
Shared Resources High-Level Modeling in Embedded Systems Using
Virtual Nodes

Chafic Jaber1, Andreas Kanstein1, Ludovic Apvrille2,

Amer Baghdadi3, Renaud Pacalet 2

1Freescale Semiconductor, 134 Av. du Général Eisenhower, BP 72329, 31023 Toulouse Cedex 1, France

2 Institut Telecom; Telecom ParisTech; B.P. 193, 2229 rte des Crêtes,

06904 Sophia-Antipolis Cedex, France

3 Institut Telecom; Telecom Bretagne; Technopôle Brest Iroise, CS83818, 29238 Brest, France

Abstract

The increasing complexity of system-on-chip design
and shorter time to market constraints has stimulated
systems designers to investigate performance
characteristics of the final system implementation in
the early design stages, by means of modeling the
design at a high level of abstraction. This paper
presents the virtual node concept for modeling the
shared resources of a system-on-chip, therefore
specifically dedicated to the study of the impact of
shared resources contention on the overall system’s
performance, which is often defined by concurrent use
cases. The overall approach is based on using a
specific UML modeling profile and a SystemC-based
simulator to execute models and analyze their
performance.

1. Introduction

System-on-chip design, that is, integrating
multiple functionalities on a single die, has reached a
very high level of complexity due to the available
integration density. Taking an example from the
domain of mobile devices, one can integrate multiple
telephony modems and an operating system (OS) like
Linux or Symbian, and have them share a single
external memory [14]. In a true multitasking OS, the
device must be able to handle simultaneous voice and
data calls, while also handling complex imaging tasks
like image or video capture, in part sharing processing
engines, and all serviced by a single external memory.
Both HW and SW architectures must be designed
carefully with worst-case concurrent use cases in mind,
to avoid any negative user experience.

Modeling the use case behavior and the candidate
system architectures at an early stage is therefore

essential for a successful system design. Fast
architecture evaluation requires system modeling at a
very high abstraction level. Furthermore, due to typical
development cycles, the HW design needs to be closed
earlier, sometimes much earlier than the SW design,
providing another reason for high-level modeling.
As illustrated in the example, shared resources, like the
integrated applications processor and the external
memory, have a great influence on the performance of
the system-on-chip. Our approach extends the
DIPLODOCUS modeling methodology [8] with
modeling and simulation techniques for shared
resources [7]. This paper defines the concept of the
virtual node to model shared resources and estimate
their impact on system performance. A virtual node
ensures – given a parameterized policy – the
scheduling of accesses to shared resources (e.g. CPUs,
busses, memories). The virtual node concept helps to
build a well-structured simulation model, and also
facilitates the creation of simple and reusable
architecture component models.

The rest of the paper is organized as follows:
Section 2 presents the virtual node concept and Section
3 presents our system modeling methodology and
environment where we integrated the virtual node
concept. Section 4 discusses related work on system
modeling with a special focus on shared resources
modeling, and finally Section 5 concludes this paper
and gives future guidelines.

2. Modeling Accesses to Shared Resources

2.1. A Demonstrative Example

Let us consider a simple application example
composed of three tasks: T1, T2 and T3; where T1 and
T3 are two dependent tasks and exchange data between

each other, while T2 is independent. This application
will be executed by a hardware architecture composed
of two CPUs (CPU1 and CPU2), one bus (BUS1) and
one memory (MEM1). The two CPUs share the bus
BUS1 to access the shared memory MEM1. We
consider, as well, that T1 and T2 will execute on
CPU1, while T3 will execute on CPU2. In this
scenario, when T1 and T3 exchange data, the data will
be transmitted using the BUS1 and the MEM1. This
communication involves two shared architecture
nodes, the bus and the memory, whose access is
determined with access policies: the arbitration policy.
The communication latency is the sum of time needed
to access shared resources and the contention on them
when CPU1 and CPU2 want to access the bus at the
same time for example).

Another level of contention is on the CPU
scheduling level; a scheduling policy should indeed
select a task to execute among the non-blocked ones.
For instance, if the scheduling policy of CPU1 is
priority based, and T1 is of higher priority than T2,
then T1 will be chosen to execute. In this case, T2
execution is delayed until T1 finishes its execution,
including the communication cost with T3 that may
vary depending on the contention on the bus and the
memory.

Finally, we can identify several types of shared
resources. In fact each architecture node is shared
between multiple elements: the CPU is shared between
different tasks, the bus is shared between multiple
CPUs and the memory is also shared between multiple
CPUs using the bus.

This simple example shows clearly how the
overall performance of the system depends
significantly on shared resources access control and
contention. It justifies the three types of resource
requests that we have identified:

1- Computation requests generated by
application tasks to computation nodes (e.g.
CPUs).

