
High-Level System Modeling for Rapid HW/SW Architecture Exploration

Chafic Jaber

1
, Andreas Kanstein

1
, Ludovic Apvrille

2
, Amer Baghdadi

3
,

 Patricia Le Moënner
1
, Renaud Pacalet

 2

1Freescale Semiconductor, 134 Av. du Général Eisenhower, BP 72329, 31023 Toulouse Cedex 1, France

2 Institut Telecom; Telecom ParisTech; B.P. 193, 2229 rte des Crêtes, 06904

Sophia-Antipolis Cedex, France

3 Institut Telecom; Telecom Bretagne; Technopôle Brest Iroise, CS83818, 29238 Brest, France

Abstract

The increasing complexity of system-on-chip design –

especially the software part of those systems – has

stimulated much research work on design space

exploration at the early stages of system development.

In this paper we propose a new methodology for

system modeling based on a specific UML profile. It

defines a high design abstraction level for modeling

and analyzing hardware resource sharing between

system elements. Additionally, a SystemC-based

simulator is developed in order to simulate modeled

systems and evaluate their performance. Due to the

high level of abstraction, the developed simulator

enables fast exploration of design solutions.

First promising results are presented and

discussed over a mobile platform for the 3GPP LTE

protocol stack.

1. Introduction

Most recent Systems-on-Chip (SoC) are meant to host

highly complex and interdependent applications at low

cost (area, power) to the end user, i.e. the number of

resources must be minimized while increasing their

utilization by sharing them between multiple

applications.

Such shared resources have a strong impact on

SoC performance because of the contention they

typically induce. Indeed, end-to-end performance of a

given application is the sum of the time needed to

execute that application with the total contention delay

of all involved shared resources.

Therefore, designers have to investigate

performance issues due to shared resources

contentions. Unfortunately, these issues are sometimes

discovered late in the design flow, inducing prohibitive

re-engineering costs. A solution to this relies on deeper

and earlier system analysis. Early performance analysis

based on abstract models of the embedded system has

already been demonstrated to increase design

efficiency [7, 9, 10]. System-level design frameworks

are commonly based on models meant to describe

functions to be implemented by a set of candidate

hardware architectures [2, 3]. In these approaches,

analysis is commonly performed using simulation

techniques where hardware is captured at transaction-

level and software is represented by functional code or

far more abstracted. Unfortunately, these environments

frequently suffer four main drawbacks:

1- Relatively slow simulations because of too low-

level (ISS or cycle-accurate) models.

2- Application and architecture concerns are mixed,

leading to complex architecture exploration when

performance requirements are not met.

3- No accurate capture is allowed regarding the

impact of the contention on any type of shared

resources (CPUs, busses, memories, etc.) when

software and hardware are modeled at different

abstraction levels.

4- Lastly, simulation traces do not always offer

enough information to solve performance issues

when requirements are not met.

Paper contribution: To cope with the previous

drawbacks, we propose a high level modeling

methodology to investigate the influence of shared

resources on a system’s performance metrics such as

latency, throughput and resources utilization. The

modeling is done very early in the design flow, when

software and hardware architectures have not yet been

released. Our methodology also enables the modeling

of interactions of the system with its environment. At

last, we developed a SystemC-based simulation

environment to monitor and analyze designed models.

Paper Plan: Section 2 presents the DIPLODOCUS

framework on which our contribution relies. Section 3

presents our system modeling methodology and

simulation approach. Section 4 exemplifies our

contribution with the LTE protocol stack case study.

Section 5 presents related work on system modeling

with a special focus on shared resources modeling, and

finally section 6 concludes this paper and gives future

guidelines.

2. Existing Modeling Framework

We based our research/work on the DIPLODOCUS

framework [10, 11] because:

1- Application data is abstracted – by a concept of

non-valued samples – leading to very fast

simulations and allowing the use of formal

techniques.

2- Modeling is based on UML, and so models are

graphical and readable by most engineers. This

also eases the handover between software,

hardware and system engineers.

