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Abstract In this paper, we survey some results, conjectures and open problems dealing with
the combinatorial and algorithmic aspects of the linear ordering problem. This problem
consists in finding a linear order which is at minimum distance from a (weighted or not)
tournament. We show how it can be used to model an aggregation problem consisting of
going from individual preferences defined on a set of candidates to a collective ranking of
these candidates.
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1 Introduction: from individual preferences to tournaments

Although the two problems on which this paper is based (Kemeny’s problem, Slater’s prob-
lem) have a same graph theoretical modelling, their origins and their meanings are different.
They deal with linear orders (i.e., complete antisymmetric transitive binary relations) and
with tournaments (i.e., complete antisymmetric binary relations; notice that a linear order is
a transitive tournament and conversely). We already considered these problems in Charon
and Hudry (2007).

The first one, Kemeny’s problem (Kemeny 1959), is also attributed to Condorcet (1785)
(see Young 1988 for a deep analysis of Condorcet’s work and the reasons why this problem
can be attributed to him; for a broader historical point of view and references on the context,
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see Barthélemy and Monjardet 1981; Black 1958; Hudry et al. 2009; McLean 1995; McLean
and Hewitt 1994; McLean et al. 2008 and McLean and Urken 1995, 1997). As this problem
can be stated in different ways (see Monjardet 1990 and below), several authors rediscovered
this problem. Kemeny seems to be the first one among them, hence the name of Kemeny’s
problem, or sometimes Kemeny’s rule. It can be stated as follows, if we adopt voting theory
as the context: given a collection (called a profile) � of m individual preferences Oi (1 ≤
i ≤ m) which are linear orders defined on a same finite set X of n candidates, determine a
collective preference O∗ which is also a linear order aggregating the preferences of � “as
accurately as possible” (of course, this notion of accuracy must be specified mathematically
with respect to a criterion; this one is defined below).

The second problem, Slater’s problem (Slater 1961), is the following: given a tournament
T defined on the set X, determine a linear order O∗ fitting T “as well as possible”. For
instance, T may represent the “preference” (not necessarily transitive) of a unique voter
v who can be inconsistent in the sense that v may prefer a candidate x of X to another
candidate y of X, and y to a third candidate z of X, and z to x. Or T may be the majority
tournament representing the result of a paired-comparison method, as the one proposed by
Condorcet at the end of the XVIIIth century (Condorcet 1785). In such a method, m voters
rank the elements of X. Then the majority relation T is built on X: for two candidates x

and y of X, we have xTy if x is preferred to y by a majority of voters. If there is no tie,
T is a tournament which is not necessarily a linear order, even if the individual preferences
of the voters are linear orders: this is the well-known “Voting Paradox”, also called “effet
Condorcet” in French (see Guilbaud 1952).

To define the criterion to optimize in both cases, we consider the symmetric difference
distance δ (also linked to the Kendall distance, see Kendall 1938) which measures the num-
ber of disagreements between two relations R and S defined on a same set (see for instance
Barthélemy and Monjardet 1981 for its properties):

δ(R,S) = |{(x, y) with [xRy and not xSy] or [xSy and not xRy]}|.
If we consider now a profile � = (T1, T2, . . . , Tm) (in which the relations Ti with 1 ≤ i ≤

m are linear orders for Kemeny’s problem, or in which m = 1 and T1 is a tournament for
Slater’s problem), we define the remoteness � (Barthélemy and Monjardet 1981) between
� and a relation O by:

�(�,O) =
m∑

i=1

δ(Ti,O).

This remoteness � may be interpreted as the total number of disagreements between �

and O .
In order to unify the statements of Kemeny’s problem and Slater’s problem, we will

assume in the sequel that all the relations Ti (1 ≤ i ≤ m) of the profile are tourna-
ments (which are assumed to be transitive for Kemeny’s problem). Let us remind that,
in a tournament T , for any two candidates x and y with x �= y, one and only one
of the following two possibilities occurs: xTy or yTx (see Laslier 1997; Moon 1968;
Reid 2004 or Reid and Beineke 1978 for basic definitions and results about tournaments;
see also McKey 2006 for a catalogue of the non-isomorphic tournaments with n ≤ 10 or
of special families of tournaments). As noticed at the beginning of this section, the set of
all the tournaments defined on X contains the linear orders also defined on X. So, it may
happen that the considered individual preferences are linear orders as well. In both prob-
lems, we shall consider that the relation O∗ that we look for is also a linear order defined
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on X (though other partially ordered structures may be considered; see for instance Caspard
et al. 2007 for partially ordered structures). Then we obtain a combinatorial optimization
problem: compute a linear order O∗ minimizing �(�,O) in the first case or δ(T ,O) in the
second case, over the set of linear orders defined on X. In the first case, O∗ will be called a
median order of � (Barthélemy and Monjardet 1981) or a Kemeny order of � if the indi-
vidual preferences are assumed to be linear orders. The problem itself has different names,
as Kemeny’s problem (or rule), median order problem, linear ordering (or order) prob-
lem, linear arrangement problem, permutation problem. . . (for references, see for instance
Barthélemy and Monjardet 1981, 1988; Grötschel et al. 1984a; Huber 1976; Jünger 1985;
Lenstra 1977; Monjardet 1973, 1979; Reinelt 1985; Young 1978; see below for other equiv-
alent statements and thus other names, and for references; see also Bertacco et al. 2008;
Buchheim et al. 2009; Duarte et al. 2009 and Righini 2008 for variants of this problem). In
the second case, O∗ will be called a Slater order of T , as Slater (1961) defined this fitting
problem.

Consequently, Kemeny’s problem and Slater’s problem may be stated as follows:

Problem 1 (Kemeny’s problem when the profile contains linear orders, median order prob-
lem, or linear ordering problem; Slater’s problem when the profile contains m = 1 tourna-
ment) Given a profile � of m tournaments (or of m linear orders) defined on a same set X,
compute a linear order O∗ minimizing � with respect to � on the set � of the linear orders
defined on X:

�(�,O∗) = min
O∈�

�(�,O).

It is usual to represent a preference R defined on X by a graph (for reference on graph
theory, see for instance Bang-Jensen and Gutin 2001 or Berge 1985). Its vertices are the
elements of X, and there is an arc (i.e., a directed edge) (x, y) from a vertex x to a ver-
tex y when x is preferred to y with respect to R, i.e., when we have xRy. The properties
of the graph are the ones of R: it can be antisymmetric, complete, transitive, and so on.
This allows us to consider tournaments and linear orders as graphs. Similarly, the profile
� = (T1, T2, . . . , Tm) can also be represented by a directed, weighted, complete, symmetric
graph G� = (X,UX): its set of vertices is X, and G� contains all the possible arcs except
the loops (i.e., UX = X × X − {(x, x) for x ∈ X}). The weights of the arcs (x, y) give the
intensity of the preferences for x over y. In order to compute it, we set (see Barthélemy
and Monjardet 1981 for instance): t

j
xy = 1 if xTjy (i.e., if x is “preferred” to y by voter

j ) and t
j
xy = 0 otherwise. Similarly, we set oxy = 1 if xOy and oxy = 0 otherwise. Then we

obtain:

δ(Tj ,O) =
∑

(x,y)∈X2

|t jxy − oxy | =
∑

(x,y)∈X2

[t jxy − oxy]2

=
∑

(x,y)∈X2

[
(tjxy)

2 − 2t jxyoxy + (oxy)
2
] =

∑

(x,y)∈X2

[t jxy + (1 − 2t jxy)oxy]

and

�(�,O) = C −
∑

(x,y)∈X2

mxyoxy

where C = ∑m

j=1

∑
(x,y)∈X2 t

j
xy = mn(n−1)

2 is a constant and with mxy = 2
∑m

j=1 t
j
xy − m =

∑m

j=1 t
j
xy − ∑m

j=1 t
j
yx . Notice that mxy measures the number of voters who prefer x to y
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minus the number of voters who prefer y to x. It is also equal to twice the gap between the
number of voters who prefer x to y and the majority. It is a non-positive or non-negative
integer with the same parity as m. Moreover we have: mxy + myx = 0. Then we weight the
arcs (x, y) of G� by mxy .

Example Consider the following example, with n = 3 and m = 4. Let a, b, and c denote the
three candidates. Assume that the preferences of the four voters are respectively given by
the four linear orders a > b > c, a > c > b, b > a > c, b > c > a, with the agreement that,
for x and y belonging to {a, b, c}, x > y means that x is preferred to y by the considered
voter. Then, the values of the quantities mxy are: mab = 0, mba = 0, mac = 2, mca = −2,
mbc = 2, mcb = −2.

Thus it is easy to associate a graph with each profile of tournaments or of linear orders.
Conversely, the question arises: which weighted graphs G = (X,UX) can be associated
with a profile � of tournaments or of linear orders? Debord (1987a, 1987b) provides such
characterisations, at least, for profiles of linear orders, when the number of linear orders is
large enough (see also Erdös and Moser 1964; McGarvey 1953 and Stearns 1959).

Theorem 1 The graph G = (X,UX) weighted by the (non-positive or non-negative) integers
mxy represents a profile � of m tournaments if and only if the following conditions are
fulfilled, where M denotes the highest weight of G (M = Max(x,y)∈UX

mxy):

1. all the weights mxy have the same parity,
2. m has the same parity as the weights mxy ,
3. m ≥ M ,
4. ∀(x, y) ∈ UX,mxy = −myx .

Theorem 2 The graph G = (X,UX) weighted by the (non-positive or non-negative) integers
mxy represents a profile � of m linear orders if the following conditions are fulfilled, where
N(G) is the number of linear orders in Debord’s construction:

1. all the weights mxy have the same parity,
2. m has the same parity as the weights mxy ,
3. m ≥ N(G),
4. ∀(x, y) ∈ UX , mxy = −myx .

Notice that, for Theorem 1, M is the lowest possible value of m. For a profile of lin-
ear orders, the number N(G) of linear orders required in Debord’s construction is about∑

mxy>0 mxy when this quantity is not equal to 0 (otherwise, when all the quantities mxy are
equal to 0, the minimum number of linear orders is equal to 2; see Hudry 2008 for more
details). It is sometimes possible to find a profile with fewer linear orders associated with G

(but still greater than or equal to M). But minimizing the number of linear orders required
for the construction of such a profile seems quite difficult in general.

Moreover, if we assume that the weights mxy are upper-bounded by a polynomial in n,
then the construction of � can be done in polynomial time with respect to the size of G.
As it is the case in the papers dealing with complexity issues, from the point of view of
the theory of NP-completeness and because of this polynomial link, the complexity of our
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aggregation problems is the same as the graph theoretical problems that we are going to
tackle below.1

The previous computations show that minimizing � is the same as computing the binary
variables oxy in order to maximize

∑
(x,y)∈X2 mxyoxy while the variables oxy define a linear

order. Thus we obtain a 0-1 linear programming formulation of our problem (see for instance
Arditti 1984; de Cani 1969; Hudry 1989; Nishihara et al. 1989; Tucker 1960; Wakabayashi
1986; Younger 1963; more generally, see Barthélemy and Monjardet 1981 and below for
references; for other equivalent expressions, see Monjardet 1990):

Maximize
∑

(x,y)∈X2

mxyoxy

under the constraints:
⎧
⎪⎨

⎪⎩

∀(x, y) ∈ X2, x �= y, oxy + oyx = 1 (antisymmetry and completeness),

∀(x, y, z) ∈ X3, x �= y �= z �= x, oxy + oyz − oxz ≤ 1 (transitivity),

∀(x, y) ∈ X2, oxy ∈ {0,1}.
From a graph theoretic point of view, we may also see this problem as consisting in

drawing from G� a subset of arcs with a maximum total weight and defining a linear order,
or as deleting n(n−1)

2 arcs from G� with a minimum total weight so that the n(n−1)

2 remaining
arcs of G� define a linear order with a maximum total weight.

In order to obtain a formulation with a tournament as the representation of the profile, it
is sufficient to see that G� contains redundant information: ∀(x, y) ∈ X2 with x �= y, mxy =
−myx (notice anyway that, if the relations of the profile are not assumed to be tournaments,
this relation is not necessarily true and the following cannot be applied systematically). Then
we may keep only one arc (x, y) or (y, x), for instance the one of which the weight (mxy

or myx) is non-negative. If mxy and myx are equal to 0, we keep one of the arcs arbitrarily.
In other words, we direct the arc from x to y when there exists a majority of voters who
prefer x to y. This leads to the majority tournament associated with �. Then we obtain a
tournament T� of which the weights are non-negative, and with a same parity. As we look
for a linear order as the median relation of the profile, it is equivalent to say that we remove
an arc (x, y) or that we keep the arc (y, x) in G�. With respect to T�, the search of a median
order is the same as finding a subset of arcs with a minimum total weight such that reversing
these arcs (x, y) in T� makes T� become transitive: these arcs are the ones that we kept to
build T� while it would have been necessary to choose (y, x) to obtain a median order of �.

Seen from the graph theoretic point of view, Problem 1 can also be stated as follows,
where N denotes the set of non-negative integers:

1It is usual to represent the profile � as a multiset � = (T1, T2, . . . , Tm) in which two elements Ti and Tj
may be equal even if i and j are distinct. But there exists another representation of the profile �. Since the
elements of � may be the same, we may consider only the different elements R1,R2, . . . ,Rq of �, where
q denotes this number of different elements. We then gather all the voters sharing a same preference, i.e. the
indices of the preferences Tj (1 ≤ j ≤ m) corresponding with a same element of �. If mi (1 ≤ i ≤ q) denotes

the number of voters associated with a same element Ri (1 ≤ i ≤ q) of � (notice the equality
∑q

i=1 mi = m),
we associate this number mi of occurrences with each element Ri of �. Then � can be described as the set
of such pairs: � = {(R1,m1); (R2,m2); . . . ; (Rq ,mq)}. Such a representation does not involve the same
size for the data when m is large with respect to n. Anyway, usually, the complexity results are the same for
the two representations, because their proofs stand even if m is bounded by a polynomial in n, and in this case
these is no qualitative difference between the two representations. Anyway, for some variants of Kemeny’s
problem, these different representations may involve different locations inside the polynomial hierarchy, as
shown by Hemaspaandra et al. (2005) (see also Hudry 2009c).
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Problem 2 (Minimum reversing set) Given a tournament T = (X,U) weighted by p defined
from U into N, find a subset V of U such that

∑
(x,y)∈V p(x, y) is minimum and such that

the tournament obtained by reversing in T the elements of V is transitive.

Remark 1 From what is said above, it appears that Problems 1 and 2 differ by two aspects.
The first one, already mentioned, is that we do not know how to find back the minimum
value of m from a tournament associated with a profile of m linear orders systematically.
The second one deals with the parity of the weights of the arcs: there is no parity constraint
in Problem 2. This point is not so important and can be relaxed. Indeed, if we consider twice
each weight, we obviously obtain even weights, while the structures of the optimal solutions
are not changed by this operation.

From Remark 1, it appears that we may consider Problem 2 instead of Problem 1. It
is what we are going to do in the sequel. Though this problem appears in different con-
texts, for instance in electrical engineering, in agronomy, in biology, in mathematics, in
economics, in archeology, in scheduling, in sports, in the social sciences, etc. (see for in-
stance Barthélemy and Monjardet 1981, 1988; Grötschel et al. 1984a; Guénoche et al. 1994;
Huber 1976; Jünger 1985; Lad et al. 2009; Lenstra 1977 or Reinelt 1985 for references or
for applications in these fields), it will be with respect to the field of voting theory described
above that we will denote or illustrate the entities defined or considered below.

