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Abstract 

 
The increasing complexity of system-on-chip design 
and shorter time to market constraints has stimulated 
systems designers to investigate performance 
characteristics of the final system implementation in 
the early design stages, by means of modeling the 
design at a high level of abstraction. This paper 
presents the virtual node concept for modeling the 
shared resources of a system-on-chip, therefore 
specifically dedicated to the study of the impact of 
shared resources contention on the overall system’s 
performance, which is often defined by concurrent use 
cases. The overall approach is based on using a 
specific UML modeling profile and a SystemC-based 
simulator to execute models and analyze their 
performance.  
 
1. Introduction 
 

System-on-chip design, that is, integrating 
multiple functionalities on a single die, has reached a 
very high level of complexity due to the available 
integration density. Taking an example from the 
domain of mobile devices, one can integrate multiple 
telephony modems and an operating system (OS) like 
Linux or Symbian, and have them share a single 
external memory [14]. In a true multitasking OS, the 
device must be able to handle simultaneous voice and 
data calls, while also handling complex imaging tasks 
like image or video capture, in part sharing processing 
engines, and all serviced by a single external memory. 
Both HW and SW architectures must be designed 
carefully with worst-case concurrent use cases in mind, 
to avoid any negative user experience. 

Modeling the use case behavior and the candidate 
system architectures at an early stage is therefore 

essential for a successful system design. Fast 
architecture evaluation requires system modeling at a 
very high abstraction level. Furthermore, due to typical 
development cycles, the HW design needs to be closed 
earlier, sometimes much earlier than the SW design, 
providing another reason for high-level modeling.  
As illustrated in the example, shared resources, like the 
integrated applications processor and the external 
memory, have a great influence on the performance of 
the system-on-chip. Our approach extends the 
DIPLODOCUS modeling methodology [8] with 
modeling and simulation techniques for shared 
resources [7]. This paper defines the concept of the 
virtual node to model shared resources and estimate 
their impact on system performance. A virtual node 
ensures – given a parameterized policy – the 
scheduling of accesses to shared resources (e.g. CPUs, 
busses, memories). The virtual node concept helps to 
build a well-structured simulation model, and also 
facilitates the creation of simple and reusable 
architecture component models.  

The rest of the paper is organized as follows: 
Section 2 presents the virtual node concept and Section 
3 presents our system modeling methodology and 
environment where we integrated the virtual node 
concept. Section 4 discusses related work on system 
modeling with a special focus on shared resources 
modeling, and finally Section 5 concludes this paper 
and gives future guidelines. 
 
2. Modeling Accesses to Shared Resources 
 
2.1. A Demonstrative Example  
 

Let us consider a simple application example 
composed of three tasks: T1, T2 and T3; where T1 and 
T3 are two dependent tasks and exchange data between 



each other, while T2 is independent. This application 
will be executed by a hardware architecture composed 
of two CPUs (CPU1 and CPU2), one bus (BUS1) and 
one memory (MEM1). The two CPUs share the bus 
BUS1 to access the shared memory MEM1. We 
consider, as well, that T1 and T2 will execute on 
CPU1, while T3 will execute on CPU2. In this 
scenario, when T1 and T3 exchange data, the data will 
be transmitted using the BUS1 and the MEM1. This 
communication involves two shared architecture 
nodes, the bus and the memory, whose access is 
determined with access policies: the arbitration policy. 
The communication latency is the sum of time needed 
to access shared resources and the contention on them 
when CPU1 and CPU2 want to access the bus at the 
same time for example). 

Another level of contention is on the CPU 
scheduling level; a scheduling policy should indeed 
select a task to execute among the non-blocked ones. 
For instance, if the scheduling policy of CPU1 is 
priority based, and T1 is of higher priority than T2, 
then T1 will be chosen to execute. In this case, T2 
execution is delayed until T1 finishes its execution, 
including the communication cost with T3 that may 
vary depending on the contention on the bus and the 
memory. 