3- From UML DIPLODOCUS models, formal

verification may be performed using automatic

code generation to LOTOS or UPPAAL (not

investigated in this paper).

4- DIPLODOCUS is supported by an open source

toolkit named “TTool” [1] that integrates all the

above points. TTool additionally generates

documentation from developed models.

DIPLODOCUS adopts the Y modeling paradigm

[7, 8] which consists of modeling separately the

application and the architecture, and then integrating

both during a mapping phase. Application and

architecture models are reusable, because they are

totally independent from each other, and so a designer

can easily evaluate candidate architectures using the

same application model. It also permits exploration of

mapping of two different applications on a given

architecture during first stages of projects.

While the existing DIPLODOCUS methodology

clearly defines application and architecture modeling

(see Sections 2.1 and 2.2), it lacks techniques to deeply

investigate the use of shared architecture elements.

Indeed, as stated in the introduction, contention due to

shared resources might be really critical when

designing SoC. DIPLODOCUS lacks as well the

modeling of the interaction with the system

environment. Section 3 introduces extension to the

current DIPLODOCUS methodology in order to

investigate issues related to shared resources.

2.1. Application Modeling

A DIPLODOCUS application [10, 11] is modeled as a

network of communicating tasks that can be connected

using three communication semantics: (1) channels to

exchange abstract data samples (2) events to exchange

signals, and (3) requests to ask for the execution of

another task. Channels and events can be blocking or

non-blocking, for the sender and for the receiver, while

requests are always non-blocking for the sender and

blocking for the receiver.

An application task behavior is modeled as a UML

activity diagram. The latter is a sequence of commands

containing control-flow commands (if, for loop, etc.)

and communication commands with other tasks (e.g.

send a sample, wait for an event, etc.). A data

processing sequence is abstracted through metrics

estimating the computation complexity of the

instructions (e.g. equivalent to executing 1000 ‘integer

add’ instructions) which allows to estimate cycle counts

after mapping on a computation node, defined next.

2.2. Architecture Modeling

Architecture is modeled as a network of physical

resources abstracted by one of these architecture

nodes: (1) computation nodes (CPUs, DSPs, hardware

accelerators …), (2) communication nodes (busses,

routers, switches …), (3) storage nodes (memories …).

Architecture nodes are characterized by a set of

performance parameters. For example a CPU could be

characterized by its capacity represented in MCPS

(Million of Cycles Per Second) while the capacity of a

memory is represented by its size in bytes.

Architecture resources are instantiated from a

library of pre-defined abstract models for architecture

nodes that can be customized by setting the appropriate

performance parameters, thus reducing the modeling

effort.

The architecture model should define how nodes

can communicate with each others. For example a

computation node may access a storage node through a

communication node. Hence we define an architecture

communication path. It is the sequence of all the

communication nodes that permits to a computation

node to access a storage node. This path could be

unique or run time selected depending on architecture

defined parameters or on a routing policy if modeling

is in a context of network on chip.

3. System Modeling Methodology and

Simulation

We define the system model as the result of the

mapping of the application model onto the architecture

model. The mapping phase’s goal is to evaluate the

execution of an application on a given hardware

architecture. The resulting system can be simulated

(see section 3.5).

The system model we propose has the following

execution semantic: according to its behavior, each task

issues requests, one after the other, to shared resources.

A shared resource can be either an architecture

resource (CPU, bus, etc.) or a fraction of it (the fraction

of a memory, of a crossbar, of a CPU etc.).

Additionally, we define two types of resource requests:

• Computation requests: they are generated

by tasks that wish to execute commands on the

computation resource on which they are

mapped.

• Communication requests: Requests to

communication or storage resources,

generated as a consequence of the execution

of requests of the first type.

For example, when a task wants to perform a

communication command, it first needs an access to a

computation resource to execute the command (first

type of requests). The execution of this command may

also need an access to a bus (communication resource)

and to a memory (storage resource) therefore

generating requests of the second type. Both types of

requests can be generated concurrently resulting in a

contention on requested resources when two or more

requests ask for the same resource.