2- Communication requests generated by
computation nodes to the communication
nodes (e.g. Bus) in order to transfer data
generated/requested by tasks.

3- Storage requests generated by computation
and communication nodes to storage nodes
(e.g. memories)

As each resource can be shared between different
requesters, resources should have an access policy that
select a request among pending ones. We generalized
this by introducing the virtual node concept, explained
in the following section.

2.2. The Virtual Node

We define the “Virtual Node” (VN) as a generic
modeling component that controls the access to a
resource by implementing an access policy. It allocates
the controlled resource to a requester, for example the
VN of a CPU allocates the CPU to a task that is ready
to execute, or the VN of a bus allocates the bus
bandwidth to a CPU that is trying to reach the memory
or other architecture nodes that are connected to the
bus.

A request is generated by a requester to access to a
resource. It specifies the resource amount that the
requester needs. For example, a storage request shall
specify the size of data to transfer. In addition, a
request has a priority in the case when the VN’s access
policy is priority based.

Figure 1 shows the shared resources view of the
example introduced in section 2.1. Each architecture
node is controlled by a virtual node; for example
“VN4CPU1” is the virtual node that controls the
access to the CPU1. Requests are stored in queues (one
queue for each virtual node). We have three types of
queues: computation, communication and storage
queues. The virtual node, using its access policy,
chooses among the requests in the queue which one
will acquire the access to the resource.

Figure 1: Shared resources modeling with virtual nodes

2.2.1. Virtual nodes hierarchy

Embedded systems can concurrently execute

different real-time heterogeneous applications; for
instance in a modern mobile device multimedia
application such as video or audio could execute
concurrently with control applications
(telecommunication protocols). These applications
may have specific scheduling requirements (soft real
time, intensive data transfer or execution loop, etc);
furthermore applying one access policy to all
applications is not the optimal solution [11].
Hierarchical stacking of virtual nodes is our solution to

optimize resources sharing when heterogeneous groups
of requesters request the resource. A main virtual node
controls a hardware resource and a secondary virtual
node controls each group of requesters. This approach
allows us to optimize the access policies to satisfy
requirements of all groups. We use, as well, the
hierarchical composition of virtual nodes for
computation, communication and storage resource
sharing.

Figure 2 shows an example of two classes of
applications; “App1” is controlled using a round robin
policy while “App2” is controlled by a priority based
policy. The CPU is shared between the two
applications by a time sharing policy implemented by
the main VN. The main VN (VN4CPU) allocates a
time slot of the CPU to an application; the secondary
VN (VN4App1 or VN4App2) controlling this
application allocates the available execution time to
one or more tasks depending on its access policy.

Figure 2: Virtual nodes hierarchy example

3. Modeling Methodology and Tool

We integrated the shared resources modeling,
presented in the previous section, in the
DIPLODOCUS UML modeling methodology [6, 7].
We furthermore defined a translation of
DIPLODOCUS models into a simulator based on
SystemC in order to execute the system model and
estimate its performance. The following subsections
give a brief overview of the DIPLODOCUS
methodology and the simulation and analysis of its
models.

3.1. DIPLODOCUS Methodology

DIPLODOCUS is a UML profile [8] targeting
design space exploration at a high level of abstraction.
It adopts the Y modeling paradigm [3, 4] which
consists of modeling separately the application and the
architecture, and then integrating both in a mapping
model. Application and architecture models are totally
independent from each other, and so a designer can
easily evaluate candidate architectures using the same
application model. It also permits to explore the
mapping of two different applications on a given
architecture during first stages of projects.
DIPLODOCUS is supported by the TTool [1] toolkit
that can automatically generate LOTOS or UPPAAL
code for formal verification.

We extended the DIPLODOCUS modeling with
the notion of virtual nodes to enable the analysis of
performance issues related to shared resources, such as
contention [7].

3.2. Mapping Model Simulation and
Analysis

We developed a SystemC-based simulation
environment where simulation code can be directly
generated from UML DIPLODOCUS models.

Hardware architecture resources are instantiated
from a library of pre-defined abstract models for
architecture nodes that can be customized by setting
the appropriate performance parameters (e.g. pipeline
on a CPU, etc.), thus reducing the modeling effort. The
designer can also use pre-defined access policies (with
or without preemption): round-robin, fixed priority
based, time slice scheduling, first-come-first-served. In
addition, new access policies can be easily defined.

Simulations produce VCD waveforms containing
temporal characteristics of the analyzed system, i.e. of
the application, the architecture and of the VNs. In
order to get a global view of the system, our simulator
provides, for each resource, the utilization factor and
the average contention delay on each resource thanks
to add-on observers. Buffer overflow situations on
storage nodes are also indicated. At last, application
temporal behaviors are summarized in terms of end-to-
end latency of the application, tasks’ execution time,
and the ratio of a task being ready or waiting to be
scheduled by the VN of a computation node.