Notation and basic definitions

By T = (X,U), we will denote a tournament, and p(x, y) ∈ N will be the weight of the arc
(x, y) (i.e., a directed edge; similarly, a circuit will denote a directed cycle). The number of
vertices |X| will be denoted by n. For any arc (x, y) of T , we say that x beats y or that y

is beaten by x. A vertex x of T is a Condorcet winner (respectively loser) of T if x beats
(respectively is beaten by) all the other vertices. Notice that such a Condorcet winner may
not exist. If it exists, then it is unique. The same for a Condorcet loser. The (Copeland) score
s(x) of a vertex x is its out-degree, i.e., the number of vertices beaten by x. If n is odd and if
all the scores are equal to (n − 1)/2, we say that the tournament is regular. If n is even and
the maximum difference between any pair of scores is equal to 1, we say that the tournament
is quasi-regular or near-regular. In this case, half the scores are equal to (n/2) − 1, and the
other half are equal to n/2. For a subset V of U , we set P (V ) = ∑

(x,y)∈V p(x, y) and we call
this quantity the weight of V . The transitive tournament obtained by reversing in T a subset
V of arcs with a minimum weight P (V ) will be called a median order of T , or a Kemeny
order if T is weighted, or a Slater order otherwise. When we reverse a subset V of arcs
in T to obtain a linear order O (not necessarily a median order), we set κ(T ,O) = P (V )

(= �(�,O)) and we call this quantity the remoteness of O from T . The minimum of
κ(T ,O) over the set of the linear orders O defined on X will be denoted K(T ) and will be
called the Kemeny index of T . A Kemeny order is thus a linear order of which the remoteness
from T is equal to the Kemeny index of T . If all the weights of T are equal to 1, we say that
T is unweighted. In an unweighted tournament T , the weight of a subset V of U is then equal
to its cardinality. Thus, the search of a median order, then called a Slater order, corresponds
to the search of a minimum number of arcs to be reversed in T to make T transitive. This
minimum number of arcs is denoted i(T ) and is called the Slater index of T . A linear
order O = (X,W) defined on X is also written, for an appropriate labelling of the vertices,
x1 > x2 > · · · > xn−1 > xn with (xj , xk) ∈ W if and only if the index j is smaller than the
index k. In this case, we shall say also that xj is before xk . A part x1 > · · · > xj−1 > xj of
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O with 1 ≤ j ≤ n will be called a beginning section of O . The vertex x1 will be called the
(Condorcet) winner of O . A vertex x will be called a Kemeny winner (respectively a Slater
winner) of T if there exists a Kemeny order (respectively a Slater order) of T of which x is
the winner. Kemeny losers and Slater losers can be defined in the same way, with respect to
Condorcet losers of Kemeny orders or of Slater orders. Last, for any subset V ⊂ U , V̄ will
denote the set of the reversed arcs of V : V̄ = {(x, y) such that (y, x) ∈ V }.

The paper is organized as follows. Based on equivalent statements for Problem 1, we
study the complexity of the linear ordering problem and of the aggregation of linear or-
ders or tournaments into a linear order in Sect. 2. Section 3 is devoted to the properties of
the Slater winners or of the Kemeny winners. We investigate also some links with other
tournament solutions in this section. Bounds for the Slater index can be found in Sect. 4,
while the same is done in Sect. 5 for bounds for the Kemeny index. We make an inven-
tory of methods allowing to solve Problem 1 approximately or exactly in Sect. 6. In the last
section, we give partial answers to the following questions: how many Slater orders may
a given tournament own, and how different can two Slater orders of a same tournament
be?

2 Equivalent problems and complexity

As said above, Problem 2 consists in making T transitive by reversing a subset of arcs with
a minimum total weight. It is well-known (see Moon 1968 for instance) that a tournament
is transitive if and only if it does not contain any circuit. Moreover, a tournament does not
contain any circuit if and only if it does not contain any circuit of length 3, i.e., a circuit
going through 3 vertices and 3 arcs (such a circuit will be called a 3-circuit in the sequel).
Indeed, as a tournament T is a complete oriented graph, it is easy, from a given circuit
C of T , to show the existence of a 3-circuit of T by considering the chords of C. The
equivalence between transitive tournaments (or equivalently linear orders) and tournaments
without circuit leads to Problem 3:

Problem 3 (Minimum weighted feedback arc set problem) Given a tournament T = (X,U)

weighted by a function p defined from U into N, determine a subset V of U such that P (V )

is minimum and such that the graph (X,U − V ) obtained by removing from T the arcs of
V is without circuit.

A feedback arc set is a subset of arcs such that removing all its elements deletes
all the circuits of T . Equivalently, it is a subset of arcs such that any circuit of T

contains at least one of these arcs (for a survey on feedback sets, see Festa et al.
1999). Thus Problem 3 consists in determining a feedback arc set with a minimum
weight. It has been known for a long time (Karp 1972) that the computation of a
minimum feedback arc set is an NP-hard problem for general directed graph (for a
global presentation of the algorithmic complexity theory, see Ausiello et al. 2003;
Barthélemy et al. 1996; Garey and Johnson 1979 or Hemaspaandra 2000). The com-
plexity status of this problem for tournaments remained open for a long time, though
several authors conjectured quite soon that it remains NP-hard for this kind of graphs.
Recent results (see Alon 2006; Charbit et al. 2007 and Conitzer 2006) show that
Problem 3 remains NP-hard when all the weights are equal to 1 (see also Ailon et
al. 2005, where it is shown that this problem is NP-hard under randomized reduc-
tions):
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Theorem 3 The following problem is NP-complete:

• Name: Feedback arc set problem for tournaments.
• Instance: a tournament T = (X,U), an integer K .
• Question: does there exist a subset V of U with |V | ≤ K and such that the graph

(X,U − V ) obtained by removing the arcs of V from T is without any circuit?

The parameterized complexity (see Downey and Fellows 1999 for a global presenta-
tion of this field) of the feedback arc set problem applied to tournaments has also been
studied. Raman and Saurabh (2006) (see also Dom et al. 2006, where the case of bipartite
tournaments is also considered) show that the feedback arc set problem for weighted or
unweighted tournaments is fixed-parameter tractable (FPT) by providing appropriate algo-
rithms. (Remember that a problem is said to be FPT if there exist an arbitrary function f and
a polynomial function Q such that, for any instance (I, k) where I is an instance of the non-
parameterized version of the problem and k is the considered parameter, (I, k) can be solved
within a CPU time upper-bounded by f (k)Q(|I |), where |I | denotes the size of I . In par-
ticular, if k is upper-bounded by a constant, then the problem becomes polynomial.) More
precisely, the parameterized version dealt with in Raman and Saurabh (2006) consists in
considering the decision problem associated with Problem 3: the (weighted or unweighted)
tournament T plays the role of I , and we introduce an integer k which will upper-bound the
weight of the searched subset V . Then we set the question: does there exist a feedback arc
set V of T with a weight—or cardinality if T is unweighted—less than or equal to k (if T

is unweighted, we find back the problem stated in Theorem 3, with k = K)? Raman and
Saurabh (2006) give several algorithms to solve the parameterized version of the feedback
arc set problem applied to tournaments (they also consider the feedback vertex set problem
as well as other kinds of graphs). The best complexity of their algorithms for this problem
is O(2.415knω), where ω denotes the exponent of the running time of the best matrix mul-
tiplication algorithm (for instance, in the method designed by Coppersmith and Winograd
(1990), ω is about 2.376). They also provide a O(k4k + μ)-algorithm for the parameterized
version of the maximum acyclic subgraph problem (see Problem 4 below) for general di-
rected graphs, where μ denotes the number of arcs of the considered graph (μ = n(n− 1)/2
for tournaments). This shows that this problem is also FPT, even for directed graphs which
are not tournaments.

The interested reader will find other complexity results or questions about the approx-
imability of these problems in the subsection “Approximation and probabilistic algorithms”
of Sect. 6.1.

Moreover, it is easy to show that the optimal solutions of Problems 2 and 3 admit
the same optimal weight, and that these optimal solutions differ from each other only by
arcs with a weight equal to 0. Theorem 4 below specifies this property by generalizing
to weighted tournaments a result stated by Younger (1963) for unweighted tournaments,
and rediscovered by several authors (see also Barthélemy et al. 1995; Bermond 1972;
Grindberg and Dambit 1965; Remage and Thompson 1964, 1966).

Theorem 4 Problems 2 and 3 admit the same optimal value. Moreover, any optimal solution
of Problem 2 is an optimal solution of Problem 3. Conversely, from any optimal solution V3

of Problem 3, we may construct an optimal solution V2 of Problem 2 (with P (V2) = P (V3))

by the elimination of appropriate 0-weighted arcs from V3.

Remark 2 In fact, it is clear that any feasible solution of Problem 2 (i.e., any subset of arcs
of which the reversing in T makes T transitive) is also a feasible solution of Problem 3
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(a subset of arcs of which the deletion in T gives a graph without circuit). The converse is
generally false, even if we only consider optimal solutions (because of 0-weighted arcs). For
instance, removing all the arcs of a circuit does delete this circuit. But reversing all the arcs
of a circuit creates another circuit (its reverse).

Because of this link between Problems 2 and 3, the complexity of Problem 2 follows as
a corollary of Theorem 3:

Corollary 1 Problem 2 is NP-hard, and remains so even if all the weights are equal to 1.

In its turn, Corollary 1 yields the complexity of Problem 1, because of the polynomiality
of the construction of a profile from a weighted tournament (see above). We may prove the
following corollary (see Hudry 2008, 2010 for more detailed results; see Hudry 2008 and
Wakabayashi 1986, 1998 for other results dealing with the complexity of the aggregation of
binary relations; see Hudry 2009b for the complexity of other voting procedures):

Corollary 2

1. Let m be any given positive integer. Then Problem 1 is NP-hard for a profile of m tour-
naments.

2. Let m be a positive integer large enough with respect to n (m = �(
∑

mxy>0 mxy) is suf-
ficient when the weights are not all equal to 0). Then Problem 1 is NP-hard for a profile
of m linear orders.

Anyway, we may be more specific for the aggregation of an even number m of linear
orders into a linear order. It is shown in Dwork et al. (2001) that Problem 1 is NP-hard
when the profile contains 4 linear orders. By adding (m − 4)/2 times a linear order O and
the reversed order Ō , it is easy to show Theorem 5. Notice that, because of the Paretian
property (see Definition 4 and Theorem 18 below), Problem 1 is polynomial for a profile of
2 linear orders.

Theorem 5 Let m be any given even integer with m ≥ 4. Then Problem 1 is NP-hard for a
profile of m linear orders.

We may summarize the previous results as follows: Kemeny’s problem is NP-hard (what
was shown several years ago for n large enough: see for instance Bartholdi et al. 1989;
Hudry 1989 or Orlin 1981), even for any given even number m ≥ 4 of linear orders, and
Slater’s problem is also NP-hard (what are more recent results). Notice that the associ-
ated decision problems are NP-complete. We may derive Theorem 6 from the complexity
of Slater’s problem (see Hudry 2010) and from the one of Kemeny’s problem (see Hudry
2009c for the proofs). The relationship between some of the following problems may seem
obvious, and indeed it is the case for some of them. Anyway, remember that for another tour-
nament solution, namely, the Banks solution—see Sect. 3—, checking that a given vertex is
a Banks winner is an NP-hard problem (Woeginger 2003) while finding a Banks winner is
polynomial (Hudry 2004) (see Hudry 2009a for a survey on the complexity of computing
winners with respect to other tournament solutions).

Theorem 6 Let T be a tournament (unweighted if we deal with Slater’s problem, weighted
if we deal with Kemeny’s problem). The following problems are NP-hard:
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1. computing the Slater index i(T ) of T ,
2. computing a Slater winner of T ,
3. computing a Slater order of T ,
4. checking that a given vertex of T is a Slater winner of T ,
5. computing the Kemeny index K(T ) of T ,
6. computing a Kemeny winner of T ,
7. computing a Kemeny order of T ,
8. checking that a given vertex of T is a Kemeny winner of T .

Theorem 5 gives the minimum even number m of linear orders so that Kemeny’s problem
is NP-hard. The same for m odd remains open:

Open problem 1 Determine the minimum odd value of m such that the aggregation of m

linear orders into a linear order is NP-hard.

There exist other equivalent formulations for the problem of median orders or for Slater’s
problem. We give three of them. The equivalence between Problems 1, 2 or 3, and Problem 4
is obvious (with respect to the theory of complexity but not, for instance, with respect to the
theory of approximation; see below) and, as said by Bermond (1972), its main interest is to
link problems often studied separately.

Problem 4 (Maximum acyclic subgraph problem—notice that maximum acircuitic or cir-
cuitless subdigraph problem would be more appropriate, but this name is not used in litera-
ture) Given a weighted tournament T , find a partial graph of T without circuit and with a
maximum weight.

It is clear that, if V is an optimal solution of a tournament T = (X,U) for Problem 3,
then U − V is an optimal solution of T for Problem 4, and conversely.

To state Problem 5, we define the weight-matrix of a tournament T weighted by a func-
tion p as the matrix M = (mij )1≤i≤n,1≤j≤n with mij = p(i, j) if the arc (i, j) exists in T and
0 otherwise. Notice that, for the existing arcs, it is in fact the same mij as the one introduced
above in order to take the intensities of the preferences into account in the voting problem.

Problem 5 (Optimal triangulation of a weight-matrix) Given the weight-matrix M of a
weighted tournament, determine a (same) permutation defined on the rows and on the
columns of M so that the sum of the weights located under the diagonal is minimum.

This formulation was studied by Slater (1961) and by Younger (1963) for unweighted
tournaments. A variant, sometimes known as the triangulation of input-output matrices (see
for instance Grötschel et al. 1984b) consists in maximizing the sum of the weights located
above the diagonal of the weight-matrix.

For the last formulation (used for instance in Bermond 1972 when T is unweighted), we
define the weighted hypergraph H(T ) of the circuits of the tournament T . The vertex-set
of H(T ) is given by the arcs of T belonging to at least one circuit of T . An edge of H(T )

corresponds to a circuit of T and conversely. Each vertex of H(T ) is weighted by the weight
of the arc which it is associated with. Figure 1 illustrates such a hypergraph in the case of
an unweighted tournament T ; in H(T ), the arc (x, y) of T is noted xy.

Remind that a vertex cover of a hypergraph H is a subset of vertices such that each edge
of H contains at least one element of this subset (see Berge 1985). If H is weighted, the
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Fig. 1 A tournament T and the
hypergraph H(T ) of the circuits
of T

weight of a vertex cover of H is the sum of the weights of the vertices belonging to this
vertex cover. For H(T ), it means that a vertex cover is a subset of arcs of T such that any
circuit of T goes through at least one of these arcs, or, in other words, is a feedback arc set
of T . Hence the equivalence between Problem 3 and Problem 6 below.

Problem 6 Given a weighted tournament T , determine a vertex cover of H(T ) with a min-
imum weight.

Consequently, in the case of an unweighted tournament T , the Slater index i(T ) of T is
equal to the minimum cardinality of a vertex cover of the associated hypergraph H(T ) (this
equality appears already in Bermond 1972). Hence, for the example of Fig. 1, as the vertices
bd and ec of H(T ) cover all the edges of H(T ) while no vertex of H(T ) can cover alone
all the edges of H(T ), we have i(T ) = 2 and reversing the arcs (b, d) and (e, c) in T leads
to a Slater order (it is not the only one) c > d > e > a > b.

Because of the equivalence between the previous six problems and because of Theorem 3,
all of them are NP-hard:

Theorem 7 Problems 1 to 6 are NP-hard.

3 Properties of the winners and links with other tournament solutions

As polynomial algorithms are not known to compute a Kemeny order or a Slater order, many
exact methods have been designed that are more or less based on an exhaustive enumera-
tion of the possible linear orders (see below). Then it can be interesting to know properties
fulfilled by median orders in order to limit the enumeration. This section is devoted to some
of these properties (see also Laslier 1997 for axiomatic properties verified or not by Slater
orders) and to the relationships between Slater winners or Kemeny winners and the winners
according to other procedures.