Finally, to address this issue of concurrent access

to shared resources, we define “Virtual Nodes”.

3.1. Shared Resources Access Control

Modeling

As application tasks run concurrently, they generate

concurrent requests to the shared resources; as a

consequence, an access policy (scheduling algorithm,

bus arbitration policy etc.) for each resource shall

allocate resource requests. To do so, we introduce a

new modeling component called virtual node (VN). A

VN is an intermediate concept between application

structure elements (i.e. a task, a channel, etc.) and

architecture elements (CPU, bus, etc.). A VN has a

three-step execution semantic:

1. It waits for incoming requests.

2. It selects a request among the possible ones,

and according to its allocation policy. This

allocation may take into account the needed

time to execute each pending request. That

time may depend on performance parameters

of underlying architecture resources.

3. It waits either for the selected request to finish

its execution or for a new incoming request. In

that latter case, the allocation is re-evaluated

(step 1).

Our model furthermore supports the hierarchical

composition of VNs, i.e. a VN may control the access

of others VNs. This enables the modeling of more

complex architecture behavior by use of generic VN

model nodes.

3.2. Mapping Views

We define the mapping phase as the allocation of

application tasks to computation nodes and to storage

nodes, and in mapping channels/events/requests to

storage and communication nodes. Computation nodes

access storage nodes using architecture communication

paths. The mapping has three views to cope with the

fact that each type of resources should be allocated to

the corresponding application component:

1. In the computation mapping view, application

tasks are mapped to computation resources

using Computation Virtual Nodes.

2. In the storage mapping view, tasks are

mapped to memories – using Storage Virtual

Nodes – in order to precise where the task

code and data reside.

3. In the communication mapping view,

channels, events and requests are mapped to

communication resources using

Communication Virtual Nodes. In addition,

communications between computation and

storage resources (or two computation

resources) are resolved thanks to

“Communication Managers”. A

communication manager is attached to a

computation resource and it can identify a

path for all communications performed by this

computation resource.

3.3. System’s Environment Modeling (Use

Cases)

Our extended DIPLODOCUS methodology supports

modeling of use cases. A use case is meant to specify

an interaction between the modeled system and its

environment. Thus, use case modeling corresponds to

an abstract description of the environment. For

example, the modeling of a telephone call - which is a

use case of the telephone system - involves a necessary

description of the consumers and producers to identify

the traffic they imply.

Inputs provided by the environment to the system

abstract real data, and specify the time at which that

data are produced (arrival rate). Outputs shall also be

handled by use cases. In a telecommunication context,

use cases could model traffic traces (when a packet is

received - arrival rate - and what is its size for

example). We use stochastic models to define these

traffic traces.

Use cases are modeled like applications, i.e. with

tasks and communication between those tasks; but use

case tasks and communications are not mapped onto

hardware architectures: they are just meant to run

concurrently with the modeled system and stimulate it.

3.4. Modeling Example

Figure 1 depicts the mapping input on the left side.

Together with assigning tasks and communications

from the application diagram to architectural resources,

the user has to provide mapping parameters such as

task priorities and the type of communication used to

implement Channel1 between task T2 and task T1. As

an example, we want that T2 mapped on HW1

communicates to T1 via shared memory and an

interrupt.

Figure 1: Mapping model example showing the mapping of

application to architecture components (left) and the executable

model using virtual nodes (right)

The architecture part of the mapping specifies

important architectural parameters such as the type of

RTOS and CPU, the bus type and its data bus width,

etc. The right hand side of Figure 1 shows the mapping

model implementation for the simulator. The three

mapping views have been represented together. Virtual

nodes are picked based on the information provided in

the architecture diagram. Computation VN models

replace the RTOS/CPU and the HW resources to

implement their scheduling. A Communication VN and

a Storage VN implement the bus and memory

arbitration. Finally, two communication managers are

inserted to implement the details of Channel 1 on each

computation VN, i.e. how the Computation VN can

reach the communication and storage virtual nodes.

