
Robust Overlay Network with Self-Adaptive
Topology: The Reliable File Storage Layer

Loïc Baud

Institut TELECOM, TELECOM ParisTech & LTCI CNRS UMR 5141
46 rue Barrault, 75634 Paris Cedex 13, France

baud@telecom-paristech.fr

Abstract—A reliable storage system is a system that ensures the
protection of data from loss. Such systems are needed in many
critical fields. We cannot imagine that a financial institution looses
data about one its clients. Moreover the exponential growing
volumes of the data and its availability are crucial issues. A
centralized storage system would be overloaded and be a single
point of failure. That is why overlay network may provide the
solution as they can be used to implement a distributed storage
system over an information system. ROSA is an overlay network
that was designed to combine a high scalability while maintaining
a strong connectivity. The reliability of its topology, designs ROSA
as a good platform for deploying such a reliable storage system.
Nevertheless ROSA is an unstructured overlay network, this will
decrease the efficiency of the storage system. In this article we
first propose a structure, called chain of lumps, built upon ROSA.
This structure will provide the advantage of a structured network
to ROSA. Once ROSA endowed with the structure, we propose a
reliable storage system deployed over ROSA. Consequently this
system will benefit of the reliability of ROSA.

I. INTRODUCTION

A reliable storage system is a system that ensures the
protection of data from loss. Such systems are needed in many
critical fields. We cannot imagine that a financial institution
looses data about one its clients. Moreover the exponential
growing volumes of the data and its availability are crucial
issues. A centralized storage system would be overloaded as
well as a single point of failure. That is why overlay network
may provide the solution as they can be used to implement a
distributed storage system over an information system.

The ease of deployment of the overlay networks led them
to become, in few years, a solution to many distributed
applications. Overlay networks are used for multicast [1],
CPU cycle sharing [2] and file sharing (file indexing) [3],
security [4][5][6] and QoS management [7][8].

We can distinguish two types of overlay networks, the
structured and the unstructured ones. The virtual links of the
structured overlay networks are created to form a structure.
This structure can be used to build a DHT over the overlay
network. A DHT confers to the network some interesting
properties. One of these properties is that any nodes are able
send a message to any other nodes of the network within a
bounded number of hops.

Nevertheless the maintenance of such structures generates
overhead. Moreover the constraints on the creation of the
virtual links that guaranteed the structure limits the flexibility

and the reactivity of the structured overlay networks. Kademlia
[9] is an example of structured overlay networks.

The reactivity of unstructured overlay networks is not con-
fined by such constraints. In presence of the failures of nodes
or in the case of attack of the network, they reorganize them-
selves more quickly than the structured ones. Unstructured
overlay networks also generate less overhead for their inner
operating than the structured ones. Gia [10] is an example of
unstructured overlay networks.

It could be interesting for an overlay network to possess
the advantages of structured and unstructured ones. In this
article we present a way to transform the unstructured overlay
network ROSA [11] into a structured one. ROSA is an overlay
network that was designed to combine a high scalability
while maintaining a strong connectivity. But ROSA is an
unstructured overlay network. We will endow ROSA with a
structure and therefore the new overlay network obtained will
have the benefits of ROSA and those of a structured network.

Many overlay networks are dedicated to storage facility such
as Past [12] and Oceanstore [13]. More sophisticated overlay
networks implements complete file systems such CFS [14],
Ivy [15], Farsite [16]. But none of these overlay networks pos-
sess a reliable topology, the file storage system implemented
on ROSA endowed by the structure will have it.

II. ROSA
A. The DESEREC project

ROSA is a part of the DESEREC project1. A goal of the
DESEREC project is to build a secure system that is able to
guarantee that it will remain secure over time. An application
that detects anomalies, maintains and improves overall security
is deployed upon the overlay network ROSA. The application
consists in a distributed set of sensors that provide normalized
measures used to compute Security Assurance (SA) values
[17]. Afterwards, ROSA implements a Security Policy based
of these computed SA values. A detailed description of this
tool can be found in [18].

B. ROSA
We have built ROSA in such a way that its topology is

highly scalable and possess a strong connectivity. Conse-
quently, ROSA has to dynamically reorganize the neighbors
set of each node according to:

1IST FP6 DESEREC Project (CN: 026600) of the European Union.