Finally, we can identify several types of shared 
resources. In fact each architecture node is shared 
between multiple elements: the CPU is shared between 
different tasks, the bus is shared between multiple 
CPUs and the memory is also shared between multiple 
CPUs using the bus.  

This simple example shows clearly how the 
overall performance of the system depends 
significantly on shared resources access control and 
contention. It justifies the three types of resource 
requests that we have identified: 

1- Computation requests generated by 
application tasks to computation nodes (e.g. 
CPUs). 

2- Communication requests generated by 
computation nodes to the communication 
nodes (e.g. Bus) in order to transfer data 
generated/requested by tasks. 

3- Storage requests generated by computation 
and communication nodes to storage nodes 
(e.g. memories) 

As each resource can be shared between different 
requesters, resources should have an access policy that 
select a request among pending ones. We generalized 
this by introducing the virtual node concept, explained 
in the following section. 
 

2.2. The Virtual Node 
 

We define the “Virtual Node” (VN) as a generic 
modeling component that controls the access to a 
resource by implementing an access policy. It allocates 
the controlled resource to a requester, for example the 
VN of a CPU allocates the CPU to a task that is ready 
to execute, or the VN of a bus allocates the bus 
bandwidth to a CPU that is trying to reach the memory 
or other architecture nodes that are connected to the 
bus. 

A request is generated by a requester to access to a 
resource. It specifies the resource amount that the 
requester needs. For example, a storage request shall 
specify the size of data to transfer. In addition, a 
request has a priority in the case when the VN’s access 
policy is priority based.  

Figure 1 shows the shared resources view of the 
example introduced in section 2.1. Each architecture 
node is controlled by a virtual node; for example 
“VN4CPU1” is the virtual node that controls the 
access to the CPU1. Requests are stored in queues (one 
queue for each virtual node). We have three types of 
queues: computation, communication and storage 
queues. The virtual node, using its access policy, 
chooses among the requests in the queue which one 
will acquire the access to the resource. 
 

 
Figure 1: Shared resources modeling with virtual nodes 

 
2.2.1. Virtual nodes hierarchy 

 
Embedded systems can concurrently execute 

different real-time heterogeneous applications; for 
instance in a modern mobile device multimedia 
application such as video or audio could execute 
concurrently with control applications 
(telecommunication protocols). These applications 
may have specific scheduling requirements (soft real 
time, intensive data transfer or execution loop, etc); 
furthermore applying one access policy to all 
applications is not the optimal solution [11]. 
Hierarchical stacking of virtual nodes is our solution to 



optimize resources sharing when heterogeneous groups 
of requesters request the resource. A main virtual node 
controls a hardware resource and a secondary virtual 
node controls each group of requesters. This approach 
allows us to optimize the access policies to satisfy 
requirements of all groups. We use, as well, the 
hierarchical composition of virtual nodes for 
computation, communication and storage resource 
sharing. 

Figure 2 shows an example of two classes of 
applications; “App1” is controlled using a round robin 
policy while “App2” is controlled by a priority based 
policy. The CPU is shared between the two 
applications by a time sharing policy implemented by 
the main VN. The main VN (VN4CPU) allocates a 
time slot of the CPU to an application; the secondary 
VN (VN4App1 or VN4App2) controlling this 
application allocates the available execution time to 
one or more tasks depending on its access policy. 
 

 
Figure 2: Virtual nodes hierarchy example 

 
 
3. Modeling Methodology and Tool 
 

We integrated the shared resources modeling, 
presented in the previous section, in the 
DIPLODOCUS UML modeling methodology [6, 7]. 
We furthermore defined a translation of 
DIPLODOCUS models into a simulator based on 
SystemC in order to execute the system model and 
estimate its performance. The following subsections 
give a brief overview of the DIPLODOCUS 
methodology and the simulation and analysis of its 
models. 