Instead of address-based communication on bus

transaction level, we use virtual addresses and virtual

data.

For a block of data sent on Channel 1,

Communication Manager 2 places the data into the

virtual storage element, via the bus and then sends a

notification event to Communication Manager 1. This

component then needs to model the interrupt service

routine on the Computation VN 1, notify T1, and

finally T1 reads the data once woken up and running.

3.5. Models Simulation

We have implemented a SystemC-based simulation

environment to simulate modeled systems and to

evaluate their performance. The environment takes

DIPLODOCUS UML models (Application,

Architecture and mapping) as inputs. It generates

automatically from them corresponding SystemC code.

The architecture of this environment is not presented in

this paper due to limited space. Simulations can output

VCD waveforms containing temporal characteristics of

the analyzed system, i.e. of application, architecture,

mapping and use case components. These results are

also post-processed to show more global information of

the system; for example the WCET (Worst Case

Execution Time), the BCET (Best Case Execution

Time) or the ACET (Average Case Execution Time) of

each task, as well as the utilization factor of each

architecture resource.

We intend to co-simulate our models with other

network simulators [17, 18] meant to generate traffic

used as input by our models. This solution will offer

more precise stimuli than stochastic values, at the

expense of longer – though still acceptable - simulation

time.

4. Case Study – LTE Protocol Stack

In order to illustrate the efficiency of the proposed

methodology, we describe in this section the SW/HW

exploration of an implementation of the LTE (Long

Term Evolution) protocol stack (above the physical

layer). LTE is the latest standard in the mobile network

technology developed by the 3GPP organization [14].

LTE is meant to substantially improve throughputs, and

shall support IP-based traffic with end-to-end quality of

service, but it shall also greatly increase modem

complexity because of massive streams of data packets.

This section illustrates how we could apply our

methodology to model and analyze the LTE modem.

4.1. Example DIPLODOCUS Model

The example DIPLODOCUS application model of the

LTE protocol stack is composed of 14 communicating

tasks (Downlink path is shown in Figure 2).. As stated

in the DIPLODOCUS methodology, this model is only

application-oriented and therefore contains no

architecture details.

Figure 3 depicts a possible candidate architecture

to run the LTE protocol stack. It contains two DSPs

(DSP1 and DSP2) as computation resources, one

crossbar (Crossbar1) as communication resource, and

four memories as storage resources: dedicated and

shared internal and external memories. The modem

architecture has been simplified for this investigation;

see for example [12] for a discussion of an industrial

mobile modem architecture.

Figure 3: A possible candidate hardware architecture for the LTE

protocol stack

As defined in Section 3.2 we created the computation,

storage and communication views to implement the

mapping. Each of the computation resources has a

virtual node attached that defines the scheduling policy.

Also, communication and storage virtual nodes are now

inserted to implement the respective architecture

communication path and node access scheduling. At

last, the traffic generated by a video stream transfer

using the TCP protocol is modeled in DIPLODOCUS

and serves as the use case. Appropriate traffic models

can be found in [13]; they specify the number and the

size of exchanged packets.

The DIPLODOCUS methodology is based on a

high level of abstraction, and the simulation

environment provides system architects with extensible

and simple to use architecture resources and virtual

nodes. For those reasons the modeling effort is low and

we modeled and analyzed the system presented in this

section within one week, which is a very short time in

comparison to the overall design time.

4.2. Simulation Results

In a first step, the LTE mapping explained above is

simulated with our SystemC simulation environment,

with the objective of identifying the effect of the

scheduling policies of the two DSPs on the overall

system performances. We will study two policies:

priority based with preemption and without

preemption.

The LTE protocol stack tasks are mapped on DSP1 and

a video decoder is mapped on DSP2. The Crossbar1

virtual node and the storage virtual nodes for the

internal and external shared memories use a first come

first served arbitration policy.

The simulation speed of this model is 5 times

faster than real-time on an example streaming a 3MB

VDC file.