• the topology of the underlying network ;
• the maximum number of neighbors of a node ;
• the failures of the elements of the virtual links.

Since there is no structure to maintain, only the preservation
of the strong connectivity imposes constraints on the virtual
links.

In ROSA, a lump is a set of fully virtually connected nodes.
The lumps are the main components of this overlay network.
The nodes composing the lumps are called members. ROSA
can be seen as an entanglement of lumps. In Figure 1, a small
overlay network is schematized on the left and, on the right,
the three corresponding lumps are shown.

! " # $%& ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?@ABCDEFGH I J K LMNOPQRSTUVWXYZ [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

a) b)

Fig. 1: a) An overlay network b) The 3 lumps of this network.

Each node in ROSA has an identifier, a neighbor’s set and a
lumps set. The identifier is obtained by hashing the IP address
of the node. The neighbor’s set of a node is the set of the
identifiers of its neighbors. The lumps set of a node is the set
of the lumps to which the node is a member. At the origin,
a lump is represented in the memory of a node by the list
of the member’s identifiers and the list of the virtual links.
Once ROSA endowed with the chain of lumps structure, some
additional information (the list of the sub-intervals of Iinit)
will be added to the lump description.

The density of a lump is the minimum number of failures
of the virtual link that are necessary to isolate a node from the
other nodes. It consists in finding the minimal vertex cut set of
the graph of the underlay elements composing the virtual links.
In the current implementation, we use the solution proposed
in [19] to compute this minimal vertex cut set. The protocol of
ROSA ensures that any member of a lump is able to compute
its density.

The ROSA principle can be compared to a pancake mixture.
A good mixture must have a homogeneous density. The big
lumps have to be diluted in order to increase the density of
area with less flour. The same idea is applied to ROSA, the
nodes leave neighbors, splitting lumps with high density to
join and increase the density of lumps with poorer densities.
A complete description of the ROSA overlay network protocol
can be found in [11].

C. ROSA and lumps modifications

The ROSA protocol consists for nodes in creating and
breaking virtual links with other nodes in order to increase
the densities of the lumps that have a poor density while

homogenizing the densities of the lumps. According to this
protocol, lumps may be absorbed by bigger ones or split in
two smaller lumps. We explain in this section how and when
these modifications are performed.

A lump is absorbed by another lump when all its members
are also members of a bigger one. It eventually happens when
nodes join a lump or when a lump is split. The Figure 2 and
Figure 3 show the two cases of lump absorptions.

In the first figure, the node n joins the lump l to form a
new lump called l1. The set of the members of this new lump
include all the members of the lump l

′
. Therefore the lump l

′

is absorbed by the lump l1.
In the second figure, the virtual link between the nodes m1

and m2 is broken and therefore the lump l is split into two
new lumps l1 and l2. The set of the members of l2 is included
in the set of the members of l

′
. The lump l2 is absorbed by

the lump l
′
.

l

n

l1

l'
l' l1n

Fig. 2: Absorption after a lump join

l
l1

l2

m1

m2

m1

m2

l' l'

l2 l'

Fig. 3: Absorption after a lump split

III. THE CHAIN OF LUMPS STRUCTURE

A. Description

The structure is composed of all the lumps. The lumps are
organized as a chain. It implies that all the lumps are at least a
link of this chain. To build such a structure lumps, we define
first the initial interval Iinit as: Iinit = [0, 264 − 1]. Then we
assign to each lumps at least one sub-intervals of Iinit in such
a way that:
• all the sub-intervals are disjoints;
• the union of all the sub-intervals is equal to Iinit;
• two lumps that possess contiguous sub-intervals of Iinit

have at least one member in common.
Let consider a lump l that has only one sub-interval I of

Iinit, let the lump possessing the sub-interval just after I be



the successor of l and the lump possessing the sub-interval just
before I be the predecessor. When a lump possesses many sub-
intervals of Iinit it has as many successors and predecessors
than the number of sub-intervals that it owns.

The projection of the whole network onto an integer interval
combined with the facts that any partition of this interval
is allocated to a lump and the fact that any lump has a
member in common with its predecessors and its successors
ensures that the algorithm proposed further in this article will
terminate. The projection onto a greater dimensional space
would allow for better routing quality, but the construction
and maintenance of the resulting structure would have been
much more complex. Consequently the gain made at the cost
of routing auait been lost by the increased cost of maintenance.