Most of the following properties give necessary conditions for a vertex to be a Kemeny
or a Slater winner, but the first one (due to Younger 1963 for unweighted tournaments and
to Jacquet-Lagrèze 1969 for weighted tournaments) and its corollaries deal with a global
property of medians orders.

Theorem 8 Let T be a tournament and let O = x1 > x2 > · · · > xn−1 > xn be a median
order of T . Then, for any i and any j with i < j , xi > xi+1 > · · · > xj−1 > xj is a median
order of the subtournament induced by the vertices xi, xi+1, . . . , xj−1, xj .
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By considering the special case j = i + 1 in the statement of Theorem 8, we obtain the
following corollaries.

Corollary 3 Let O = x1 > x2 > · · · > xn−1 > xn be a median order of a tournament
T = (X,U) weighted by p. Then, for any i with 1 ≤ i < n, we have: (xi, xi+1) ∈ U or
p(xi+1, xi) = 0.

In other words, let O = x1 > x2 > · · · > xn−1 > xn be a median order of a weighted
tournament T = (X,U). If the series of arcs (xi, xi+1)1≤i<n does not define a Hamiltonian
path of T , then the “badly oriented” arcs all have a weight equal to 0. Notice that reversing
these “badly oriented” arcs in O gives another median order of T which is associated with a
Hamiltonian path of T . So, there always exists a median order with which we may associate
a Hamiltonian path of T . Moreover, if all the weights are positive (it is the case for instance
if we aggregate an odd number of linear orders into a linear order), then any median order
is necessarily associated with a Hamiltonian path of T . A special case (stated by Remage
and Thompson 1966) is the one of Slater orders (see also Bar-Noy and Naor 1990 for a link
between Hamiltonian paths and minimal—with respect to inclusion—feedback arc sets in
tournaments):

Corollary 4 Any Slater order x1 > x2 > · · · > xn−1 > xn of a tournament T is such that the
arcs (xj , xj+1) for 1 ≤ j < n define a Hamiltonian path of T .

These properties allow to prune the search tree of a branch and bound method (it is done
for instance in Charon and Hudry 2006). Another way to prune the search tree is given by
Theorem 9 below. For this theorem, we need new definitions and a lemma.

Definition 1

1. Let Y be a subset of X and let x belong to X. We call partial weight of x with respect to
Y the quantity PY (x) = ∑

y∈Y p(x, y) with the following understanding: if (x, y) is not
an arc of the considered tournament, we set p(x, y) = −p(y, x) (and p(x, x) = 0).

2. Let O be a linear order defined on q elements of X for some integer q (q ≤ n). We call
shift of parameters i and j (with i �= j ) applied to O the operation consisting in changing
O into another linear order O ′ obtained by pushing on the left if i < j (respectively on the
right if i > j ) all the vertices located in O in the positions i +1, i +2, . . . , j (respectively
j , j + 1, . . . , i − 1) and then by putting at the position j in O ′ the vertex which was at
the position i in O . In other words, for i < j , if we have:

O = x1 > · · · > xi−1 > xi > xi+1 > · · · > xj−1 > xj > xj+1 > · · · > xq,

a shift of parameters i and j gives the order:

x1 > · · · > xi−1 > xi+1 > · · · > xj > xi > xj+1 > · · · > xq−1 > xq,

while a shift of parameters j and i gives the order:

x1 > · · · > xi−1 > xj > xi > · · · > xj−1 > xj+1 > · · · > xq−1 > xq.

Lemma 1, whose proof is straightforward, specifies the variations of κ when a shift is
performed (see for instance Charon et al. 1997a).
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Lemma 1 Let T be any tournament weighted by p, and let O be the order x1 > · · · > xn.
Applying a shift of parameters i and j (i �= j) to O gives an order O ′ with:

1. κ(T ,O ′) − κ(T ,O) = P{xi+1,...,xj }(xi) if i < j ,
2. κ(T ,O ′) − κ(T ,O) = −P{xj ,...,xi−1}(xi) if i > j .

We may apply Lemma 1 to prove Theorem 9, which provides a property of a beginning
section of a median order (see for instance Charon et al. 1997a).

Theorem 9 Let S = x1 > x2 > · · · > xq−1 > xq be a beginning section of an order defined
on X. If S is the beginning section of a median order of T , then we have:

1. PY (xq) ≥ 0, with Y = X − {x1, x2, . . . , xq−1},
2. for any i with 1 ≤ i ≤ q − 1, P{xi ,...,xq−1}(xq) ≤ 0 and P{xi+1,...,xq }(xi) ≥ 0.

An interesting case of Theorem 9 is the one with q = 1: for a vertex x to be a winner,
the sum of the weights of the arcs leaving x must be greater than or equal to the sum of
the weights of the arcs entering x. This is a generalization of a result applied by Bermond
(1972) to unweighted tournaments: if x is a Slater winner, then the score s(x) of x is greater
than or equal to (n − 1)/2. With this respect, we may be more specific:

Theorem 10 A tournament T is regular (hence with an odd number n of vertices) if and
only if every vertex of T is a Slater winner. If T is not regular, then there exists at least one
Slater winner of which the score s(x) is greater than or equal to n/2.

Notice that, while it is generally difficult to compute a Slater winner (see Theorem 6),
the computation of all the Slater winners for regular tournaments is trivial, but the one of
their Slater indices is not! We can even wonder what the complexity status of this problem
is when restricted to this family of tournaments:

Open problem 2 What is the complexity status of the computation of i(T ) when T is
regular?

If we come back to the initial voting problem and with the same notation, Theorem 9
gives a result shown by Monjardet (1973): if x is a winner, then we have

∑
y �=x

∑m

j=1 t
j
xy ≥


 (n−1)m

2 � (in other words, if x is a winner, the number of votes in favour of x must be
greater than or equal to the number of votes in disfavour of x in the paired-comparisons).
These results have been extended by Guénoche (1995) who, from a heuristic solution and
the weights of the arcs of T , gives bounds for the rank of any vertex in an optimal solution.

The second part of Theorem 9, of which it is easy to take advantage from an algorithmic
point of view (it can be implemented with an amortized complexity of O(n) with a memory
space of O(n)), characterizes the linear orders O which cannot be improved by shifts: it will
be the case if all the beginning sections of O fulfil the condition. By the way, we may notice
that this second part of Theorem 9 gives back Corollary 3 and the Hamiltonian principle: it
is sufficient to consider the case i = q − 1 in the first inequality of the second part (it gives
also the first condition of the same Theorem 9, but it is interesting to distinguish them from
an algorithmic point of view).

It could be tempting to infer from Theorem 9 that a Kemeny winner is a vertex x max-
imizing PX(x), i.e., maximizing the difference between the sum of the weights of the arcs
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Fig. 2 A minimum tournament
for which the set of Slater
winners and the set of Copeland
winners are disjoint

of type (x, y) and the sum of the weights of the arcs of type (z, x). But such a conclu-
sion is false, even if all the weights are equal to 1. Notice that, when all the weights are
equal to 1, PX(x) is equal to 2s(x) − 1, and so, maximizing PX(x) is the same as maxi-
mizing the score s(x). Ranking the vertices according to their decreasing scores is a tourna-
ment solution suggested by Copeland (1951) and a vertex with a maximum score is called
a Copeland winner (see also Laslier 1997 for the properties of this tournament solution).
Bermond (1972) gives a tournament with 7 vertices such that no Slater winner is a Copeland
winner.

We can be more specific. In the tournament of Fig. 2, for which the missing arcs are
assumed to be oriented from the left to the right, it is easy to show that b is the only Slater
winner while its score is not the highest one (see Charon et al. 1996c for more details). On
the other hand, we may check easily (for instance from the list of the different patterns of
non-isomorphic tournaments given in Moon 1968) that:

• there always exists a Slater winner which is also a Copeland winner if the number n of
vertices is equal to 5,

• all the Slater winners are Copeland winners if n is equal to 4,
• the set of Slater winners and the one of Copeland winners are the same if n is less than or

equal to 3.

This involves the same conclusions with respect to the maximum likelihood method due to
Zermelo (1929), since this method leads to the same optimal orders as Copeland’s solution
(see for instance Laslier 1997).

Copeland’s method provides orders which are not “too far” from an optimal solution.
More precisely, consider the ratio between, on one hand, the distance between the tourna-
ment T and a Copeland order of T and, on the other hand, the distance between T and
a Slater order of T (see the subsection “Approximation and probabilistic algorithms” of
Sect. 6.1); then this ratio does not exceed 5. But the distance between a Copeland order of
T and a Slater order of T can be very large, as shown in Charon and Hudry (2009c):

Theorem 11 Let n be an integer greater than or equal to 3.

• If ξ(n) denotes the maximum distance between a Copeland order of a tournament T on n

vertices and a Slater order of the same tournament T , then:

ξ(n) = n(n − 1)/2 for n odd and ξ(n) = (n2 − 3n + 2)/2 for n even.

• If ζ(n) denotes the maximum distance between a Copeland order of a strongly connected
tournament T on n vertices and a Slater order of the same tournament T , then:

ζ(n) = n(n − 1)/2 for n odd and η(n) = (n2 − 3n − 2)/2 for n even with n ≥ 8.

• If η(n) denotes the maximum distance between a Copeland order of a tournament T on n

vertices admitting only one Slater order and this Slater order of T , then:

η(n) = (n2 − 5n + 6)/2 for n odd and η(n) = (n2 − 5n + 8)/2 for n even.
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Among the other tournament solutions, one (proposed by Fishburn 1977 and by Miller
1980; see also Laslier 1997) consists in keeping the uncovered vertices of an unweighted
tournament T as the winners of T . The following definition generalizes the usual concept
of covering to weighted tournaments.

Definition 2 Let x and y be two distinct vertices of T . We say that x covers y if we have:
∀z ∈ X, p(x, z) ≥ p(y, z) (with the same agreement as in Definitions 1 for the arcs which
do not exist in T ) and ∃z ∈ X with p(x, z) > p(y, z). A vertex is uncovered if no vertex
covers it; UC(T ) will denote the set of the uncovered vertices of T , and T|UC(T ) will denote
the subtournament of T induced by the uncovered vertices of T .

Notice that, unless the weight of the arc between the two vertices is equal to 0, if x

covers y, then x also beats y.
The following theorem is straightforward:

Theorem 12 The covering relation defines a partial order (called the trace order) on X, of
which the maximal elements are the uncovered vertices of T .

Remark 3 In the case of unweighted tournaments, x covers y if and only if x beats y and
every vertex beaten by y is also beaten by x, which is the definition of the usual covering re-
lation. In this case, any uncovered vertex is a centre (also called a king) of T and conversely.
Remember that, in a tournament, a centre x is a vertex which reaches any other vertex y

through one or two arcs: (x, y) /∈ U ⇒ ∃z ∈ X with (x, z) ∈ U and (z, y) ∈ U . In particular,
every Copeland winner is a centre, but not conversely.

To specify the links between uncovered vertices in weighted or unweighted tourna-
ments and Kemeny or Slater winners, we need another definition. Assume that T is not
necessarily strongly connected and consider its q (q ≥ 1) strongly connected components
C1,C2, . . . ,Cq . The relation >scc defined on the components Ci (1 ≤ i ≤ q) by Ci >scc Cj

(with i �= j) if and only if there exist xi ∈ Ci and xj ∈ Cj with (xi, xj ) ∈ U is a linear order.
So there exists a unique maximal element with respect to >scc (which is T itself if T is
strongly connected). The next definition specifies this element.

Definition 3 The strongly connected component of T which is the maximal element with
respect to >scc is called the top cycle of T. It will be denoted by TC(T ).

The orientation of the arcs with only one extremity in TC(T ) is the same for all these
arcs: they go from TC(T ) to the outside of TC(T ). Theorem 13 (proved in Charon et al.
1997a with the help of appropriate shifts) generalizes to weighted tournaments a result due
to Banks et al. (1991) for unweighted tournaments.

Theorem 13

1. There exists a Kemeny winner which belongs to TC(T|UC(T )). If all the weights are strictly
positive, all the Kemeny winners of T belong to TC(T|UC(T )).

2. If the weights are all strictly positive, any median order is a linear extension of the trace
order of T . Otherwise, there exists at least one median order which is a linear extension
of the trace order of T .

3. All the Slater winners belong to TC(T|UC(T )). All the Slater orders of T are linear exten-
sions of the trace order of T .
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Remark 4

1. As TC(T|UC(T )) is included in TC(T ) and in UC(T ), the results of Theorem 13 can be
adapted by replacing TC(T|UC(T )) with TC(T ) or with UC(T ) (such a result is weaker,
but sometimes easier to apply).

2. The difficulty due to the potential existence of 0-weighted arcs is not so important as it
may seem, at least for the computation of median orders. A weight equal to 0 for an arc
(x, y) shows that the arc (y, x) is as legitimate as (x, y). If we apply the criteria that we
should normally apply only for positive weights while there are weights equal to 0, some
median orders may not be computed. It is anyway easy to reconstruct these forgotten
median orders from the computed ones. Obviously, this difficulty does not occur for
Slater’s problem.

3. At least some Kemeny winners and all Slater winners are uncovered vertices. Any-
way, it may happen that no Kemeny winner and no Slater winner belongs to the set
UC2(T ) = UC(T|UC(T )) of the uncovered vertices of the subtournament of T induced by
the uncovered set of T . (By the way, this shows that the covering relation is not so triv-
ial.) A tournament with 8 vertices illustrating this situation can be found in Laffond et al.
(1991a).

The following result is proved in Barthélemy et al. (1995).

Theorem 14 In an unweighted tournament T , the arcs of which the orientations are re-
versed in T to obtain a Slater order all belong to 3-circuits.

This result can be related to the covering relation, as stated by Theorem 15, whose proof
is left to the reader.

Theorem 15 In an unweighted tournament T , an arc (x, y) of T belongs to a 3-circuit of
T if and only if y is not covered by x in T .

With this respect, Theorem 14 says that the arc (x, y) will not be reversed if x covers y.
This is the same as saying that a Slater order is a linear extension of the trace order of T .
Similarly, if x covers y in T , then Theorem 13 says that x is ranked before y in any Slater
order of T : so, (x, y) cannot be reversed, which means that only the arcs (x, y) such that x

does not cover y, i.e., arcs belonging to some 3-circuits, can be reversed.
The following theorem, of which the easy proof is left to the reader, is useful when the

considered tournament is not strongly connected.

Theorem 16 Let T be a tournament which is not strongly connected and let C1,C2, . . . ,Cq

be its strongly connected components with the assumption that all the arcs between Ci and
Cj are oriented from Ci to Cj if and only if i is less than j . Let O1,O2, . . . ,Oq be median
orders of the subtournaments induced respectively by C1,C2, . . . ,Cq . Then:

1. the linear order O1 > O2 > · · · > Oq obtained by the concatenation of O1,O2, . . . ,Oq

is a median order of T ,
2. if all the weights are strictly positive, any median order of T is a concatenation of the

previous form.
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Fig. 3 A 16-vertex tournament
for which the set of Slater
winners and the one of Banks
winners are disjoint

Remark 5

1. If the sorted scores of the vertices of T (weighted or not) are known, it is possible to
compute the strongly connected components of T in O(n), thanks to the characteriza-
tion of the scores given by Landau (1953) (more precisely, we may compute TC(T ) in
O(|TC(T )|)).

2. When some weights are equal to 0, indications are given in Charon et al. (1997a) about
the median orders of T which are not obtained as a concatenation of median orders of
the subtournaments induced by the strongly connected components of T.