3.1. DIPLODOCUS Methodology 
 

DIPLODOCUS is a UML profile [8] targeting 
design space exploration at a high level of abstraction. 
It adopts the Y modeling paradigm [3, 4] which 
consists of modeling separately the application and the 
architecture, and then integrating both in a mapping 
model. Application and architecture models are totally 
independent from each other, and so a designer can 
easily evaluate candidate architectures using the same 
application model. It also permits to explore the 
mapping of two different applications on a given 
architecture during first stages of projects. 
DIPLODOCUS is supported by the TTool [1] toolkit 
that can automatically generate LOTOS or UPPAAL 
code for formal verification. 

We extended the DIPLODOCUS modeling with 
the notion of virtual nodes to enable the analysis of 
performance issues related to shared resources, such as 
contention [7]. 
 

3.2. Mapping Model Simulation and 
Analysis 

 
We developed a SystemC-based simulation 
environment where simulation code can be directly 
generated from UML DIPLODOCUS models.  

Hardware architecture resources are instantiated 
from a library of pre-defined abstract models for 
architecture nodes that can be customized by setting 
the appropriate performance parameters (e.g. pipeline 
on a CPU, etc.), thus reducing the modeling effort. The 
designer can also use pre-defined access policies (with 
or without preemption): round-robin, fixed priority 
based, time slice scheduling, first-come-first-served. In 
addition, new access policies can be easily defined. 

Simulations produce VCD waveforms containing 
temporal characteristics of the analyzed system, i.e. of 
the application, the architecture and of the VNs. In 
order to get a global view of the system, our simulator 
provides, for each resource, the utilization factor and 
the average contention delay on each resource thanks 
to add-on observers. Buffer overflow situations on 
storage nodes are also indicated. At last, application 
temporal behaviors are summarized in terms of end-to-
end latency of the application, tasks’ execution time, 
and the ratio of a task being ready or waiting to be 
scheduled by the VN of a computation node. 

The designer can make design decisions based on 
simulation results: for example, he/she can evaluate the 
access policies of shared resources, tasks’ memory 
mapping and the optimal capacity of resources (CPU 
frequency, memory size and hierarchy, bus speed …). 



4. Related Work 
 

The back annotation techniques like MESH [13] 
and the one proposed in Schnerr & al. [12] focus on 
the modeling of task scheduling and extract contention 
attributes related to communication and memories 
from low level simulations. In our approach, we 
extract this information from the high-level simulation 
of our models. They utilize analytical and simulation 
techniques to estimate shared resources contention. 
Final code is used to estimate the performance. On the 
contrary, our methodology is applied early in the 
design flow, and so before the code is released.  

On the other hand, early architecture exploration 
methodologies like Sesame [5] offer a clear distinction 
between application and architecture concerns, and 
facilitate flexible system-level performance evaluation. 
So far Sesame only provides schedulers to allocate 
computation resources to the application processes: it 
does not model communication architecture arbitration 
nor memory mapping. 

Kempf et al. [2] present a simulation framework 
for MP-SoC platforms. They use a virtual processing 
unit (VPU) to schedule the execution of tasks mapped 
to a processor. The important difference to our 
approach is that we generalize the notion of a virtual 
node to model accesses policies to any type of 
architecture resources, and that we are able to extract 
performance result of any shared resource. 

Hierarchical scheduling methodologies for 
processors  [9] or bus [10] try to optimize resources 
sharing between multiple groups with different 
scheduling requirements. Our approach applies the 
hierarchical control to all shared resources, and more 
importantly at a high level of abstraction. 

 
5. Conclusion and Future Work 
 
This paper describes an important part of our 
methodology for the rapid investigation of the 
performance impact of contention on shared resources. 
We have extended DIPLODOCUS with a modular and 
extendible generic virtual node to model shared 
resources. Our virtual node model is hierarchical and 
can model the sharing of computation, communication 
and storage resources. 

In addition to the aspects presented in this paper, we 
have also extended DIPLODOCUS with test bench 
modeling and simulation observers to support model 
analysis. To evaluate our methodology, industrial case 
studies are conducted over 4G telecommunication 
systems [7].  
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