A node may be member of many lumps and a lump may
possess more than one sub-interval of Iinit. Consequently,
there are short cuts in the chain of lumps. The chain of lumps
structure can be schematized as in the Figure 4. In the this

0 264 - 1

l1 l2 l3 lnl2ln-2

m m

node shortcut

lump shortcut

Fig. 4: The chain of lumps structure

figure the chain of lumps is represented. One can see that the
node m appears in two different lumps, creating a node short
cut. The lump l2, has two sub-intervals of Iinit , therefore it
appears twice in the chain of lumps, creating a lump short cut.

B. Construction and maintenance

When the overlay network is created, there is a single lump
and, this one except, lumps are created only during the split
of lumps. To initiate the chain of lumps structure the initial
interval Iinit is given to the first lump. We will see in the
following sections how the structure evolves according to the
splits and absorptions of lumps. These short cuts will reduce
the number of hops needed to route messages from nodes to
lumps.

1) Splits: Let l be a lump that owns only one sub-interval
I = [a, b] of Iinit. As schematized in Figure 5, let lleft and
lright be the predecessor and the successor of l respectively.
We will see in Section III-C that deals with the operating
proof of the structure that if l splits into two new lumps, l1
and l2, and if lleft ∩ l 6= l ∩ lright or #(lleft ∩ l) > 1 or
#(l ∩ lright) > 1 then:
• either 1) l1 ∩ lleft 6= ∅ and l2 ∩ lright 6= ∅ ;
• and/or 2) l2 ∩ lleft 6= ∅ and l1 ∩ lright 6= ∅.

If we consider the case of the Figure 5,
I1 = [a, b(a + b)/2c] and I2 = [b(a + b)/2c, b]. I1 will

llleft lright

a b

Fig. 5: Example of split process (1).

be given to l1 and I2 to l2 as schematized in Figure 6. If
we consider the other case I1 will be given to l2 and I2 to
l1. In the case where 1) and 2) are true, I1 will be given

lleft
lright

a b

l1 l2

 (a+b)/2

Fig. 6: Example of split process (2).

to l1 and I2 to l2 if min(#(lleft ∩ l1), #(l2 ∩ lright)) >
min(#(lleft ∩ l2), #(l1 ∩ lright)) else I1 will be confided to
l2 and I2 to l1. This ensures that the size of the intersections
between the lumps of the chain is maximized.

If a lump that possesses more than one sub-interval of Iinit

the same process is repeated for each sub-interval.
2) Absorptions: When a lump absorbs another lump, it

becomes the owner of the sub-intervals of Iinit of the absorbed
lump. If a lump absorbs one of its predecessor or successor,
then it possesses contiguous sub-intervals. Therefore, these
contiguous sub-intervals are merged. An absorption process
is described in Figure 7. In this figure, the lump l2 appears

l1 l2l2

l1' l1'

n

n

join(l2,n)     l1'

l1'l2

Fig. 7: Example of absorption process.

twice in the chain of lumps structure. The node n joins l2 to



form the lump l
′

1. The lump l2 is absorbed by the lump l
′

1.

C. Proof of concept
We will show, in this section, that despite of the modifica-

tions of the lumps the structure is maintained. It is obvious
that the absorption of lump is not a problem. Nevertheless,
with regard to the splits of the lumps we have to deal with
several cases.

Unless there is too many underlay elements failures at the
same time, ROSA ensures that no lump with a density equals
to 2 will be split. Therefore we will only consider lumps with
at least three members. To facilitate the understanding of the
proof, we also only consider the lumps that have a single
sub-interval of Iinit. The proof principle stills the same if we
consider lumps with more than one sub-interval.

Let us consider the split of a lump l, with lleft as its
predecessor and lright as its successor. This split generates
two lumps l1, l2. The structure will be maintained if one the
following conditions is satisfied:
• either lleft ∩ l1 6= ∅ and l2 ∩ lright 6= ∅ ;
• or lleft ∩ l2 6= ∅ and l1 ∩ lright 6= ∅.

In some minor cases it is not always possible to satisfy this
condition and we will see in the following how these “wrong
case” are handled.

1) The good cases: If lleft∩l 6= l∩lright or #(lleft∩l) > 1
or #(l ∩ lright) > 1 the condition is always satisfied.