The next theorem shows that Slater winners and Banks winners (associated with the
tournament solution designed by Banks 1985) can be distinct. A Banks winner of T is the
Condorcet winner of a maximal (with respect to inclusion) transitive subtournament of T

(see Laslier 1997 for properties of this tournament solution). Laffond and Laslier (1991)
provide a tournament with 75 vertices such that the set of Copeland winners, the set of Slater
winners and the set of Banks winners are pairwise disjoint. Theorem 17 gives a tournament
with 16 vertices (taken from Charon et al. 1997b) such that the set of Banks winners and
the set of Slater winners are disjoint, and a tournament with 13 vertices (taken from Hudry
1998) such that there exists a Slater winner which is not a Banks winner.

In order to make the tournaments easier to read, we do not draw all the arcs. In Fig. 3, the
vertices are gathered in clusters (sometimes called homogeneous parts, or intervals, or sets
of similar vertices. . . ). An arc from a cluster A towards a cluster B means that, for any vertex
a of A and any vertex b of B , the arc between a and b is oriented from a to b. Moreover,
all the missing arcs are oriented from the left to the right between vertices belonging to a
same horizontal layer, or from the top to the bottom for vertices located on different layers.
Similarly, in Fig. 4, the missing arcs are oriented from the left to the right or from the top to
the bottom.

Theorem 17

1. In the tournament of Fig. 3, x is the only Slater winner but it is not a Banks winner.
2. In the tournament of Fig. 4, x is a Slater winner but it is not a Banks winner.

The problem of a minimum tournament fulfilling these properties remains open.2 Notice
that the problem of a minimum tournament with a Banks winner which is not a Slater winner

2During the publication process, Östergård and Vaskelainen (2009) showed that there exists a tournament on
14 vertices such that the set of Slater winners and the one of Banks winners are disjoint; moreover, they show,
thanks to a study based on a computer, that 11 is the minimum order of a tournament in which the Slater set
is not a subset of the Banks set.
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Fig. 4 A 13-vertex tournament
with a Slater winner (x) which is
not a Banks winner

is trivial: it is the case for the (unique, up to an isomorphism) strongly connected tournament
defined on four vertices.

Open problem 3 What is the minimum number of vertices of a tournament without com-
mon Slater winner and Banks winner?

Other tournament solutions can be found in Laslier (1997): the successive iterations
UCk (k ≥ 1) of UC (more precisely, UCk is defined by UC1 = UC and, for k > 1,
UCk(T ) = UC(T|UCk−1(T ))), the minimal covering set defined by Dutta (1988), which is
a refinement of the successive iterations of UC, the bipartisan set defined by Laffond et al.
(1991b) from the game-theoretical concept of Nash equilibrium and which is a refinement
of the minimal covering set (see also Laffond et al. 1993), the tournament equilibrium set
defined by Schwartz (1990) and which is also a refinement of the successive iterations of
UC. All these solutions except UC1 (=UC) select winners which belong to UC2. So, there
exist tournaments of which the set of Slater winners and any of these sets (but UC) are
disjoint (see Remark 4). The same situation of an empty intersection of the sets of winners
may occur with two other tournament solutions. One is called “long path method” in Laslier
(1997). It was already suggested by Wei (1952) and then proposed by several authors (see
Laslier 1997). It is based on the limit of the successive normalized powers of the adjacency
matrix M of T or, equivalently, on the eigenvectors of M . The other one is called “Markov
method” in Laslier (1997). It is based on the probabilities arising from a Markov chain de-
fined on the vertices of T . Laslier (1997) gives a tournament on 7 vertices with only one
Slater winner which is not a winner according to the long path method or to the Markov
method.

Similarly, a Slater winner is not necessarily a Kemeny winner and conversely. What is
more, it is easy to design tournaments with n ≥ 4 such that the unique Slater winner is
the unique Kemeny loser or such that the unique Kemeny winner is the unique Slater loser
(see for instance Klamler 2003). Charon and Hudry (2009d) investigate the relationships
between Slater’s solutions and Kemeny’s solutions and generalize Klamler’s results. Similar
results exist with respect to Dodgson method (Dodgson 1876). Remember that Dodgson
method consists, when there is no Condorcet winner, in computing the fewest changes in
voters’ preferences necessary to create a Condorcet winner. Such a candidate is then called
a Dodgson winner (the computation of Dodgson winners is also NP-hard; see Hudry 2009b
for a survey of the complexity of several voting procedures). This concept can be extended
to obtain a ranking of all the candidates. Klamler (2004) shows that, for n ≥ 3, there exist
profiles such that the unique Kemeny winner or the unique Slater winner can occur at any
position in the Dodgson ranking. Ratliff (2001) proved also that, for n ≥ 4, it is even possible
to find situations such that a Kemeny winner can be found at any position in a Dodgson order
and, conversely, that a Dodgson winner can be found at any position in a Kemeny order.

To conclude this section, we need a new definition.
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Definition 4 Let � = (O1,O2, . . . ,Om) be a profile of m linear orders. We call unanimity
(partial) order or Pareto (partial) order of � the partial order

⋂
1≤j≤m Oj consisting of the

intersection of all the linear orders Oj (1 ≤ j ≤ m) of the profile.

Theorem 18, due to Monjardet (1973), shows that the median orders are linear extensions
of the unanimity order (such a property is said to be Paretian; similarly, a median order of a
profile of linear orders is said to be Paretian):

Theorem 18 Any median order of a profile of linear orders is a linear extension of the
unanimity order of this profile.

So, if one of the arcs of the tournament representing � has a weight equal to the number
m of linear orders of � (if this number is known, what is not obvious if we deal only with the
weighted tournament representing �), then such an arc cannot be reversed when a median
order is computed. Notice anyway that the unanimity order can be empty.

4 Bounds of the Slater index

It is always possible to upper-bound the Slater index i(T ) of any given tournament T with
the solution provided by a heuristic. We do not consider such a possibility here. We give
upper or lower bounds available for any tournament. For this, let I (n) be the maximum
of the values that i(T ) can take when T is any tournament with n vertices. Notice that
the minimum of i(T ) is trivial: this minimum is equal to 0 and is reached by transitive
tournaments and only by them. It is also easy to show that all the values between 0 and I (n)

can also be reached.
It is quite obvious that I (n) cannot be greater than half the number of arcs: otherwise,

it would be better to reverse the arcs that we do not reverse! Anyway, Theorems 22 and 23
will show that I (n) is not far from this value. The next theorem is due to Reid (1969) (this
result is sharper for n ≥ 8 than the one by Poljak and Turzík 1986: these authors notice that,
for any n, it is always possible to build a linear order of which the distance from T is less
than or equal to (n − 1)2/4).

Theorem 19 For n ≥ 8, we have I (n) ≤ � n
2 �� n−3

2 �.

The following result, quoted in Bermond (1972) and due to Jung (1970) as well as Corol-
laries 5 and 6, gives a result still sharper, but also more difficult to exploit.

Theorem 20 Let n1 and n2 be two integers with n1 + n2 = n and n1 ≤ n2. Then:

• if n is even, I (n) ≤ I (n1) + I (n2) + n1(n2−1)

2 ,
• if n is odd, I (n) ≤ I (n1) + I (n2) + n1n2

2 .

Corollary 5 If there exists an integer k such that n is equal to 2k , then:

I (2k) ≤ 22k−2 − (k + 1)2k−2 = n2

4
− (log2 n + 1)

n

4
.
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Corollary 6 Let n be an even integer: n = ∑q

i=1 2ki with 0 < k1 < k2 < · · · < kq . Then:

I (n) ≤ 1

4
n(n − 1) − 1

4

q∑

i=1

(ki + 2q − 2i)2ki .

If n is odd, then:

I (n) ≤ I (n − 1) + n − 1

2
.

In fact, these results come from another result which can be applied to any tournament.
Let (X1,X2) be any bipartition of X. In order to make T transitive, it is sufficient to make
the tournaments T1 and T2 induced from T respectively by X1 and X2 transitive and to
reverse the m+(X1,X2) arcs oriented from X1 towards X2 or, conversely, the m+(X2,X1)

arcs oriented from X2 towards X1. This result can be stated as follows:

Theorem 21 For any tournament T and any bipartition (X1,X2) of X, we have:

i(T ) ≤ i(T1) + i(T2) + min{m+(X1,X2);m+(X2,X1)},
where T1 and T2 are the subtournaments induced by X1 and X2 respectively.

Theorem 21 can immediately be generalized to the Kemeny index K(T ) of any weighted
tournament T by considering, instead of their number, the sum of the weights of the arcs
going from X1 to X2 or from X2 to X1, and by substituting K(T1) (respectively K(T2))

to i(T1) (respectively i(T2)).
The next theorem is due to Erdös and Moon (1965). It gives a lower bound of I (n).

Since, as noticed previously, I (n) is trivially upper-bounded by �n(n − 1)/4�, it shows that
the quantity 4I (n)/n2 tends asymptotically towards 1.

Theorem 22 For any ε > 0, there exists nε such that n > nε involves I (n) > n(n−1)

4 (1 − ε).

We may sharpen this bound, thanks to the results provided by probabilistic methods by
Spencer (1971, 1978, 1987) and by de la Vega (1983) (see also Sect. 6). The next theorem
gives sharper upper and lower bounds for I (n).

Theorem 23 For n large enough, we have:

⌈
n(n − 1)

4
− 7n

√
n

4

⌉
≤ I (n) ≤

⌊
n(n − 1)

4
− n

√
n

8
√

π

⌋
.

Moreover, de la Vega (1983) proved that, still for n large enough, the value of i(T ) is
greater than or equal to n(n−1)

4 − 7n
√

n

4 for almost all the tournaments T randomly generated
as follows. For every pair {x, y} of vertices, the orientation of the arc between x and y is
randomly chosen with a same probability (hence equal to 0.5) for the two possibilities, the
choice for any arc being independent of the choice of the other arcs. (More precisely, de la
Vega and Spencer studied Problem 4, i.e., the search of a partial graph without circuit but
with a maximum number of arcs. The link between Problem 4 and Slater’s problem allows
to adapt their results in order to meet Theorem 23.) By the way, this shows that this random
generation, when used for instance to test or to compare methods designed to solve Slater’s
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problem, may introduce a bias, because leading to tournaments with large Slater indices.
The algorithm proposed in Charon et al. (1996a) aims at obviating such a drawback, and
gives the possibility to randomly generate tournaments with given scores, in such a way that
any tournament with the prescribed scores has a non-zero probability to be generated. Other
random generations of tournaments can be found in Charon and Hudry (2006).

The exact values of I (n) are given below for n ≤ 13, then bounds for 14 ≤ n ≤ 31 (they
come from Bermond and Kodratoff 1976; Smith 2007; Woirgard 1997 and, for 30 and 31, by
the application of the previous theorems; see also Bermond 1972, 1975; Hardouin Duparc
1975 and Kotzig 1975).

n 1 2 3 4 5 6 7 8 9 10 11 12 13

I (n) 0 0 1 1 3 4 7 8 12 15 20 22 28

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Lower bound 31 38 40 47 55 64 65 74 81 92 99 110 122 135 138 151 165 180
Upper bound 32 39 44 52 58 67 73 83 91 102 110 122 137 150 161 174 181 196

Theorem 24 comes from Thomassen (1975) (see also Bermond and Kodratoff 1976):

Theorem 24 For any q and any r , we have:

I (qr) ≥ Max{qI(r) + r2I (q), rI (q) + q2I (r)}
and

I (qr + 1) ≥ Max{qI(r + 1) + r2I (q), rI (q + 1) + q2I (r)}.

Though the exact value of I (n) and the structure of tournaments with a maximum Slater
index are not known for every n, we may recall the conjectures stated by Bermond (1972):

Conjecture 1 If n is odd, the tournaments with I (n) as their Slater indices are regular.

Conjecture 2 If n is odd with n ≥ 3, I (n) = I (n − 1) + (n − 1)/2.

Conjecture 3 For any n, there exists a regular (if n is odd) or a quasi-regular (if n is even)
tournament with I (n) as its Slater index.

Remark 6

1. Conjecture 2 yields the other two.
2. Conjecture 1 is true for n ≤ 11 (see Bermond 1972). On the other hand, Bermond (1972)

gives a tournament on 8 vertices which is not quasi-regular but of which the Slater index
reaches the maximum I (8). This shows that the counterpart of Conjecture 1 for n even,
i.e., the statement “if n is even, the tournaments with I (n) as their Slater indices are
quasi-regular”, is false.

3. Conjectures 1 and 3 are reinforced by the result due to de la Vega (see above), since
the random generation of tournaments with a probability equal to 0.5 for each possible
direction of any arc leads to large Slater index and simultaneously to scores close to each
other. Theorem 35 reinforces also Conjectures 1 and 3.
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It is also interesting (for instance to design evaluation functions in branch and bound
methods; see below) to have lower bounds of i(T ) for any tournament T . The following
results (Bermond 1972) are related to the formulation of Problem 6, in which we look for
a vertex cover of the hypergraph H(T ) of the circuits of T . Any (lower or upper) bound
of the minimum cardinality of a vertex cover of H(T ) provides a (lower or upper) bound
of i(T ). The two main drawbacks of such an approach rely on the fact that the computation
of a minimum vertex cover is NP-hard (see Garey and Johnson 1979), and on the fact that
H(T ) may be very large, with up to n(n− 1)/2 vertices (when each arc belongs to a circuit;
this situation occurs for instance for regular tournaments, for n odd, see Alspach 1967) and
with a number of edges which can be exponential with respect to n. For instance, even if
we consider only the Hamiltonian circuits, there are some regular tournaments which admit
at least 2(n−3)/2 Hamiltonian circuits. So, from a practical point of view, it is quite often too
long to build H(T ) explicitly. To obtain a lower bound of i(T ), we may restrict ourselves
to the hypergraph H3(T ) of the 3-circuits of T . This hypergraph is defined as H(T ), but by
considering only the 3-circuits of T instead of all the circuits of T . The number of vertices
of H3(T ) may still be equal to n(n − 1)/2 (see Alspach 1967), but its number of edges is
equal to the number of 3-circuits of T . If the scores of T are s1, s2, . . . , sn, the number C3(T )

of 3-circuits of T is given by (see Kendall and Babington Smith 1940):

C3(T ) = n(n − 1)(n − 2)

6
−

n∑

j=1

sj (sj − 1)

2
≤

{
(n3 − n)/24 if n is odd,

(n3 − 4n)/24 if n is even

and the bounds are reached by regular (for n odd) or quasi-regular (for n even) tournaments.
By the way, notice that C3(T ) is the exact number of arcs that must be reversed to make T

transitive if we reverse only arcs of which the two extremities have the same score (Kadane
1966).

If we call τ3(T ) (respectively τ(T )) the minimum cardinality of a vertex cover of H3(T )

(respectively H(T )), we have, since H3(T ) is a subgraph of H(T ) and because of the equal-
ity τ(T ) = i(T ):

Theorem 25 For any tournament T , τ3(T ) ≤ i(T ).

Nonetheless, the exact computation of τ3(T ) is usually still too long. So, we may usually
work with a lower bound of τ3(T ), which hence will be also a lower bound of i(T ). In
particular, we may adopt the following lower bound based on the degrees of H3(T ), as done
in Charon et al. (1997a), the degree of a vertex u of H3(T ) (that is, an arc of T ) being in
fact the number of 3-circuits going through u in T .

Definition 5 Let ∂1, ∂2, ∂3, . . . be the degrees of the vertices of H3(T ) (i.e., some arcs of T ),
where the numbering is assumed to be done according to the decreasing values of these
degrees: ∂1 ≥ ∂2 ≥ ∂3 ≥ · · · . Parameter χ(T ) is defined as the smallest integer χ verifying∑χ

k=1 ∂k ≥ C3(T ).

Theorem 26 For any tournament T , we have χ(T ) ≤ τ3(T ).

