior. On the ggstimated profiles.

left, a part of the graply defined on three pixels. Nodes are colored related
to the label setC in a linear order. We show also two types of edges, the
dotted ones are in the cut, whereas the continuous ones &ie tite cut.

The red line shows the cut. A part of the graph is highlightedtiee right. -~ generate interferograms and we added interferometricenois

We distinguish the three families: data edges (verticalesdyriented to the = . .
top), constraint edges (verticals edges oriented to theomgtand penalty With @ coherence of = 0.5. In Fig.2(b), we show théGH =

edges connecting all label nodes of two 4-connexity neighpixels (p — hoisy interferogram. Moreover, for each working frequency

@) g€ {(@my+1),@y—1),(@—1,1), @+ Ly)}- ;i refers to the W€ genergtedi azimuth looks allowing tq generate a total

level of node label. of M = 8 independent interferograms. It is important to note
that the profile is ambiguous for both the working frequescie
In fact, there are phase jumps of abdudw at 5GH =z and

method has gained attention in recent years [18], [19]. THe!™ at QG{{Z _Whl'ch V;OI?teS theltohhcondmon. For this "
L—Curve is the graphical representation of the regularizati [gason, a classical single frequency phase unwrappingothe

term with respect to the likelihood energy term. In this &jrv 1] would fail. The multichannel approach can overcoms thi

under-regularization can be seen in the steep part of tp]reoblem. ) . .

curve, where the regularization energy term can be largel Tge normalized square reconstruction error is equal
improved with minor likelihood modification. Whereas, ovetV ", Using the estimated . hy_perparame]@r - 07 To
regularization can be seen in the slowly varying part of thRPtain the result presented in figure 2(c), the algorithnktoo
curve, where no longer improvement is possible whatever thé Seconds. For the same data set, the multichannel phase
likelihood price. The corner of thé — Curve, which is the UNWrapping method proposed in [3], based on a local model

maximum curvature point, corresponds to a good trade-Gd on ICM algorithm for the optimization step provides

between under and over regularization. To fix it automajical SIMilar results but in approximateB0 seconds.
we used the triangle method described in [20]. We can show also the effect @ prior when dealing with

discontinuities. The Total Variation regularization isleatio

B. Simulated data well preserve the discontinuities in original image, eveit i

Based on simulated data, we tried to prove the effectivis- a local model. Anyway, a trade off of thEV is the loss
ness of the proposed approach concerning both the propogtdontrast between gray level of an homogeneous object and
model for PU problem and the graph-cut based optimizatioits background. This is a well known problem related to our
algorithm. We performed two experiments. The first onenergy function model which was discussed in other works
shows the effectiveness of this method when we deal wigelving image restoration problem such as [22].
simulated urban scenario and the second one shows the powdn the second experiment, we considered a Gaussian refer-
of this method when very difficult interferograms have to bence profile {00 x 160 pixels) with maximum height of0
unwrapped. rad (Fig.3(a)). We used the same system parameters as the

In the first experiment, we considered a height profilerevious experiment. The interferogram is simulated using
image (28 x 128 pixels) with a maximum height of60m coherence equal 1.6. In Fig.3(b), we show th6G H z noisy
exhibiting discontinuous areas (Fig.2(a)) that charémtsran interferogram. The considered interferogram is noisywsho
urban area. We used two frequencié&{{z and9GHz) to large phase rate and presents a large discontinuity. Irethes
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Fig. 4. 3D reconstruction of real data. (a) Noisy interfesog (smallest

Fig. 3. MCPU results based ofV model and Ishikawa exact optimization baseline), (b) reconstruction with branch-cut algoritife) reconstruction with
algorithm. (a) Original Gaussian profile, (b) Noisy intedgram atsGHz the proposed multichannel approach, (d) 3D view of the rsitaotion with
with v = 0.5, (c) Reconstructed profile by our approach, (d) Differencéhe proposed multichannel approach.

between ground truth and estimated profiles by our method

(d)

N . . ) efficiently the contours of the building are recovered.
condition a classic phase unwrapping algorithm would fail

to retrieve the correct solution. Even the method proposed VI. CONCLUSION
by Bioucas [23], based on &” norm phase unwrapping

method using graph-cuts, is not able to properly unwrap
the considered interferogram. In our case, the unwrappiﬁg
operation is possible since the multichannel configuratson

In this paper, we developed a new multichanM@P phase
wrapping methodology based on exact graph-cut optimiza-
n algorithms (Ishikawa algorithm) and Total Variationqs

. : . model. The proposed algorithm is able to provide the sahutio
exploited. Figures 3(c) 3(d) represent respectively tizeme of the multichannel phase unwrapping problem in very short

struction obtained by our proposed approach and the € ime. Moreover, with Ishikawa optimization algorithm, weea

.. . . . t
between the original profile and the estimated profile. The . .
: 9 P . . J;;,’ . sure to reach the exact energy optimum. We have tested this
normalized square reconstruction error i2df x 10~°, using

the estimated hyperparamef@e= 0.25 approach on simulated data and we obtained good results
o both in term of reconstruction error and computational time
Comparisons with other approaches in the literature shew th
contribution of this paper in the considered field, since it
We tested our new proposed algorithm on real data set@bvides both robust model and fast running algorithm. As
an urban scenario. We used a set8of-Band E-SAR inter- it proved to be effective dealing with high discontinuitiese
ferograms (two interferograms for each of the four avaéabh|so tested the proposed method with le@ARdata of urban
polarizations) acquired on the city of Dresden. The smiallegenarios.
baseline is of aboutOm and the biggest is of about)m.
We applied the fast unwrapping approach previously exposed VII. ACKNOWLEDGMENTS
Note that the height of the considered building is less than
the ambiguous height in the smallest baseline interferogr
Ambiguity height ishyms = 37.5m in the first interferogram
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