Proof: Let us suppose that lleft ∩ l 6= l ∩ lright

or #(lleft ∩ l) > 1 or #(l ∩ lright) > 1. It means
that #((lleft ∩ l) ∪ (l ∩ lright)) ≥ 2. In other words:
∃ mleft ∈ (lleft ∩ l) and mright ∈ (l ∩ lright) such
mleft 6= mright.

According to the ROSA protocol, the split of l generate
two lumps l1, l2 such that: l1 = l \ {m2} and l2 = l \ {m1}.
Then, if mleft and mright are both different of m1 and m2 it
is obvious that the condition is satisfied.

Moreover, if mleft = m1 (mleft = m2) then mleft ∈
l1 (mleft ∈ l2) and according to the definition mright ∈ l2
(mright ∈ l1) and the condition is satisfied too. The same
argument can be applied to mright.

2) The wrong case: lleft = lright and #lleft = 1: In the
case of lleft = lright and #lleft = 1 it may happen that
the condition is not satisfied. That means that one of the two
lumps resulting from the split has no member in common with
lleft and lright while the other one has a member in common
with both (see Figure 8).

In this case, the sub-interval of Iinit is given to the lump
that has a member in common with lleft and lright. The chain
of lumps structure can be finally schematized as in Figure 9.

We have to add a new rule to the ROSA protocol in order
to avoid the propagation of lumps with no sub-interval. This
rule is the following: Lumps with no sub-interval cannot be
joined by any node except if this join leads to the absorption
of this lump.

D. Routing from node to lump with the structure
The chain of lumps can be used to route messages from

nodes to lumps. Let K ∈ Iinit be a key, let Itarget be

l

lrightlleft

a b

lrightlleft

a b

l1

l2
a lump with no sub-interval

Fig. 8: Example of a wrong case

0 264 - 1

l1 l2 l3 lnl2ln-2

m m

node shortcut

lump shortcut

a lump with no sub-interval

Fig. 9: The chain of lumps structure

the sub-interval containing K and let Ltarget be the lump
possessing Itarget. A node that wishes to send a message M
to Ltarget sends messages getPart(K) to its neighbors. When
a node receives such a message, it replies with a message
closestPart(R). R is the closest bound to K among the bounds
of the sub-intervals owned by the lumps to which this node
belongs. The node that wants to send the message M receives
many messages closePart(R). Eventually this node sends a
message propagateMessage(M,K) to the neighbor that replied
with the closest R to K.

This process is repeated until a node belonging to Ltarget

was reached. One step of this process is schematized in
Figure 10. In this Figure, we deliberately ignore lumps short
cuts, nodes short cuts and the lumps with no sub-interval.

In the case where this is a node that only belongs to lumps
with no sub-intervals of Iinit, the message M is broadcasted
from neighbors to neighbors until it reaches a node belonging
to a lump in the structure. Once the structure reached, the
process described above is used.

To validate this routing algorithm, we have performed few
simulations. In the first one we have generated a chain of
lumps structure composed of lumps with two members only.
Each lump possessed only one sub-interval of Iinit. This is
the worst case for our routing algorithm. On the contrary,
since each node had only two neighbors (excepted two of
them that have only one neighbor), it is very favorable case
for a flooding algorithm. Then, we measured the number of
messages generated to route a message from a node to a
lump. The Figure 11 shows the number of messages sent



getPart(82) getPart(82)

18 24 5684

1

18 24 5684

closestPart(18) closestPart(56)

2

18 24 5684

propagateMessage(M,82)

3

Fig. 10: A node wants to send a message M to the lump that
owns the part containing 82

by a flooding algorithm and by our algorithm depending of
the number of lumps of the structure. In this experiment,
we voluntarily ignore the getPart and closestPart messages
since the size of these ones is only few bytes and therefore
negligible. The simulation shows that our algorithm is better
than a flooding one, even in the worst conditions.

Fig. 11: Comparison between a flooding algorithm and the
proposed algorithm.

The next experiments show the impacts on the efficiency
of the lumps short cuts (see Figure 12) and nodes short cuts
(see Figure 13). The number of messages sent decreases as the
number of short cuts increases. The chain of lumps structure
used for these two simulations was composed of 100 lumps
of 20 nodes each. These two experiments confirm that the

conditions of the first one were the worst since there was no
short cut. Then, we can affirm that the proposed algorithm is
a lot better than the previous flooding one.