Another possibility to lower-bound i(T ) consists in looking for arc-disjoint circuits, i.e.,
circuits which do not share any arc (but two arc-disjoint circuits may share vertices). Indeed,
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if T owns q arc-disjoint circuits, it is necessary to destroy all these circuits to make T

transitive. As they are arc-disjoint, reversing an arc of one of these circuits does not affect
the other circuits. So, i(T ) is greater than or equal to the maximum number of arc-disjoint
circuits of T :

Theorem 27 Let ν(T ) be the maximum number of arc-disjoint circuits of T . Then:

ν(T ) ≤ i(T ).

This result can also be shown by considering a maximum matching of H(T ). As an edge
of H(T ) is a circuit of T , a matching of H(T ) defines a set of arc-disjoint circuits of T

and conversely. In any hypergraph, the cardinality of any matching is lower than or equal to
the cardinality of any vertex cover of the considered hypergraph (see Berge 1985). Hence,
because of the identity between τ(T ) and i(T ), the inequality (which can be strict) between
i(T ) and the maximum cardinality ν(T ) of a matching of H(T ).

We may also interpret ν(T ) as the maximum cardinality of an independent set of the
graph of which the vertices are the circuits of T and in which two vertices are linked by an
edge if the associated circuits share a common arc.

But whatever the interpretation given to ν(T ), the computation of this parameter remains
too long in practice, even if we restrict ourselves to the search of a maximum matching
in H3(T ), i.e., to the search of a maximum set of 3-circuits which are arc-disjoint. Notice
that, if we call ν3(T ) the cardinality of a maximum matching in H3(T ), this lower bound
will be less sharp than τ3(T ), since, as a consequence of the general relationship between
a maximum matching and a minimum vertex cover of any hypergraph, we have the next
theorem:

Theorem 28 For any tournament T , we have ν3(T ) ≤ τ3(T ).

As a corollary of Theorem 27, it follows that I (n) is lower-bounded by the maximum
number π(n) of arc-disjoint circuits that a tournament with n vertices can admit. This num-
ber is equal to the number of edge-disjoint cycles that the complete graph Kn with n vertices
admits. Indeed, it is always possible, as noticed by Bermond (1972), to choose the orienta-
tions of these edge-disjoint cycles independently to transform them into arc-disjoint circuits.
Then, it is sufficient to choose an arbitrary orientation for the other edges of Kn to obtain a
tournament with π(n) arc-disjoint circuits. Guy (1967) and Chartrand et al. (1971) give the
value of π(n):

Theorem 29 For any n, we have π(n) = � n
3 � n−1

2 �� ≤ I (n).

We may notice from the table given above that the inequality of Theorem 29 is in fact an
equality for n ≤ 9, and a strict inequality for larger values of n.

We may try also to find bounds of i(T ) from the scores of T . The following parameter
has been defined by Ryser (1964) (under the notation τ̃ (T ); we keep here the notation σ(T )

used in Charon et al. (1992a) in order to avoid ambiguity with the parameters τ and τ3 used
above) and has been studied by different authors, sometimes under different names (see
Brualdi and Qiao 1983, 1984; Charon et al. 1992a, 1992b, 1997a; Charon and Hudry 2003,
2006; Fulkerson 1965; Monsuur and Storcken 1997; Woirgard 1997):



130 Ann Oper Res (2010) 175: 107–158

Definition 6

1. Let s1 ≤ s2 ≤ · · · ≤ sn be the increasing scores of T . We set:

σ(T ) = 1

2

n∑

i=1

|si − i + 1|.

2. We set I (n,σ ) = Max{i(T ) for T with n vertices and verifying σ(T ) = σ }.

The following results are shown in Brualdi and Qiao (1983), Charon et al. (1992a) or
Charon and Hudry (2003).

Theorem 30

1. For any tournament T , σ(T ) is an integer between 0 (for the transitive tournaments and
only for them) and (n2 − 1)/8 if n is odd (for the regular tournaments and only for them)
or (n2 − 2n)/8 if n is even (for the quasi-regular tournaments, but also for some others),
and all the intermediate integer values can be reached.

2. For any tournament T (we still assume that the scores si are numbered according to their
increasing values), we have:

σ(T ) =
∑

i:si−i+1≥0

(si − i + 1) = −
∑

i:si−i+1≤0

(si − i + 1).

3. If the vertices xj (1 ≤ j ≤ n) of T are numbered according to the increasing values of
the scores, then for any q between 1 and n − 1, the number of arcs with their tails in
{x1, x2, . . . , xq} and their heads in {xq+1, xq+2, . . . , xn} is less than or equal to σ(T ).

Theorem 31 For any tournament T , we have σ(T ) ≤ i(T ) and there are tournaments for
which the inequality is tight.

Theorem 32 Let p be an integer. Then, for n large enough (n ≥ 6p suffices):

1. if p ≡ 0 or 1 [mod 4], then for σ = 3p(3p+1)

4 , I (n,σ ) ≥
√

16σ+1−1
6 n − σ ,

2. if p ≡ 2 [mod 4], then for σ = p(9p+4)

4 , I (n,σ ) ≥
√

36σ+4−2
9 n − σ ,

3. if p ≡ 0 or 1 [mod 4], then for σ = 9p2+4p−1
4 , I (n,σ ) ≥

√
36σ+13−2

9 n − σ .

These lower bounds are obtained by constructing tournaments T with σ(T ) = σ and with a
number of arc-disjoint 3-circuits equal to the lower bounds stated in Theorem 32, hence the
result because of Theorem 27. Notice that these lower bounds are close to 2

3n
√

σ − σ . On
the other hand, for the values of σ which are not covered by the statements of Theorem 32,
the construction applied to obtain these lower bounds can be adapted to obtain tournaments
T with σ(T ) = σ and with a “large” number of arc-disjoint 3-circuits (see Charon et al.
1992a for more details).

Theorem 33 (taken from Charon and Hudry 2003) gives now an upper-bound of I (n,σ ):

Theorem 33 For any n ≥ 1 and any σ with 0 ≤ σ ≤ (n2 − 1)/8 if n is odd or 0 ≤ σ ≤
(n2 − 2n)/8 if n is even, we have:

I (n,σ ) ≤
√(

σ + 5

16

)(
n2 + σ + 5

16

)
− n

2
− σ.
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The construction used in the proof of Theorem 33 to upper-bound i(T ) is the follow-
ing. First, the vertices are gathered according to the increasing scores into about n/(2

√
σ)

clusters with about 2
√

σ vertices in each cluster. Then each cluster is made transitive by re-
versing a number of arcs which is at most half the number of arcs inside the considered clus-
ter. Last, all the remaining circuits are destroyed by reversing the arcs going from a cluster
with low-degreed vertices towards a cluster with high-degreed vertices. As stated by Theo-
rem 30, the number of reversed arcs from such a cluster with low-degreed vertices towards
the clusters with high-degreed vertices is upper-bounded by σ . Hence the result, after several

computations. Less sharp but easier upper bounds are n(

√
σ + 5

16 − 1
2 ) − 2(

√
2 − 1)σ + 1

10

or even n
√

σ (see Charon and Hudry 2003 for more details).
From Theorem 31 and using n

√
σ as the upper bound, we draw the following corollary:

Corollary 7 For any tournament T with n vertices, we have:

σ(T ) ≤ i(T ) ≤ �n√
σ(T )�.

Replacing σ(T ) with its maximum value does not provide an upper bound for I (n) more
interesting than the previous ones. Even for the small values of σ , the gap between I (n,σ )

and n
√

σ is not negligible, as shown by Theorem 34 (see Charon et al. 1992a):

Theorem 34 For σ ∈ {1,2,3}, we have:

I (n,1) =
⌊

n − 1

2

⌋
, I (n,2) =

⌊
n − 1

2

⌋
+

⌊
n − 2

4

⌋
, I (n,3) ∈ {n − 3, n − 2}.

Notice that the ratio between the lower bounds of I (n,σ ) stated in Theorem 32 and
the upper bound stated in Theorem 33 is about 2/3, i.e., about the same value as the ratio
between the maximum number of arc-disjoint circuits and the asymptotic value of I (n).
As the lower bound of Theorem 32 is based on arc-disjoint circuits, this ratio seems to
indicate that it should be difficult to significantly sharpen these bounds only from arc-disjoint
circuits.

Still about this parameter σ , it can be interesting to compare it to other lower bounds. It
is easy to design tournaments T for which σ(T ) is smaller than τ3(T ), χ(T ), ν(T ) or ν3(T )

(consider for instance tournaments T with σ(T ) = 1). The study of the unique (see Moon
1968) regular tournament R5 with five vertices shows that σ can also be greater than ν3.
Indeed, we have: σ(R5) = 3 and ν3(R5) = 2 (but R5 owns two arc-disjoint 3-circuits and
a third circuit which is arc-disjoint with respect to the previous two ones: hence σ(R5) =
ν(R5)). For the parameters ν and τ3 compared to σ , we may conjecture two inequalities
(Charon et al. 1997a; Woirgard 1997):

Conjecture 4

1. For any tournament T , we have σ(T ) ≤ ν(T ).
2. For any tournament T , we have σ(T ) ≤ τ3(T ).

Similarly, Woirgard (1997) conjectures the following equality:

Conjecture 5 For any tournament T , we have τ3(T ) = τ(T ).
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Another conjecture is stated in Charon et al. (1992a) about the monotonicity of I (n, τ )

with τ :

Conjecture 6 For any fixed n, I (n,σ ) increases (strictly or not?) with σ (of course, for the
values of σ which are compatible with n).

This conjecture can also be related to Bermond’s ones (see above). Indeed, a large in-
crease of I (n,σ ) would prove that, for n odd, some regular tournaments maximize Slater
index (first part of Conjecture 3) and a strict increase would involve Conjecture 1 (because
regular tournaments are the only ones maximizing σ for n odd). For even values of n, Con-
jecture 6 would not involve any Bermond’s conjecture, but would reinforce the second part
of Conjecture 3 by providing the structure of the scores of the tournaments (or some of them)
with a maximum Slater index. The next theorem, taken from Charon and Hudry (2003),
shows that the tournaments T maximizing Slater index must own a large value for their pa-
rameters σ(T ), what involves that their scores should rather be close to the ones of regular
or quasi-regular tournaments.

Theorem 35 Let T be a tournament defined on n vertices verifying i(T ) = I (n), with n

large enough. Then:

σ(T ) >
1

8
[n2 − 21n

√
n + 143n].

We may also remind the conjecture due to Adám (1964), dealing with oriented graphs
(Adám’s conjecture is false for general directed graphs which are not oriented, i.e., which
are not antisymmetric, see Thomassen 1987).

Conjecture 7 In any non-transitive tournament, there exists at least an arc of which the
reversing makes the number of circuits decrease.

Notice that Conjecture 7 is true if “circuit” is replaced with “3-circuit” or if “number of
circuits” is replaced with “Slater index”. Reid (1983) shows also that Adám’s conjecture is
true for tournaments which are 2-arc-connected but not 3-arc-connected.

5 Bounds of the Kemeny index

As for i(T ), it is always possible to upper-bound the Kemeny index K(T ) of any tournament
T with the help of a heuristic. We will not consider such a possibility here. It is also possible
to upper-bound K(T ) by multiplying the Slater index i(T ) of T by the largest weight of
the arcs of T or by summing the weights of the i(T ) heaviest weights. Unless the weights
are close to each other, these bounds are usually poor, or even very poor. Obviously, the
number of arcs that we must reverse in a weighted tournament T to obtain a Kemeny order
cannot be less than i(T ), but it can be strictly larger, as shown by Fig. 5. These remarks are
summarized by Lemma 2, of which the (obvious) proof is left to the reader.

Lemma 2 Let T = (X,U) be a tournament weighted by p. Let V be a subset of U of
minimum cardinality such that (X, (U − V ) ∪ V̄ ) is transitive, and let W be a subset of U

with p(W) minimum and such that (X, (U − W) ∪ W̄ ) is transitive. Then we have: |W | ≥
|V | = i(T ) and p(V ) ≥ p(W) = K(T ).
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Fig. 5 A tournament showing
that the inequalities of Lemma 2
can be strict

To show that these inequalities can be strict, consider the tournament of Fig. 5, with four
vertices. The Slater index of this tournament is equal to 1: reversing the arc (d, a) suffices to
make it transitive (the unique Slater order is a > b > c > d). But its Kemeny index is equal
to 3 and corresponds to the reversing of the arcs (a, c), (b, c) and (b, d), while reversing
(d, a) induces a weight equal to 5 (the unique Kemeny order is c > d > a > b). We may
also observe on this example that it can be necessary, to obtain a Kemeny order, to reverse an
arc which does not belong to any 3-circuit, as it is the case here for the arc (b, c). By the way,
the tournament of Fig. 5 illustrates also the situation for which none of the Slater winners is a
Kemeny winner (and conversely, of course). The links between Slater winners and Kemeny
winners are also investigated in Klamler (2003) or in Charon and Hudry (2009d).

It comes also from the characterisations given above that we may deal with tournaments
which represent a profile of linear orders or of tournaments, and of which all the weights are
equal to 0. In this case, it is clear that any linear order is a median order and that the Kemeny
index is equal to 0. It means that K(T ) can be equal to 0 though T is not transitive.

On the other hand, we know from Lemma 2 that K(T ) is upper-bounded by i(T ).pmax,
where pmax denotes the largest weight of the arcs of T , and this bound can be reached (for
instance when all the weights are equal) but, as noticed above, this bound is usually poor.
The next two theorems, of which the easy proofs are left to the reader, try to sharpen these
bounds.

Theorem 36 Let T be a tournament weighted by p and let u1, u2, . . . , un(n−1)/2 be the arcs
of T , numbered according to increasing weights: 0 ≤ p(u1) ≤ p(u2) ≤ · · · ≤ p(un(n−1)/2).
Let α(T ) (respectively γ (T )) be any lower (respectively upper) bound of i(T ). Then we
have:

α(T )∑

j=1

p(uj ) ≤ K(T ) ≤
γ (T )−1∑

j=0

p(u(n(n−1)/2)−j ).

This lower bound, useful for instance as the evaluation function in branch and bound
methods (see below), may be applied with the parameters σ(T ) or χ(T ), quite easy to
compute, as α(T ). The result is still rather poor when the weights are spread over a large
range, but can be pretty good if they are close to each other. It is obviously better when α(T )

is close to i(T ).
The next bound can be better than the previous one when the range of the weights is

large, even if the approximation of i(T ) is less good than χ(T ). To define it, let C be a
circuit of T . Then we set ψ(C) = minu∈C p(u). Similarly, for a set E of arc-disjoint circuits,
we set �(E) = ∑

C∈E ψ(C). We can state Theorem 37 now:

Theorem 37 Let E be any set of arc-disjoint circuits of T . Then we have: �(E) ≤ K(T ).

Thus we try to compute a set E of arc-disjoint circuits such that �(E) is as large as
possible. From a practical point of view, the computation of the maximum value of �(E)
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can be too long. Anyway we can usually work with a lower bound of the maximum of �(E).
Notice that a set E maximizing � is not necessarily a set of cardinality ν(T ): it can be more
interesting to select less arc-disjoint circuits, but heavier. It is because of this reason (the
weights of the selected circuits can be larger in average) that this lower bound can be better
than the one obtained from χ(T ).

6 Exact or approximation algorithms

As Kemeny’s problem and Slater’s problem are NP-hard, no polynomial algorithm is known
to compute a Kemeny order or a Slater order (or a fortiori all the Kemeny orders or all the
Slater orders), and no polynomial algorithm does exist if P and NP are distinct. Then we
may adopt one of the following possibilities when we try to compute a median order of a
given tournament.

• To look for one optimal solution (or all of them) with the help of an exact method with an
exponential complexity. This can be done only for “small” values of n.

• To look for an approximate solution found within a “reasonable” CPU time, with the
obvious aim to compute a solution as good as possible.