The analysis of the modeled system performance is

firstly based on waveforms generated by the simulation

environment. Figure 4 depicts a waveform describing

the execution of some of the LTE protocol stack tasks

showed in Figure 2.

Figure 2: DIPLODOCUS view of the LTE protocol stack for downlink (each quadric-color box models a task)

Automatic post processing capabilities provide more

global performance parameters. Table 1 shows for each

DSP (DSP1 and DSP2), and for each scheduling

policy, the utilization (ratio of execution time without

memory access over all the simulation time), the

percentage of overhead (from utilization time) due to

the virtual node execution (scheduling of tasks, context

switches …), the percentage of utilization time needed

to access memories (without contention) and the

percentage of utilization time where the DSP is

suspended due to memory access contention.

Table 1: Simulation results example

 Utilization

(%)

Overhead

(%)

Memory

Access

(%)

Contention

(%)

Preemptive

52

10

22

19
DSP1

Non

preemptive

49

8

15

17

Preemptive

61

27

17

11
DSP2

Non

preemptive

60

25

14

10

Our simulation environment is capable of

tracking a specific execution parameter to study it.

Table 2 shows the WCET, the BCET and the ACET

the stack needs for receiving a block from the network

until it transfers it to the requesting application. This

parameter is dependent not only on one task or one

architecture resource, but it is also dependent on the

overall system (the LTE application, the architecture

and the mapping). Table 2 shows as well the impact of

the selected scheduling policy.

Table 2: Time execution for one transport block

WCET

(ms)

BCET

(ms)

ACET

(ms)

Preemptive

1.2

0.4

0.8

Non

preemptive

0.9

0.4

0.7

The LTE standard specifies that the maximum

value for this parameter should be 1 ms [15], while our

worst case execution time in the case of preemptive

scheduling was 1.2 ms mainly due to high scheduling

overhead and memory accesses in this example

architecture.

5. Related Work

Many design methodologies and supporting tools –

including DIPLODOCUS - propose a mapping phase

once application and architecture models have been

performed [15]. Those methodologies extract shared

resources impact on system’s performances. Like our

approach, some methodologies are more particularly

focused on early analysis and documentation of

complex architectures, while functional modeling and

synthesis of implementations is the intent of others

(e.g., [16]). The following discussion compares our

approach with other high-level methodologies that

attempt to estimate impact of shared resources on

system performances.

The back annotation techniques like MESH [5]

and the one proposed in Schnerr & al. [4] extract

performance latencies from a low-level simulator to

annotate the higher level model. They utilize analytical

and simulation techniques to estimate shared resources

contention. Final code is used to estimate the

performance. On the contrary, our methodology is

applied early in the design flow, and so before the code

is released. Also, above-mentioned techniques focus on

the modeling of task scheduling and extract contention

attributes related to communication and memories from

low level simulations. In our approach, we extract this

information from the high-level simulation of our

models.

Early architecture exploration methodologies like

Sesame [9] offer a clear distinction between application

and architecture concerns, and facilitate flexible

system-level performance evaluation. Application is

modeled as a set of Khan processes while architecture

is defined at a high level of abstraction in a similar way

to DIPLODOCUS. So far Sesame mapping models

only provide schedulers to allocate computation

resources to the application Khan processes: it does not

 Figure 4: Excerpt of the result of execution of the LTE protocol stack

model communication architecture arbitration nor

memory mapping.

Kempf et al. [6] present a simulation framework

for MP-SoC platforms. They use a virtual processing

unit (VPU) to schedule the execution of tasks mapped

to a processor. The important difference to our

approach is that we generalize the notion of a virtual

node to model accesses policies to any type of

architecture resources, and that we are able to extract

performance result of any shared resource.

ArchAn [3] and Panama [2] enable modeling at a

high level of abstraction and they capture task

scheduling as well as the communication architecture

and memory mapping modeling. Unfortunately they do

not define a clear separation between the application

and the architecture. Indeed, the language used to

model tasks includes details of the underlying

architecture thus reducing the reusability of models.