Fig. 12: Impact of the lumps short cuts on the number of
message sent.

Fig. 13: Impact of the nodes short cuts on the number of
message sent.

IV. THE FILE STORAGE LAYER

A. Files indexes description

Each file stored on ROSA is stored in many replicas. Each
replica is stored by a node. The number of replicas is a
parameter that has to be decided when the file is stored. To
help finding these replicas, an index is also stored on the
network. This index contains, the file identifier, some data
about the file, a flag, the lists of the locations of the replicas
and the list of the identifiers of the nodes that owns this file. A
file index is described in Figure 14. The file identifier is used
to locate the file over the structure. The data is simply the file
name and a short description. The flag is used to specify that
the file is being updated or deleted. The version of the file



File ID Version Flag
IDfile Version nb flag

File data
File name, description, etc.

Replicas
IDnode1 : [a1, b1]; [a2, b2]; ...

IDnode2 : [a3, b3]; ...
...

Owners ID
IDowner1

IDowner2

...

Fig. 14: A file index

is an integer. A location of a replica is a node identifier and
the sub-intervals of the lumps to which the node is a member.
The list of the owner identifiers is the list of the identifiers
of the nodes that are allowed to access, update and delete the
file. The index of each file is stored on all the members of the
lump that possesses the sub-interval owning the file identifier.
This lump will be called the lump index of this file.

B. Storing a file

A node that wants to store a file upon ROSA, computes the
hash of the name and the size of the file to obtain the file
identifier, then the node determines the number of replicas
needed and which nodes are allowed to access to the file.
Afterwards, the node builds a StrFile message. This message,
as described in Figure 15, contains the sending node identifier
and location, the file identifier, an optional description of the
file, the number of replicas wanted, the list of the owners
and the file itself. We call node location the list of the sub-
intervals of the lumps to which the node is a member. This
node location will be useful if a node needs to reply to this
message. Eventually this message is sent to the lump with
the sub-interval owning the file identifier using the process
described in Section III-D. This lump will be the lump index
of this file. When a node of the lump index receives a message

StrFile
Node ID Node location
File ID File description
Rep. nb Owners

File

Fig. 15: A StrFile message

StrFile, if a file with the same identifier is already stored, the
node replies with a message BadID. Else, it builds and sends
a message StrIdx to the members of the lump index. These
members will store the index of this file. The message StrIdx
contains the index of this file where the Flag is set to ’free’
and the Version to 1.

The node that receives the message StrFile also randomly
chooses N elements of Iinit, where N is the number of replicas
wanted. Then, it builds a message ScttrRep and sends it to
the lumps possessing the sub-intervals that own the chosen
elements, using the process described in Section III-D.

A node of the targeted lump receiving such a message sends
a message StrRep to a randomly selected member of this lump.
This message informs the receiving node that it has to store a
replica of the file. ScttrRep and StrRep messages contain both
the file identifier and a copy of the file.

C. Retrieving, updating and deleting a file

Only the owners of a file are allowed to retrieve, update and
delete it and the necessary condition in order to do it is to be
aware of the file identifier.

1) Retrieving: When a node wants to retrieve a file, it sends
a message RtrvFile to the lump index of the file. A message
RtrvFile is described in Figure 16. When a node of this lump

RtrvFile
Node ID Node location

File ID

Fig. 16: A RtrvFile message

receives such a message, it replies by a message NotAllwd if
the sender is not an owner in the file and by a message Wait
if the flag in the index is not set to ’free’. In the other cases, it
replies with a message RepLoc containing the replica locations
and the current file version. The node willing to retrieve the
file has to send a message RtrvRep to any node storing a
replica of the file. This one will reply by a message HereItIs
containing the file and the version number.

The function of the messages Wait is to inform the node
that wants to retrieve the file that it has to wait an indefinite
amount of time before receiving the message RepLoc. We will
see in the next sections in which cases it happens.

2) Updating: To update a file, a node owner has first to
retrieve the file. Then it has to send a message UpdtFile to the
lump index of the file. This message is described in Figure 17.
The file version must be the number obtained when retrieving

UpdtFile
Node ID Node location
File ID File version

Changes

Fig. 17: A UpdtFile message

the file. The changes are the differences between the retrieved
file and the new one. These differences are obtained using the
differential file comparison utility diff [20].