• To analyze the instance that we deal with in order to determine whether this instance
belongs to a family of polynomial instances. If so, the studied instance can be solved by
an appropriate polynomial algorithm.

Many methods have been proposed for the first two directions, based on different ap-
proaches: linear programming (by the resolution of the problem stated in Sect. 1, af-
ter having relaxed the binary constraints), dynamic programming, branch and bound
methods, quadratic assignment methods, specific heuristics, metaheuristics. . . We give
some examples below (in addition to the references given below, see also Barbut 1966;
Barthélemy and Monjardet 1981, 1988; Blin and Whinston 1974, 1975; Burkard et al. 1998;
Davenport and Kalagnanam 2004; Dwork et al. 2001; Flood 1990; Glover et al. 1974;
Hubert and Schulz 1975; Hudry 1997a; Lawler 1964; Lempel and Cederbaum 1966;
Lenstra 1977; Merchant and Rao 1976, and the references therein; see also Sect. 2 above
for algorithms solving the parameterized version of the feedback arc set problem for tour-
naments).

6.1 Heuristics

Several specific heuristics have been suggested to rank candidates from a tournament. We
detail some of them below (see also Ali et al. 1986; Baker and Hubert 1977; Becker 1967;
Chenery and Watanabe 1958; Cohen et al. 1999; Cook et al. 1996; Eades and Lin 1995;
Eades et al. 1993; Jacquet-Lagrèze 1969; Kano and Sakamoto 1985; Mendonça and
Raghavachari 2000; Rubinstein 1980; Sakuraba and Yagiura 2009; Younger 1963 and refer-
ences inside for other related methods; see also below).

Metaheuristics (local search, simulated annealing, tabu search, variable neighbourhood
search, noising methods, genetic algorithms, GRASP. . . ) have also been applied to Slater’s
or Kemeny’s problems, on real-life or random data with n up to several hundreds. If enough
time is given to these sophisticated heuristics, some of them can find optimal or at least very
good solutions in a very “reasonable” time. For instance, the noising methods (see Charon
and Hudry 2002 for a recent survey on these metaheuristics; noising methods can be seen as
a generalization of simulated annealing and of the threshold accepting methods, see Charon
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and Hudry 2001a) are applied in Charon and Hudry (2006, 2009a) with a self-tuning (the
user has no parameter to tune). Over the 5790 tournaments tested in Charon and Hudry
(2006) with up to 100 vertices, the self-tuned noising methods found an optimal solution
in all the cases but 6 (note that, as the noising methods are stochastic, a second application
succeeded in solving these 6 tournaments exactly). We give below some indications on how
to adapt some metaheuristics to the linear ordering problem. Other applications can be found
in Belloni and Lucena (2004), Campos et al. (1999, 2001, 2005), Chaovalitwongse et al.
(2009), Charon and Hudry (1998, 2009a), Chiarini et al. (2004), Congram (2000), Gamboa
et al. (2006), Garcia et al. (2006), González and Pérez-Brito (2001), Greistorfer (2004),
Huang and Lim (2003), Hudry (1989), Laguna et al. (1999), Schiavinotto and Stützle (2003,
2004).

Copeland scores, Borda’s method and generalization to Kemeny’s problem

One of the easiest method to find a “not too bad” (see also Theorem 11 above) linear order
fitting a tournament consists in computing the Copeland scores (Copeland 1951) s(x) of the
candidates x. Recall (see the end of Sect. 1) that s(x) is the number of candidates y such that
a majority prefers x to y. From the graph theoretical point of view, s(x) is the out-degree
of x in the considered majority (unweighted) tournament. Of course, if the tournament is
transitive, then there is only one Slater order which is given by the decreasing values of the
Copeland scores (i.e., the tournament itself. . . ). But in general, Bermond (1972) showed that
ranking the candidates according to their decreasing Copeland scores (a Copeland order)
does not always give a Slater order (though of course this may happen sometimes). This
phenomenon may occur only for n ≥ 6 (see Sect. 3). Nonetheless, this method gives orders
which are not too bad. Indeed, it is proved in Coppersmith et al. (2006) that the ratio of
the value found by this method and the optimal value cannot exceed 5 (see the subsection
“Approximation and probabilistic algorithms” below).

This method can be extended to Kemeny’s problem. One way to generalize the Copeland
scores consists in considering the quantities mx defined by:

mx =
∑

y �=x

mxy

(where mxy still denotes the quantities defined in Sect. 1). By sorting the candidates x ac-
cording to the values of the quantities mx (with some tie-breaking rule), we obtain a linear
order which generalizes the Copeland order (an improvement consists in computing a ver-
tex x∗ maximizing mx , then in removing x∗ from T , and in reiterating this process on the
remaining tournament). In fact, this method is the one suggested by Borda (1784) at the end
of the eighteenth century, and the quantities mx are linked to the Borda scores B(x). More
precisely, we have, for any vertex x: B(x) = (mx + m(n − 1))/2. Of course, as for Slater’s
problem, this order is not necessarily an optimal one, but it is very easy and fast to compute.

Some variants more or less based on the Copeland scores have been proposed for Slater’s
problem, for instance, by Goddard (1983) or by Cook et al. (1988) in O(n4). They usually
consist in changing the tie-breaking rule for candidates with the same score.

For instance, for Goddard’s method, let A = (akl) be the adjacency matrix of the con-
sidered tournament. We compute the matrices (called j -connectivity matrices by Goddard)
Aj = (a

j

kl) defined by A1 = A and, for any j ≥ 1, a
j+1
kl = (

∑n

q=1 a
j

kq + ∑n

q=1 a
j

lq) × akl .

These computations are done until an index j appears such that all the entries a
j

kl are dis-
tinct. Then we adopt the linear order induced by these entries a

j

kl . (This method can be
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compared with the tournament solution based on the successive powers of A and called the
“long path method” in Laslier 1997. The main differences are that, in Goddard’s method,
the matrices Aj are not the powers of A and that we do not consider the limit when j tends
to infinity.)

Smith and Payne’s method and generalizations to Kemeny’s problem

As a tournament is transitive if and only if there is no 3-circuit, it is necessary and sufficient
to delete all the 3-circuits of the considered tournament to make it transitive. It is shown in
Moon (1968) that an arc (x, y) with s(x) ≤ s(y), where s(z) is the Copeland score of a ver-
tex z, belongs to at least one 3-circuit. Reversing an arc to delete some 3-circuits may create
new ones, but reversing an arc (x, y) with s(x) ≤ s(y) will globally decrease the number of
3-circuits by s(y) − s(x) + 1. Hence the method proposed by Smith and Payne (1974). At
each iteration, the arc (x, y) maximizing the quantity s(y) − s(x) + 1 is reversed until there
is no arc (x, y) with s(x) ≤ s(y). At the end of the algorithm, we have a linear order. This
order is not necessarily an optimal solution, as shown by Phillips (1976) (a counter-example
with n = 8 is given in Barthélemy et al. 1989 while the complexity of the algorithm is rather
large (the two authors do not give the complexity of their algorithm; it can be bounded
by O(n5), or less with a good data structure).

Two generalizations to Kemeny’s problem have been suggested in Barthélemy et al.
(1989). In the first one, an arc (x, y) maximizing the ratio [s(y) − s(x) + 1]/mxy is cho-
sen. In the second, instead of the global number of 3-circuits deleted by the inversion of
(x, y), we consider the weights of the 3-circuits deleted by the inversion of (x, y) minus the
weights of the 3-circuits created by the inversion of (x, y). Of course these generalizations
give only heuristics for Kemeny’s problem.

Kaykobad et al.’s method

An improvement heuristic has been proposed by Kaykobad et al. (1995). It is initially de-
signed for Slater’s problem, but it is not difficult to extend it to weighted tournaments, with
a O(n6) complexity according to the authors (or an amortized complexity in O(n5) if we
accept to devote a O(n3) memory space to keep some intermediary computations). They use
the notion of a cut. A cut in an order O is a bipartition of the vertex set X into the subset
BO of the “best” vertices according to O and the subset WO of the “worst” vertices, still
according to O . The value of the cut is the number of arcs oriented from BO towards WO

minus the number of arcs oriented from WO towards BO . Noticing that an optimal order
does not contain any cut with a negative value, the authors design an algorithm switching
the sets BO and WO of the current order O when a negative cut is found.

Chanas and Kobylanski’s method

Chanas and Kobylanski (1996) suggested another improvement heuristic for Kemeny’s
problem. It is based on the iteration of three operations called Sort, Reverse and Insert.
When applied to an order x1 > · · · > xi > · · · > xn, Reverse provides the reversed order
xn > · · · > xi > · · · > x1. Given a linear order O defined on a subset of vertices, Insert(x,O)

adds an extra vertex x as well as possible inside O to obtain a linear order containing one
more vertex and with O as its restriction to the vertices belonging to O . Sort is recur-
sively defined on linear orders defined on subsets of vertices by Sort(x) = x and, for k > 1,
Sort(x1, . . . , xk−1, xk) = Insert(xk,Sort(x1, . . . , xk−1)).
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Starting from a given linear order, a first stage of Chanas and Kobylanski’s method con-
sists in applying Sort while such an application provides a new current solution. Then a
loop is applied until the current solution does not change any more. For each run of the
loop, first the current solution is reversed. Then Sort is applied while such an application
provides a new current solution. In other words, if f ∗ denotes the iteration of a function
f while the application of f changes the current solution and if f ◦ g denotes the usual
composition of functions (g is first applied, then f ), the full method consists in applying
(((Sort∗) ◦ Reverse)∗) ◦ (Sort∗).

Approximation and probabilistic algorithms

Probabilistic methods (see Alon and Spencer 2000 for a global presentation of these meth-
ods) have been applied to several combinatorial optimization problems for a long time, in-
cluding the search of a maximum subgraph without circuit of a digraph (see Czygrinow et
al. 1999; de la Vega 1983; Poljak et al. 1988; Poljak and Turzík 1986; Spencer 1971, 1978,
1987). In Poljak and Turzík (1986), a recursive algorithm is developed to solve this problem.
Let G = (V ,E) be a graph weighted by a non-negative function w and let λ be a number
with 0 < λ < 1. Then, for some values of λ, the recursive algorithm finds a subgraph without
circuit H = (V ,F ) with:

∑

f ∈F

w(f ) ≥ λ
∑

e∈E

w(e) + 1 − λ

2
α(G)

where α(G) is the weight (with respect to w) of a minimum spanning tree of G. Notice
that, when applied to an unweighted tournament T with λ = 0.5, this method provides a
subgraph of T without circuit and with at least (n2 − 1)/4 arcs. This bound is improved
by the probabilistic algorithm in O(n3 logn) designed in Poljak et al. (1988) for the same
purpose: Poljak et al. show that their algorithm finds a subgraph without circuit with at
least n(n − 1)/4 + n

√
n/(8

√
π) arcs. By the way, this gives interesting information about

the maximum number of arcs that must be reversed in a tournament to make it transitive:
this number is upper-bounded by n(n−1)

4 − n
√

n

8
√

π
(see Sect. 4). A generalization to weighted

tournaments can be found in Czygrinow et al. (1999).
Algorithms with approximation guarantees have been studied for the feedback arc set

problem (see Festa et al. 1999 for a survey on the problem for general graphs) or for the
maximum acyclic subgraph problem, for general or special directed graphs (see Ausiello
et al. 2003 and Vazirani 2003 for a global presentation of approximation algorithms; see
Even et al. 2000; Hansen 1989; Newman 2000, 2004; Newman and Vempala 2001 or
Rao and Richa 2004 for applications of these methods to some of the problems consid-
ered here). For instance, Leighton and Rao (1988) design an approximation algorithm with
a O(log2 n) approximation factor for unweighted directed graphs. This factor can be im-
proved: Seymour (1995) shows that the feedback arc set problem can be approximated
within O(logn log logn). On the other hand, it is known that this problem is APX-hard
(Even et al. 1998) (remember that, from a practical point of view, this implies that we do
not know polynomial-time approximation scheme—PTAS—to solve this problem). Similar
results can be found in Berger and Shor (1990, 1997) and Hassin and Rubinstein (1994) for
the maximum acyclic subgraph problem debated above, which is also APX-hard in general
(Papadimitriou and Yannakakis 1991). Anyway, the maximum acyclic subgraph problem on
tournaments admits a PTAS (Arora et al. 1996). Notice that an easy approximation algo-
rithm for the maximum acyclic subgraph problem is the following (already mentioned in
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Korte 1979). Place the vertices on a horizontal line and consider, on one hand, the set of
the arcs oriented from the left to the right or, on the other hand, the set of the arcs oriented
from the right to the left. Obviously, one of these two sets contains at least half the arcs of
the tournament. As moreover an optimal solution contains at most all the arcs, it is easy to
lower-bound by 0.5 the ratio between the number of arcs provided by this simple heuristic
and the optimal number of arcs. Such a method can also be applied to weighted tournaments,
with a same approximation factor. Anyway, this method does not provide a heuristic with an
approximation guarantee for Slater’s problem or, equivalently, to the feedback arc set prob-
lem applied to tournaments. This illustrates the fact that, if Problems 1 to 6 are equivalent
with respect to the theory of NP-completeness, they are not necessarily such with respect to
the theory of approximation.

For Slater’s problem (or more precisely for the feedback arc set problem applied to un-
weighted tournaments), Ailon et al. (2005) design a randomized 3-approximation algorithm
(another randomized algorithm, based on the linear programming formulation of the prob-
lem, can be found in Ailon et al. 2005 with an approximation ratio equal to 2.5). Their
method chooses a vertex v randomly. Then, all the vertices w such that (v,w) is an arc are
placed to the right of v, and the other ones to the left of v. The process runs recursively on
the two sides of v. This algorithm has been derandomized by van Zuylen (2005) (see also
van Zuylen and Williamson 2008), still for unweighted tournaments and with an approxi-
mation ratio equal to 3. These methods may be adapted to weighted tournaments with an
approximation ratio equal to 5 (see Ailon et al. 2005 and Coppersmith et al. 2006). Alon
(2006) (see also Ailon and Alon 2007), shows that, for any fixed ε > 0, it is NP-hard to
approximate the minimum size of a feedback arc set for a tournament on n vertices up to
an additive error of n2−ε (but approximating it up to an additive error of εn2 can be done in
polynomial time).

Interesting questions related to these considerations are the following ones:

Open problem 4

1. What is the best approximation ratio of an approximation algorithm designed to solve
(approximately) the linear ordering problem?

2. Is the feedback arc set problem applied to unweighted tournaments APX-hard?

Ranking the vertices according to their scores for unweighted tournaments (Copeland’s
method) or to the sum of the weights of the arcs leaving them minus the sum of the weights
of the arcs entering them (Borda’s method) for weighted tournaments also provides a method
with an approximation ratio equal to 5, irrespective of how ties are broken (see Coppersmith
et al. 2006 and Fagin et al. 2005). Moreover, for any ε > 0, Coppersmith et al. (2006) exhibit
an infinite family of unweighted tournaments such that ranking the vertices according to
their scores, even with the best way to break ties, results in an order with at least 5 − ε times
as many reversings as for a Slater order. This shows that 5 as the approximation ratio is tight
for this method, even if the ties are broken in a clever way.

Metaheuristics

Many metaheuristics (among a huge literature dealing with metaheuristics, see for instance
Dréo et al. 2006 or Glover and Kochenberger 2003 and the references inside) for the lin-
ear ordering problem are based on elementary transformations applied iteratively to a given
linear order to improve it (the initial solution may be computed randomly or generated for
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example by one of the methods described above). An elementary transformation is a way
of changing one feature of a solution without changing drastically its global structure. The
“shift” operation defined above (see Definitions 1 in Sect. 3) provides such an elementary
transformation (of course, other transformations can easily be designed). The neighbour-
hood N(O) of an order O is the set of all the orders (the neighbours of O) that we can
obtain by applying the elementary transformation to O .