6. Conclusion and Future Work

Beginning with the idea to focus on high-level system

models on a very abstract level, we have extended

DIPLODOCUS with (1) a modular and extendible

generic virtual node to model shared resources, and (2)

a simulation framework in SystemC. Our virtual node

model is hierarchical and can model the sharing of

computation, communication and storage resources.

Modeling shared resources is very important for highly

integrated converged mobile devices. We presented

first results from our mapping model for architecting

the implementation of next generation devices,

supporting the computationally very demanding LTE

protocol stack. To support the methodology for more

complex models, we are working on integrating the

mapping model into TTool [1].

7. Acknowledgments

The authors of this paper would like to thank

Christopher Yasko for his help on developing the case

study, Mukesh Taneja for his work on the traffic

models, and Francois Menneteau and Daniel Knorreck

for their valuable help in developing the simulation

environment.

8. References

[1] LabSoC. TTool, The TURTLE Toolkit. See

http://labsoc.comelec.enst.fr/turtle/ttool.html.

[2] M. Silbermintz, et al. “SOC modeling methodology for

architectural exploration and software development”. In

Proc. ICECS’06, Dec 2004.

[3] A.Chatelain and Y. Mathys. “Verification strategy for

integration 3G baseband SoC”. In Proc. 40th ACM

IEEE Design Automation Conference, June 2003.

[4] J. Schnerr et al., “High performance timing simulation

of embedded software”. In Design Automation

Conference DAC, June 2008

[5] Alex Bobrek et al. “Modeling shared resource

contention using a hybrid simulation/analytical

approach”. In Proc. Design, Automation and Test in

Europe (DATE2004), pp 16-20, Feb 2004.

[6] T. Kempf et al. “A modular simulation framework for

spatial and temporal task mapping onto multi-processor

SoC plateforms”. In Design, Automation and Test in

Europe (DATE2005), April 16-20, 2005.

[7] K. Keutzer et al., “System-Level Design:

Orthogonalization of Concerns and Platform-Based

Design”. In Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions Dec 2000

[8] B. Kienhuis, “An Approach for Quantitative Analysis of

Application-Specific Dataflow Architectures”. In

Application-Specific Systems, Architectures and

Processors, july 1997.

[9] Andy D.Pimentel, Cagkan Erbas, and Simon Polstra. “A

systematic approach to exploring embedded system

architectures at multiple abstraction levels”. In IEEE

Trans. Computers, vol.55, No.2, Feb. 2006.

[10] W. Muhammad et al. “Abstract application modeling for

system design exploration”. In Euromicro Conference

on Digital System Design (DSD’06), Aug. 2006.

[11] L. Apvrille et al. “A UML-based environment for

system design space exploration”. In 13th IEEE

International Conference on Electronics, Circuits and

Systems (ICECS’06), Nice, France, Dec. 2006.

[12] Freescale Semiconductor. Integrating Operating

Systems with Freescale’s Cellular Software Platform.

http://www.freescale.com/files/wireless_comm/doc/whit

e_paper/INTGFSLCELPLATWP.pdf

[13] IEEE traffic models. See

http://www.wirelessman.org/tg3/contrib/

[14] 3GPP. Long Term Evolution of the 3GPP radio

technology. See http://www.3gpp.org/Highlights/LTE/

lte.htm

[15] F. Balarin et al., “Modeling and Designing

Heterogeneous Systems,” Concurrency and Hardware

Design, J. Cortadella, A. Yakovlev, and G. Rozenberg

eds, Springer, 2002, pp. 228-273.

[16] K. Popovici, X. Guerin, F. Rousseau, P.S. Paolucci, A.

Jerraya, “Efficient software development platforms for

multimedia applications at different abstraction levels,”

in Proc. 18th IEEE/IFIP International Workshop on

Rapid System Prototyping, May 2007.

[17] NS2, The network simulator. See

http://isi.edu/nsnam/ns/

[18] OMNET. See : http://www.omnetpp.org