When a node of the lump index receives such a message it
checks many things:
• that the file exists ;



• that the sender is an owner of the file ;
• that the flag in the index is set to ’free’ ;
• that the version number is the same that the one if the

index.
If one of these conditions is not respected, it replies by a
message FileNotFnd in the first case, NotAllwd in the second
case and FileMdfd in the other cases. If all the conditions
are respected, the node has to send messages FileBusy to the
members of the lump index of the file. This message contains
the file identifier. Each node receiving this message set the
flag in the corresponding index to ’busy’.

Afterwards the node sends a message UpdtRep to the node
storing the replicas. This message contains the file identifier
and the changes to apply to the file. At the receipt of this
message, the nodes storing the replicas sends an ACKUpdt to
lump index. When all the ACKUpdt are received the members
of the lump index set the flag of the corresponding index to
’free’. If after a determined amount of time an ACKUpdt
still missing, the replica is declared lost and a node replica
substitution procedure is engaged. This procedure will be
described in Section IV-D3.

3) Deleting: To delete a file, a node owner has to send a
message DltFile to the lump index of the file. The member of
the lump index that receives this message first checks if the
sender is indeed an owner. If not, it replies by a message
NotAllwd. If the sender is an owner, the member sends a
message DltIdx to the other members of this lump. At the
receipt of this message the members deletes the corresponding
index.

The member that receives the message DltFile also has to
notice the nodes that store the replicas about the deletion
of the file. Sending a message DltRep to them does it. The
node receiving this message deletes their replicas of the file.
Messages DltIdx and DltRep only contain the node identifier.
To finish the member that has received the message DltFile
deletes his own copy of the index.

D. Preservation of indexes and stored files

1) Preservation of indexes: As shown in the previous
sections, lumps can be split or absorbed by other lumps. Since
the index of a file is stored by all the members of a lump, the
modifications of the lumps affect the indexes.

When a lump is split, and therefore some sub-intervals are
split too, the indexes have to be redistributed. Since after a
split the lumps set of the nodes are modified, it may happen
that a node store the index of a file when it is not a member
of the lump index of this file anymore. In this case this node
has to discard this index.

When a lump is absorbed, indexes have to be redistributed
too. When a lump is absorbed, some nodes become members
of lumps that possess sub-intervals that were not possessed by
the lumps of their old lumps set. The corresponding indexes
have to be forwarded to these members by the other members.

2) Preservation of stored files: The nodes storing the
replicas of the files may have failure or leave the network,
therefore the number of replicas requested for a file may not be

maintain. To compensate for these losses, axs mechanism has
to be implemented. It consists for the nodes storing the replicas
in periodically sending message RepAlive to the lumps index
of the corresponding files. This message contains the sender
identifier, the sender location and the file identifier.

Once a member of the lump index receives this message,
it checks in the index if the node sender is one of the nodes
storing the replica of the file. If this condition is respected, it
replies by a message ACKRepAlive. Afterwards, it forwards
the message RepAlive to the other members of the lump. These
members do not have to send ACKRepAlive.

If, after a determined amount of time, a node storing
a replica did not send message RepAlive, a node replica
substitution procedure is engaged. It may also happen that
a node storing a replica did not receive the message DltRep.
In this case, it may happen that a node stores a file whereas
it does not have to do anymore. To prevent that waste files
encumbers the network, the nodes storing the replicas, which
have not received a message ACKRepAlive since a determined
amount of time have to delete their replicas.

3) The node replica substitution procedure : If a node
storing a replica does not periodically send messages RepAlive
or does not reply to a message ACKUpdt, it has to be
substituted. Only a member of the lump index of a given file
can start a node replica substitution procedure.

To start such a procedure, a member first checks in the
index of the corresponding file that the flag is set to ’free’.
If the flag is set to ’busy’ the procedure is cancelled. Else
the member sends a message FileBusy to the members of the
lump index. Afterward, it randomly chooses an element of
Iinit, retrieve a copy of the file using the process described in
Section IV-C1. Then, it sends a message ScttrRep, containing
the file identifier and a copy of the file, to the lump possessing
the sub-intervals that owns the chosen element. Each node
receiving this message set the flag in the index to ’busy’. The
messages ScttrRep is handled as described at the end of the
Section IV-B.