The designer can make design decisions based on
simulation results: for example, he/she can evaluate the
access policies of shared resources, tasks’ memory
mapping and the optimal capacity of resources (CPU
frequency, memory size and hierarchy, bus speed …).

4. Related Work

The back annotation techniques like MESH [13]
and the one proposed in Schnerr & al. [12] focus on
the modeling of task scheduling and extract contention
attributes related to communication and memories
from low level simulations. In our approach, we
extract this information from the high-level simulation
of our models. They utilize analytical and simulation
techniques to estimate shared resources contention.
Final code is used to estimate the performance. On the
contrary, our methodology is applied early in the
design flow, and so before the code is released.

On the other hand, early architecture exploration
methodologies like Sesame [5] offer a clear distinction
between application and architecture concerns, and
facilitate flexible system-level performance evaluation.
So far Sesame only provides schedulers to allocate
computation resources to the application processes: it
does not model communication architecture arbitration
nor memory mapping.

Kempf et al. [2] present a simulation framework
for MP-SoC platforms. They use a virtual processing
unit (VPU) to schedule the execution of tasks mapped
to a processor. The important difference to our
approach is that we generalize the notion of a virtual
node to model accesses policies to any type of
architecture resources, and that we are able to extract
performance result of any shared resource.

Hierarchical scheduling methodologies for
processors [9] or bus [10] try to optimize resources
sharing between multiple groups with different
scheduling requirements. Our approach applies the
hierarchical control to all shared resources, and more
importantly at a high level of abstraction.

5. Conclusion and Future Work

This paper describes an important part of our
methodology for the rapid investigation of the
performance impact of contention on shared resources.
We have extended DIPLODOCUS with a modular and
extendible generic virtual node to model shared
resources. Our virtual node model is hierarchical and
can model the sharing of computation, communication
and storage resources.

In addition to the aspects presented in this paper, we
have also extended DIPLODOCUS with test bench
modeling and simulation observers to support model
analysis. To evaluate our methodology, industrial case
studies are conducted over 4G telecommunication
systems [7].

6. References

[1] LabSoC. TTool, The TURTLE Toolkit. See

http://labsoc.comelec.enst.fr/turtle/ttool.html.
[2] T. Kempf et al. “A modular simulation framework for

spatial and temporal task mapping onto multi-processor
SoC plateforms”. In Design, Automation and Test in
Europe (DATE2005), April 16-20, 2005.

[3] K. Keutzer et al., “System-Level Design:
Orthogonalization of Concerns and Platform-Based
Design”. In Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions Dec 2000

[4] B. Kienhuis, “An Approach for Quantitative Analysis of
Application-Specific Dataflow Architectures”. In
Application-Specific Systems, Architectures and
Processors, july 1997.

[5] Andy D.Pimentel, Cagkan Erbas, and Simon Polstra. “A
systematic approach to exploring embedded system
architectures at multiple abstraction levels”. In IEEE
Trans. Computers, vol.55, No.2, Feb. 2006.

[6] W. Muhammad et al. “Abstract application modeling
for system design exploration”. In Euromicro
Conference on Digital System Design (DSD’06), Aug.
2006.

[7] Chafic Jaber et al. “A High-Level System Modeling for
Rapid HW/SW Architecture Exploration”. In the
International Symposium on Rapid System Prototyping
(RSP09), Paris, France, June 2009.

[8] L. Apvrille et al. “A UML-based environment for
system design space exploration”. In 13th IEEE
International Conference on Electronics, Circuits and
Systems (ICECS’06), Nice, France, Dec. 2006.

[9] Giuseppe Lipari and Enrico Bini, “A methodology for
designing hierarchical scheduling systems”. In Journal
of Embedded Computing, 2005

[10] Trevor Meyerowitz et al. “A Tool for Describing and
Evaluating Hierarchical RealTime Bus Scheduling
Policies”. In Proc. of 40th Design Automation Conf.
(DAC’2003), pp.312–317 (2003).

[11] Insik Shin et al. “Hierarchical Scheduling Framework
for Virtual Clustering of Multiprocessors”. In
Proceedings of the IEEE Real-Time Systems
Symposium, pages 57–67. IEEE Computer Society,
2004.

[12] J. Schnerr et al., “High performance timing simulation
of embedded software”. In Design Automation
Conference DAC, June 2008

[13] Alex Bobrek et al. “Modeling shared resource
contention using a hybrid simulation/analytical
approach”. In Proc. Design, Automation and Test in
Europe (DATE2004), pp 16-20, Feb 2004.

[14] Freescale Semiconductor. Integrating Operating
Systems with Freescale’s Cellular Software Platform.
http://www.freescale.com/files/wireless_comm/doc/whit
e_paper/INTGFSLCELPLATWP.pdf