Thanks to such an elementary transformation, we may apply metaheuristics such as an
iterative improvement method (also called a descent or a quench). The principle of a descent
is to apply the elementary transformation to the current solution O to obtain a new order
O ′ ∈ N(O). If this new solution is better than the current one (i.e., if we have �(O,�) >

�(O ′,�)), then we adopt O ′ instead of O . Otherwise we keep O . Then we do it again until
we reach a local optimum, i.e. an order O such that:

∀O ′ ∈ N(O), �(O,�) ≤ �(O ′,�).

It is possible also to design more sophisticated metaheuristics based on the same idea of
neighbourhood, as simulated annealing, tabu search or the noising method and so on (see
references above).

Genetic algorithms (in addition to the references given above, see also Goldberg (1989)
for a global presentation of these methods and for references) are not based (or rather, not
mainly) on elementary transformations as defined above. These methods deal with a set of
solutions (here, a set of orders) called the individuals of a population. They apply iteratively
three operators usually called selection, cross-over and mutation to the individuals of the
population. The selection phase consists in choosing some individuals of the current popu-
lation in order to procreate. It is the only phase where the values of the function to minimize
are taken into account. A “good” individual (i.e., an individual giving a low value to the
function to minimize) is given a higher probability to be chosen as a procreator than a “bad”
individual of the population. In the cross-over phase, we mix the features of two (seldom
more) procreators to create one or two (seldom more) new individual(s) to constitute the next
current population. The mutation phase changes randomly one (sometimes more) feature(s)
of the newborn individuals in order to introduce some diversity in the population.

For our aggregation problem, genetic algorithms have been applied alone or hybridized
with other metaheuristics (descents method, simulated annealing, noising methods. . . ). For
instance, we may find in Charon and Hudry (1998) the following specifications for the three
genetic operators.

• Selection: the N individuals Ok (1 ≤ k ≤ N) of the current population are sorted accord-
ing to the decreasing values of �(Ok,�). Then, if r(Ok) denotes the rank of an order Ok

in this sorting, the probability to choose Ok as a procreator is proportional to r(Ok). It
involves that the best individual of the population has a probability to be chosen equal to
N times the probability of the worst one.

• Cross-over: two orders O and O ′ are crossed to generate a new one. Let X be the set
{x1, . . . , xn}. Let O be the order xj1 > xj2 > · · · > xjn and O ′ be the order xk1 > xk2 >

· · · > xkn . Each candidate x has a rank r(x) in O and a rank r ′(x) in O ′. To find the
newborn child generated by O and O ′, we sort the candidates x according to the increas-
ing values of the sums r(x) + r ′(x). The new order is given by this sorting (if several
candidates have the same sum, the ties are broken randomly). For instance, if n = 6 with
X = {a, b, c, d, e, f } and if the two orders O and O ′ are O = a > b > c > d > e > f and
O ′ = f > c > a > b > d > e, the values of r(x), r ′(x) and r(x) + r ′(x) are given in the
following table. Here, the newborn child is the order a > c > b > f > d > e.
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x a b c d e f

r(x) 1 2 3 4 5 6
r ′(x) 3 4 2 5 6 1
r(x) + r ′(x) 4 6 5 9 11 7

• Mutation: the mutation is given by an elementary transformation, for example a shift with
randomly chosen parameters, and is applied irrespective of the variation of the objective
function.

6.2 Exact algorithms

In this section, we will distinguish between two kinds of exact algorithms (other kinds exist,
like dynamic programming). In a first type, we deal with methods which are exact if they
succeed but which can fail in finding an order. It is the case for some methods using the linear
programming form of the aggregation problem. In a second category, we find enumerative
methods, of which one advantage is to be able to give all the optimal solutions. A third
category, constituted by sub-problems made of polynomial families of instances, can be
found in Sect. 6.3.

Methods using the linear programming formulation

While it is difficult (more precisely, NP-hard) to solve the 0-1 linear problem depicting our
aggregation problem (see Sects. 1 and 2), we may more easily solve the continuous linear
problem obtained by relaxing the constraints ωxy ∈ {0,1} into 0 ≤ ωxy ≤ 1 (see Bowman
and Colantoni 1973; de Cani 1969; Nishihara et al. 1989; Tucker 1960; Younger 1963). If,
in an optimal solution of this continuous problem, all the variables ωxy have integer values,
then this optimal solution is also an optimal solution of the 0-1 problem. For instance, with
the help of linear programming, Boenchendorf (1982) on one hand and Marcotorchino and
Michaud (1979) on the other solved life problems with up to 30 vertices for Boenchendorf
and up to 72 vertices for Marcotorchino and Michaud (notice that real-life problems are not
always the most difficult, because of a relative consistency in the expressed preferences).
Of course, the optimal solution of the relaxed problem may not be integral. In this case, we
do not obtain a feasible solution for the initial problem. Another drawback of this method
is that there are many variables (about n2) and many constraints (about n3). Then, in order
to reduce the size of the bases, we may pay attention to the dual problem of the continuous
relaxation. Notice also that the heuristics specified above can give a good starting solution
in order to save time.

Another possibility is to relax the constraints from which the computational difficulty
arises, i.e., the n3 transitivity constraints, and then to apply Lagrangean relaxation (for a
presentation of Lagrangean relaxation, see Lemaréchal 2003 for instance). This was done by
Arditti (1984) and more recently in Belloni and Lucena (2004) or Charon and Hudry (2006).
The same difficulty as before appears about the size of the problem: the dual (with respect
to Lagrangean relaxation) problem has O(n3) variables (the Lagrangean multiplicators).
In addition, the theory does not dismiss the possibility of a duality gap. In such a case,
we cannot conclude and the Lagrangean relaxation provides only a bound of the optimal
value of �. Anyway, this method allowed Arditti to solve exactly some real-life problems
described in Marcotorchino and Michaud (1979) with n = 36 and n = 44 in shorter time
than with the above continuous linear programming (Arditti estimates that the CPU time is
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8 times less with Lagrangean relaxation than with the method applied by Marcotorchino and
Michaud). The CPU time necessary in Arditti (1984) for the Lagrangean relaxation remains
“reasonable”: less than one hour on a DPS8 for random tournaments with n between 50
and 90.

Cutting planes and branching methods

When the previous methods fail, it is always possible to apply methods based on an exhaus-
tive search (branch and bound; see Charon and Hudry 2009b for the principles of branch
and bound methods), which may use the previous methods as components. Many attempts
have been done in this direction. Of course, because of the exponential explosion, even if
we limit the enumeration as much as possible, the branch and bound may require too much
time and possibly too much memory space to solve a problem practically. But, on the other
hand, this method can find all the optimal solutions, what the other approaches cannot do
usually.

Many refinements have been included to the branch and bound methods, by using some
properties verified by Slater winners or Kemeny winners (see above), by exploiting infor-
mation computed during the run of the algorithm (see Charon et al. 1997a; Guénoche 1995,
1996; Guénoche et al. 1994) or by using appropriate data structure. For instance, the use
of a heap to code the best-first strategy branch and bound tree in Charon et al. (1996b) re-
duces the complexity from O(n!) in Barthélemy et al. (1989) down to O(n logn) to find
the best leaf to expand. Indeed, there can be about n! leaves, which may require about
n! steps to find the best one if they are not organized with an appropriate data structure.
If they are the n! elements of a heap, we may find the best leaf—the root of the heap—
in O(1) and, after the removal of this best leaf, we may restore the heap structure for
the next search of the best leaf in O(logn!), i.e., in O(n logn). Attention has been de-
voted also for finding a good evaluation function for the nodes of the branch and bound
tree. Cutting plane methods have also been designed and sometimes combined with polyhe-
dral methods based on combinatorial studies of the associated polytope (see Schrijver 2003
or Wolsey 1998 for example for a global presentation of these methods) to obtain branch
and cut methods in order to solve the linear ordering problem (see Barahona et al. 1994;
Bolotashvili et al. 1999; Christof and Reinelt 1996, 1997a, 1997b; Christophe et al. 2004;
Doignon et al. 2006; Fiorini 2001a, 2001b, 2006a, 2006b; Fiorini and Fishburn 2003;
Fishburn 1992; Girlich et al. 1998; Goemans and Hall 1996; Grötschel et al. 1984a, 1984b,
1985a, 1985b, 1985c; Jünger 1985; Koppen 1995; Leung and Lee 1994; Loiseau et al. 1993;
Méndez-Díaz et al. 2009; Mitchell 2000; Mitchell and Borchers 1996, 2000; Nalivaiko 1997,
1999; Nutov and Penn 1995, 1996; Reinelt 1985, 1993; Young 1978 for polyhedral ap-
proaches of the linear ordering problem or related problems). It is known that, when the
problem to solve is NP-hard, we may fail in finding a complete (and irredundant) system of
linear equations and inequalities to describe the solutions polytope.

Several branch and bound methods, more or less sophisticated, have been designed to
solve the real-life problems quoted above (and even to enumerate all the optimal solutions)
or to solve randomly generated instances with n up to 100 (see references above and for
example Bermond and Kodratoff 1976; Burkov and Groppen 1972; Charon et al. 1992b,
1996b, 1997a; Charon and Hudry 2001b, 2006; Christof and Reinelt 2001; Cook and Saipe
1976; de Cani 1972; Flueck and Korsh 1974; Grötschel et al. 1984a, 1984b, 1985a, 1985b;
Guénoche 1977, 1986, 1988, 1995, 1996; Guénoche et al. 1994; Hudry 1989, 1998; Jünger
1985; Kaas 1981; Korte and Oberhofer 1968, 1969; Lenstra Jr. 1973; Mitchell and Borchers
1996, 2000; Phillips 1967, 1969; Reinelt 1985; Remage and Thompson 1966; Tüshaus 1983;
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Wessels 1981; Woirgard 1997; Younger 1963). For instance, Korte and Oberhofer (1968,
1969) solved random tournaments (with the same probability for the two orientations of
each arc) with 13 vertices. According to Kaas (1981), Lenstra Jr. (1973) improved their
software and solved problems with up to 17 vertices. Wessels (1981) increased this number
to 25. The experiments of Kaas (1981) deal with tournaments with 34 vertices coming from
life problems or random tournaments with 25 vertices. Thanks to their polyhedral approach
and their branch and cut algorithm, Grötschel, Jünger and Reinelt solved life problems with
up to 71 vertices (Christof and Reinelt 1996) and tournaments of which the weights simu-
late life data with up to 80 vertices (Grötschel et al. 1984a, 1984b, 1985c; Jünger 1985 and
Reinelt 1985). In Charon and Hudry (2006), a branch and bound with a Lagrangean relax-
ation as the evaluation function is designed. The 5790 instances used to study the properties
of this method include instances of Slater’s problem with up to 45 vertices and instances
of Kemeny’s problem with up to 100 vertices (the software is freely available at the URL
http://www.enst.fr/~charon/tournament/median.html; benchmarks can be found at the URL
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/, Reinelt 2002; a genera-
tor of linear order instances can be found at the URL http://www.rpi.edu/~mitchj/generators/
linord/, Mitchell 2007).

6.3 Special families of tournaments

About the last possibility, consisting in searching families of polynomial instances, it seems
that little has been done until now. Conitzer (2006) designs a linear algorithm, based on
homogeneous parts (see Sect. 3) to solve Slater’s problem exactly when the result of the
pairwise comparison method from which the considered tournament comes has a particular
hierarchical structure.

Two algorithms in O(n) (including the coding of the tournament, with an appropriate
data structure) can be found in Charon et al. (1992b) to compute the Slater index and one
Slater order for any tournament T with σ(T ) = 1 for the first (very easy) algorithm or with
σ(T ) = 2 for the other (more difficult) algorithm. We can find also the following conjecture
in Charon et al. (1992b):

Conjecture 8 Let σ be a given integer. The computation of the Slater index of the tourna-
ments T with σ(T ) = σ can be done in polynomial (with respect to n) time.

Apart from the transitive tournaments, there exists also a simple family of tournaments
for which the solution of Slater’s problems is easy: the so-called cyclical tournaments
(Laslier 1997). They can be visualized as follows. The n vertices are regularly distributed
on a circle and the arcs are drawn by turning around the circle, always in the same way,
and beginning from the periphery. More formally, the cyclical tournaments are the ones of
which the vertices can be numbered from 0 to n − 1 such that:

• if n is odd, there exists an arc from any vertex j (0 ≤ j ≤ n − 1) towards the vertices k

with j < k ≤ j + (n − 1)/2, the computations being done modulo n,
• if n is even, there exists an arc from any vertex j with 0 ≤ j < n/2 towards the vertices k

with j < k ≤ j + n/2 or from any vertex j with n/2 ≤ j ≤ n − 1 towards the vertices k

with j < k < j + n/2, the computations still being done modulo n.

Figure 6 illustrates the cyclical tournaments on 4 or 5 vertices.
Cyclical tournaments are regular if n is odd, or quasi-regular otherwise (but there exist

regular or quasi-regular tournaments which are not cyclical). Thus, from Theorem 10, if n

http://www.enst.fr/~charon/tournament/median.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/
http://www.rpi.edu/~mitchj/generators/linord/
http://www.rpi.edu/~mitchj/generators/linord/
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Fig. 6 Cyclical tournaments on
4 or 5 vertices

is odd, any vertex of a cyclical tournament T is a Slater winner of T (but this does not
provide the Slater index or a Slater order of such a tournament). Theorem 38 (see Woirgard
1997) specifies the value of the Slater index and the form of the Slater orders for cyclical
tournaments.

Theorem 38 Let T be a cyclical tournament whose n vertices are numbered as described
above.

1. If n is odd, i(T ) is equal to (n2 − 1)/8. Moreover, T admits exactly n Slater orders of the
type j > j + 1 > · · · > j +n for 0 ≤ j ≤ n− 1 (the computations being done modulo n).

2. If n is even, i(T ) is equal to (n2 − 2n)/8. Moreover, T admits only one Slater order:
0 > 1 > · · · > n.

Thanks to Theorem 16, the result stated in Theorem 38 may be extended to the tourna-
ments of which the strongly connected components are cyclical.

There exists another interesting family of regular tournaments: the quadratic residues
tournaments also called Paley tournaments. They are defined only when n is a prime number
equal to 3 modulo 4 (for example 7, 11, 19, 23, 31). In such a tournament, if the vertices are
numbered from 0 to n − 1, an arc is oriented from j towards k if k − j is equal to a square
modulo n. All the vertices play the same role, as well as all the pairs of vertices. As for any
regular tournament, all the vertices of a Paley tournament are Slater winners. The values of
their Slater indices are not known, but a good lower bound, given below and itself lowered
by n(n−1)

4 − n
√

n

2 (1 + log2 n), is computed in Alon and Spencer (2000).

Theorem 39 Let n be a prime integer with n ≡ 3 (modulo 4) and let Qn be the tournament
of the quadratic residues on n vertices. Then we have:

i(Qn) ≥ n(n − 1)

4
− 
log2 n�√n2(
log2 n�−2).

We may observe that this lower bound is close to the bounds of I (n) given by Theo-
rem 23. So we may wonder whether these tournaments achieve the maximum values of the
Slater index for the appropriate values of n:

Open problem 5 Let n be a prime integer with n ≡ 3 (modulo 4) and let Qn be the tourna-
ment of the quadratic residues on n vertices. Is i(Qn) equal to I (n)?