V. CONCLUSION

This article proposes an enhancement of the overlay network
presented in [11]. And without modifying the initial protocol,
endows ROSA with a structure. The result is a structured
overlay network with the same interesting properties, strong
connectivity and high scalability, as the old ROSA.

We also proposed an algorithm that ensures that every node
of the overlay network can send a message to any lump
within a small amount of hops. We have performed some
simulations to demonstrate the efficiency of this algorithm.
These experiments shown that our algorithm is a lot better
that the previous flooding one, even in the worst condition.
However, mathematical validation and studies remain to do.
Using this new algorithm and the chain of lumps structure we
have also developed a file storage system. This system can
be considered reliable since it was deployed over a reliable
overlay network. This system is also said to be reliable since
each file is stored in many replicas in different location of the



overlay network and since a duplication mechanism assures
that if a replica is lost another one will be created and stored.
This way, if failures occur, the files stored over the network are
preserved. A problem subsists with this system, a malicious
node may perform some denial of service attack. Without
authentication, we have to assume that all the nodes are have
a correct behavior.

Concerning ROSA, our future work will consist in building
a CPU sharing cycle systems using the structure presented in
this article. Another axis of research, concerning the structure,
consists in finding a way to suppress the lumps that do not
own sub-interval of Iinit.

REFERENCES

[1] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvo-
gel. Almi: An application level multicast infrastructure. pages 49–60,
2001.

[2] D. P. Anderson. Boinc: a system for public-resource computing and
storage. In Proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing., pages 4–10, 2004.

[3] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In IMC ’07: Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement, pages
53–65, 2002.

[4] Guofei Gu, Prahlad Fogla, Wenke Lee, and Douglas Blough. Dso:
Dependable signing overlay. In Proceedings of The 4th International
Conference on Applied Cryptography and Network Security (ACNS ’06),
2006.

[5] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion
detection in the domino overlay system. In In Proceedings of Network
and Distributed System Security Symposium (NDSS, 2004.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In In Proceedings of the 13th USENIX
Security Symposium, pages 303–320, 2004.

[7] David G. Andersen, Hari Balakrishnan, and G. Andersen. Resilient
overlay networks. In Symposium on Operating Systems Principles, pages
131–145, 2001.

[8] Sameer Qazi and Tim Moors. Scalable resilient overlay networks using
destination-guided detouring. In Proceedings of the IEEE International
Conference on Communications (ICC)", 2007.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 161–
172, 2001.

[10] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and
Scott Shenker. Making gnutella-like p2p systems scalable. In SIGCOMM
’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 407–
418, 2003.

[11] Loic Baud, Nguyen Pham, and Patrick Bellot. Robust overlay network
with self-adaptive topology: Protocol description. In Proceedings of
7th IEEE International Conference on Research, Innovation and Vision
for the Future in Computing and Communication Technologies, pages
154–160, 2008.

[12] Antony Rowstron and Peter Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In Sympo-
sium on Operating Systems Principles, pages 188–201, 2001.

[13] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geeis, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An
architecture for global-scale persistent storage. In Proceedings of ACM
ASPLOS, pages 190–201, 2000.

[14] Frank Dabek, Frans M. Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with cfs. In SOSP ’01:
Proceedings of the eighteenth ACM symposium on Operating systems
principles, pages 202–215, 2001.

[15] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie
Chen. Ivy: A read/write peer-to-peer file system. SIGOPS Oper. Syst.
Rev., 36:31–44, 2002.

[16] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ron-
nie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin
Theimer, and Roger P. Wattenhofer. Farsite: Federated, available,
and reliable storage for an incompletely trusted environment. In In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI, pages 1–14, 2002.

[17] Nguyen Pham and Michel Riguidel. Security assurance aggregation for
it infrastructures. In ICSNC ’07: Proceedings of the Second International
Conference on Systems and Networks Communications, page 72. IEEE
Computer Society, 2007.

[18] Nguyen Pham, Loic Baud, Patrick Bellot, and Michel Riguidel. Towards
a security cockpit. isa, 0:374–379, 2008.

[19] C. Patvardhan, V.C. Prasad, and V.P. Pyara. Vertex cutsets of undirected
graphs. IEEE Transactions on Reliability, 44:347–353, 1995.

[20] M.D. Mcllroy J.W. Hunt. An algorithm for differential file comparison.
Technical Report Computing Science Technical Report No.41, Bell
Telephone Laboratories, 1976.