Another way to exhibit families of tournaments T of which we could easily know i(T )

and at least one Slater order consists in starting from a set E of arcs which do not induce
circuits and in building a tournament having E as its minimum feedback arc set. This is done
in Barthélemy et al. (1995) (see also Isaak 1995 and Isaak and Tesman 1991). In particular,
this was applied when E corresponds with directed paths, stars, disjoint arcs, complete bi-
partite graphs, alternated paths, alternated circuits, rooted trees, and linear orders. The Slater
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Fig. 7 An example of a substitution with T = R ⊗ [S1, S2, S3]

index of the tournaments obtained is obviously known: it is the cardinality of E. Similarly,
it is obvious to obtain a Slater order of these tournaments: it suffices to reverse the arcs
belonging to E. The main difficulty lies in the recognition of these tournaments. Indeed,
remind that the problem of the isomorphism between two graphs is open, see Garey and
Johnson (1979), and remains so for tournaments (see also Dugat 1990). From a practical
point of view, this involves that checking whether two tournaments are isomorphic requires
an exponential time with respect to n.

The last possibility detailed here deals with the operation called substitution or also
composition (Moon 1968), product (Laslier 1997) or still lexicographic product (Bermond
1972). . . It can be described as follows. We start from a tournament R on q vertices and from
q tournaments Sj (1 ≤ j ≤ q). Then, the j th (1 ≤ j ≤ q) vertex of R is replaced with Sj .
Last, for any arc (j, k) of R, all the arcs between Sj and Sk are oriented from the vertices of
Sj towards the vertices of Sk . Let R ⊗[S1, . . . , Sq ] denote the resulting tournament. Figure 7
gives an example of a substitution.

The Slater index of R ⊗ [S1, . . . , Sq] can be stated in function of the Slater indices of
the tournaments Sj (1 ≤ j ≤ q) and of the Kemeny index of the tournament R′ obtained by
weighting the arcs (rj , rk) of R by mjmk , where mk denotes the number of vertices of Sk .
For instance, for the example of Fig. 7, the weights that should be affected to the arcs of R in
order to obtain R′ would be 6, 2 and 3. Theorem 40 (Woirgard 1997) specifies this relation:

Theorem 40 With the definition of R′ given above, we obtain:

i(R ⊗ [S1, . . . , Sq ]) =
q∑

j=1

i(Sj ) + K(R′).

Thus, if we can recognize that a given tournament is of type R ⊗ [S1, . . . , Sq ], the
computation of i(R ⊗ [S1, . . . , Sq]) reduces to the computations of the q Slater indices
i(Sj ) (1 ≤ j ≤ q) and of the Kemeny index K(R′) of the tournament R′, what is usually
easier because the considered tournaments are smaller. Anyway, it is not necessarily an easy
task to recognize that a given tournament comes from an appropriate substitution.

When all the tournaments Sj are isomorphic to a same tournament S, we get i(R ⊗
[S, . . . , S]) = qi(S) + m2i(R), where m denotes the number of vertices of S (Thomassen
1975), as conjectured by Bermond (1972). A special case, that we could call self-
substitution, is the one for which S is equal to R. Then we obtain:
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Corollary 8 Let T be a tournament on n vertices. Set T 1 = T and, for k ≥ 1, T k+1 =
T k ⊗ [T , . . . , T ] where T is repeated n times inside the brackets. Let nk (=nk) denote the
number of vertices of T k . Then, for any k ≥ 1:

i(T k) = n2k−1 − nk−1

n − 1
i(T ) = n2

k − nk

n(n − 1)
i(T ).

Notice that, if i(T ) is close to n2/4, then i(T k) will also be close to (nk)
2/4. Such a

remark could be useful to study tournaments with a maximum Slater index.

7 Maximum number of Slater orders

From the voting point of view (as well as the combinatorial one!), it may be interesting
to know the number of optimal solutions. As said above, the application of a branch and
bound method allows to enumerate all of them. In this last section, we pay attention to the
maximum number of Slater orders that an unweighted tournament with a prescribed number
n of vertices may own. Notice that, for weighted tournaments, if even weights are allowed,
the answer is quite simple. It is sufficient to consider the tournament with all the weights
equal to 0: according to the characterization specified above, this tournament is associated
with a profile of linear orders and, for this tournament, all the n! linear orders are obviously
optimal solutions.

It follows from Theorem 16 that the number of Slater orders may be exponential with
respect to n. Indeed, consider the tournament on n = 3q vertices constituted of q strongly
connected components all isomorphic to a 3-circuit. As a 3-circuit owns three Slater orders,
Theorem 16 shows that this tournament owns exactly 3q = 3n/3 = e(n ln 3)/3 Slater orders
(notice the approximation (ln 3)/3 ≈ 0.37).

But we may obtain more Slater orders by considering some tournaments obtained by
substitution. Let N(T ) denote the number of Slater orders of an unweighted tournament
T or the number of median orders of a weighted tournament T . Theorem 41, taken from
Woirgard (1997), gives a lower bound for the number of Slater orders that a tournament
obtained by substitution can own, in function of the characteristics of the initial tournaments.

Theorem 41 Let R be a tournament on q vertices and let S1, S2, . . . , Sq be q tournaments.
Let R′ be the weighted tournament obtained by weighting R as in Theorem 40. Then we
have:

N(R ⊗ [S1, . . . , Sq]) ≥ N(R′)
q∏

j=1

N(Sj ).

When the involved tournaments R and Sj (1 ≤ j ≤ q) are all equal to a same tourna-
ment T , Theorem 41 leads to Corollary 9.

Corollary 9 Let T be a tournament on n vertices. We set T 1 = T and, for k ≥ 1, T k+1 =
T k ⊗ [T , . . . , T ] where T is repeated n times between the brackets. Then, for any k ≥ 1:

N(T k) ≥ N(T )
nk−1
n−1 .
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Let N(n) denote the maximum number of Slater orders that a tournament on n vertices
can own. By Corollary 9, we obtain a lower bound of N(n), at least for some values of n

(notice that there is an infinite number of such values), by choosing the initial tournament T

in an appropriate manner. Thus, by choosing a 3-circuit for T , we obtain a family of tourna-
ments T k on 3k vertices. Hence the inequality N(n) ≥ 3(n−1)/2 = e(n ln 3−ln 3)/2, available for
any value of n which is a power of 3 (notice the approximation (ln 3)/2 ≈ 0.55). In fact, if
the tournament R in which the substitution is done is regular (hence with an odd number
of vertices) and if the substituted tournaments Sj (1 ≤ j ≤ q) have all the same number of
vertices, it is possible to prove a stronger result, as stated by Theorem 42 (Woirgard 1997).

Theorem 42 Let R be a regular tournament on q vertices and let S1, S2, . . . , Sq be q tour-
naments with the same number n of vertices. Then:

N(R ⊗ [S1, . . . , Sq]) ≥ nN(R)

q∏

j=1

N(Sj ).

In particular, if all the tournaments Sj (1 ≤ j ≤ q) are equal, we obtain: N(R ⊗
[S, . . . , S]) ≥ nN(R)N(S)q . If in addition S is also equal to R (hence q = n), then we
obtain, with the same notation as in Corollary 9: N(R2) ≥ nN(R)n+1 (while the number of
vertices of R2 is n2).

By repeating k − 1 times the substitution of 3-circuits in a 3-circuit (as done above) we
obtain a tournament on n = 3k vertices with a great number of Slater orders. More precisely,
we may show Corollary 10 by induction (Woirgard 1997).

Corollary 10 Let k be a positive integer. With the same notation as above, let T be the
tournament (C3)

k where C3 is the cyclical tournament on 3 vertices. Then we have, with n

denoting the number of vertices of T (n = 3k):

N(T ) ≥ 3
3n−2 log3 n−3

4 .

Hence the inequality: N(n) ≥ exp[ ln 3
4 (3n − 2 log3 n − 3)] when n is a power of 3 (notice

the approximation (3 ln 3)/4 ≈ 0.82). The computation of N(n) remains an open problem:

Open problem 6 Determine the maximum number N(n) of Slater orders that a tournament
on n vertices may have.

For any given tournament, its number of Slater orders may be lower-bounded by means
of its automorphisms group. An automorphism can be seen as a numbering of the vertices
of the tournament which keeps the orientations of the arcs. More precisely:

Definition 7 An automorphism ϕ of a tournament T = (X,U) is a one-to-one correspon-
dence from X to X such that the arc (ϕ(x),ϕ(y)) belongs to U if and only if (x, y) also
belongs to U . The automorphisms group of T is the set of all the automorphisms of T (this
set is a group with respect to the composition of automorphisms).

Theorem 43 (Woirgard 1997) specifies a relation between the number of automorphisms
and the number of Slater orders of any tournament.

Theorem 43 Let G(T ) denote the automorphisms group of T . Then |G(T )| divides N(T ).
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As a corollary of Theorem 43, we could lower-bound N(n) by the maximum g(n) of the
cardinality of G(T ) over the set of the tournaments T on n vertices. The range of g(n) is
given by Theorem 44 (Alspach 1968; Dixon 1967) (see also Goldberg 1966 or Moon 1968
for the exact values of g(n) for 1 ≤ n ≤ 27). Anyway, the lower bound provided by g(n) in
Theorem 44 when n is a power of 3 is worse than the one given by Corollary 10.

Theorem 44 We have: limn→+∞g(n)1/n = √
3 and, for any n, g(n) ≤ √

3n−1, with equality
holding if and only if n is a power of 3.

An obvious (thanks to Theorem 14) upper bound of N(T ) for any tournament T is given
by Theorem 45:

Theorem 45 For any tournament T , let β3(T ) be the number of arcs which belong to some
3-circuits. Then we have: N(T ) ≤ ( β3(T )

i(T )

)
.

From this bound we obtain also: N(n) ≤ ( n(n−1)/2
I (n)

)
. If we use the fact that

( 2k

k

)
is as-

ymptotically equivalent to 22k√
πk

(see Matoušek and Nešetřil 1998) and since I (n) is about

n(n − 1)/4, we obtain that this upper bound is not far from 2×2n(n−1)/2√
πn(n−1)

for n large enough.
To obtain a better upper bound of N(n), we may exploit the fact that a Slater order of

a tournament T defines a Hamiltonian path of T (see Charon and Hudry 2000). We know
bounds of the maximum number H(n) of Hamiltonian paths that a tournament on n vertices
can own. Indeed, Alon (1990) (see also Adler et al. 2001), answering a conjecture stated by
Szele (1943), proved by a probabilistic method that there exist tournaments on n vertices
with at least n!/2n−1 Hamiltonian paths and that H(n) is between n!/2n−1 and αn

√
nn!/2n,

where α is a constant. Hence the next corollary:

Corollary 11 There exists a constant α such that we have:

N(n) ≤ αn
√

nn!/2n.

By the way, remember that any tournament owns an odd number of Hamiltonian paths
(Rédei 1934), while the number of Slater orders may be even.

Several evidences suggest that H(n) is far from N(n). For instance, the comparison of
H(n) and N(n) for the small values of n (see Poljak and Turzík 1986 for the values of
H(n) for n ≤ 7) shows that there is a gap even for small values of n: H(3) = 3, H(4) = 5,
H(5) = 15, H(6) = 45 (and then H(7) = 189) while we have N(3) = 3, N(4) = 3, N(5) =
5, N(6) = 9. While it is easy, for any n, to build strongly connected tournaments with only
one Slater order (like the tournaments of Fig. 8 for n > 3), it is known from Busch (2006)
that the number of Hamiltonian paths of a strongly connected tournament is greater than or
equal to 5(n−1)/3. Similarly, the study of families of some special tournaments goes towards
the same conclusion. For tournaments T with σ(T ) ∈ {1,2}, the following results can be
found in Hudry (1997b) or in Woirgard (1997):

Theorem 46

1. The maximum number of Slater orders that a tournament T on n vertices and with
σ(T ) = 1 can have is equal to 1

3 (2�(n+3)/2� + (−1)�(n+1)/2�). Moreover this number is
reached by tournaments with a maximum Slater index (i.e. �(n − 1)/2�) over the set of
tournaments T with σ(T ) = 1 (see Fig. 9).
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2. Let r1, r2 and r3 be the three roots of the equation r3 − 5r2 + 2r + 4 = 0 (r1 ≈ 4.32;
r2 ≈ 1.27; r3 ≈ −0.59). There exist three constants α,β, γ such that, for any n, there
exists a tournament T on n vertices and with σ(T ) = 2 for which we have: N(T ) =
αr

�n/4�
1 + βr

�n/4�
2 + γ r

�n/4�
3 .

On the other hand, we may prove that the maximum number of Hamiltonian paths that a
tournament T with σ(T ) = 1 may own is equal to 2n−2 + 1, what is about the square of the
maximum number of Slater orders over the same set. Moreover, the tournaments T with a
maximum number of Hamiltonian paths among the tournaments T with σ(T ) = 1 are of the
type shown by Fig. 8 (with the same agreement as above for the missing arcs). It is easy to
prove that, if n is greater than 3, such a tournament admits only one Slater order (obtained by
reversing the drawn arc), which illustrates that the gap between the number of Slater orders
of a tournament and the number of its Hamiltonian paths may be huge.

These differences between the shapes of the tournaments with a maximum number of
Slater orders or of Hamiltonian paths lead to the following open problems:

Open problem 7

1. For a given number n of vertices, which are the tournaments with N(n) Slater orders?
2. For a given number n of vertices, which are the tournaments with H(n) Hamiltonian

paths?
3. For a given number n of vertices, are the tournaments reaching I (n) the same as the

tournaments maximizing N(n)?

From the point of view of voting theory, it is interesting to know to which extend two
optimal solutions of a given tournament may differ. Woirgard (1997) studies the maximum
distance between two Slater orders of some tournaments (i.e., the diameter of the set of
Slater orders of these tournaments) and the number of pairs of Slater orders which reach this
maximum distance. More precisely, he showed the following result:

Theorem 47

1. Let T be any tournament, and let O1 and O2 be two Slater orders of T . Then δ(O1,O2)

is even and is between 0 (if and only if O1 = O2) and 2i(T ).
2. There exist an infinite number of tournaments T for which the maximum distance between

Slater orders of T is equal to 2i(T ).
3. For any n odd, the tournaments T1 of Fig. 9 are such that there exist 2i(T1) (unordered)

pairs of Slater orders O1 and O2 of T at maximum distance: δ(O1,O2) = 2i(T1), with
i(T1) = (n − 1)/2.

Similar results can be found in Woirgard (1997) for tournaments T with σ(T ) = 2. For
instance, for n of the form 4p + 3 (see Woirgard 1997 for the other values of n), there exist
tournaments T2 on n vertices, with σ(T2) = 2 and with a maximum Slater index over the set
of tournaments T with σ(T ) = 2, such that the maximum distance between any two Slater

Fig. 8 Tournaments T with
σ(T ) = 1 and with only one
Slater order and 2n−2 + 1
Hamiltonian paths (the missing
arcs go from the left to the right)



Ann Oper Res (2010) 175: 107–158 149

Fig. 9 Tournaments T1 with σ(T1) = 1, with a maximum Slater index over the set of tournaments T with
σ(T ) = 1, with a maximum number of Slater orders over the same set and with 2i(T1) pairs of Slater orders
at distance 2i(T1) (the missing arcs go from the left to the right)

orders O1 and O2 of T2 is 5p + 2 (respectively 5p + 3) and with (p + 2)23p/2 (respectively
2(3p+1)/2) pairs of Slater orders if p is even (respectively odd). These results show that
there may be many Slater orders at maximum distance. In other words, with respect to
voting theory context, there may be many optimal rankings of the candidates, these optimal
rankings may be quite different, and there may be many optimal rankings quite different.

This also leads to the following open problems:

Open problem 8 Let n and σ be two positive integers. Let Sσ (n) be the set of the tourna-
ments T defined on n vertices and verifying σ(T ) = σ .

1. Which are the tournaments with a maximum Slater index over Sσ (n)?
2. Which are the tournaments with a maximum number of Slater orders over Sσ (n)?
3. What is the maximum distance between two Slater orders of a tournament belonging to

Sσ (n)?
4. What is the maximum number of pairs of Slater orders at maximum distance for a tour-

nament belonging to Sσ (n)?
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