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Abstract—BYy providing origin-destination pairs with several
possible pathsDynamic Load-Balancing has been shown to obtain
excellent results in terms of robustness and effective resece
usage. In these dynamic schemes, paths are defined a priori,
and the portion of traffic routed through each path is (typically)
adjusted so that the sum over all links of a certain link-cost
function is minimized. Queueing delay is usually used as thicost
function due to its versatility and simplicity. However, all load-
balancing schemes require an analytical expression of theethy,
for which oversimplistic models are used (such as the classi
M/M/1 model). In this paper we propose a framework that instead
learns this queueing delay function from measurements, wke
restricting the assumptions to the minimum. For this, we use
a novel robust regression method that, given a set of link lah
and delay measurements, returns a very simple regression &g
function. Some adjustments to this regression function adiw us to
use it as the link cost of a greedy load-balancing algorithmHat
converges to the actual minimum-delay configuration. We als
compare our framework with previous load-balancing proposls,
showing for instance that using theM/M/1 model results in a
total delay that may easily exceed the minimum by 10%, and
can go as high as more than 100%.

|I. INTRODUCTION

: : . S
Network convergence is a reality. Many new services su%iﬂ
as P2P or HD-TV are offered on the same network, increasiné’

the unpredictability of traffic patterns. To make mattersseo
access rates have increased at such pace that the old ass
tion that core link capacities are several orders of magaitu
bigger than access rates is no longer true. Moreover, there
new emerging architectures with intrinsically scarce ueses

(e.g. Wireless Mesh Networks). Thus, simply upgrading Iing]

capacities may not be a viable solution any longer. This me
that network operators are now, more than ever, in need

Traffic Engineering (TE) mechanism which are efficient (makg
good use of resources), but also automated (as much s
configured as possible), more robust with respect to networ
variations (changes in traffic matrix, or characteristids An
transported flows) and more tolerant (in case of node/lirﬂ§1

failures).
Dynamic load-balancingDLB) [1]-[3] is a TE mechanism
that meets these requirements. If an origin-destination)(O

pair is connected by several paths, the problem is simp

4

how to distribute its traffic among these paths in order
achieve a certain objective. In these dynamic schemess p
are configured a priori and the portion of traffic routed ttylou
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each of them (demand vector) depends on the current traffic
matrix (TM) and network condition. Since DLB only uses
the present situation as an input, it clearly obtains thd bes
performance out of the available resources. For instance,
Robust Routing [4] (which finds a single routing configuratio

to support a whole set of TMs) can only guarantee a worst-
case performance and support a subset of the TMs that DLB
can support.

Formally, DLB is generally defined in terms of a link-cost
function of the load, where the demand vector is adjusted in
order to minimize the sum over all links of their respective
cost. The rationale behind this definition is that the cost
function should represent the congestion on the link, foictvh
the queueing delay is generally used. The choice is justified
by its versatility (big queueing delays mean bad perforreanc
for all traffic) and simple algebra (the total delay of a path i
the addition over its links of their respective delay). Hoewe
most DLB schemes require an analytical formula of this delay
for which classic and oversimplistic models (eMy/M/1 [5])
are used [1], resulting in a not so good performance [6] and,
we shall show, an actual total delay that is significantly
ger than the optimum.

In this paper, we propose a framework that makes no
assumption on the delay function, other than some reasenabl

'l’]rir/}?dthesis on its shape (e.g. delay may not decrease with

load). We learn this function from measurements instead, fo

\?Ihich we turn our attention to the recent work of Kuos-

anen [7]. Given a set of measurements of link load and
elay, the method allows us to obtain a very simple regrassio
o{ approximative) function that fulfills the required sleap
constraints. This function can be easily adapted to be used
ﬁ_a link-cost function by a greedy load-balancing algarith
ﬁ'l(?t converges to the actual minimum-delay configuration.
n an initial version of our framework [8], we concentrated

analyzing what constitutes a “good” set of measurements
d discussed some shortcomings of the resulting regressio
function. In this paper we will first verify that the homosesd
ticity assumption (i.e. measurement errors have all theesam
ariance) made in [7] (and thus in [8]) is not suitable in

r context. This heterogeneous variance, together wigh th
esence of outliers, may have an important negative impact
the resulting regression. We will then derive a similar bu
more robust regression method, and compare its performance

with the original one. Furthermore, we will extend the study

by presenting simulations with a real topology and sevexall r



TMs, which indicate that the gain achieved by our framework We are now in conditions to write the problem explicitly:

in terms of delay over an oversimplistic approximation €lik L -

the M/M/l) may be s!gnlflcant. Mpreovg_r, thle comparison with  inimize Z filp) st dy; >0 Z dy =ds (1)

previous proposals in terms of link utilization shows that o d P

framework either outperforms them, or the difference is not . ) :
Note that no explicit constraint om; was made. This

significant.
g is assumed to be implicitly included in the delay function.

The rest of the paper is structured as follows. In thlngOr instance. fi(p,) goes to infinity (or a relatively high

following section we define the network model and discuss tr\}glue) asp, reachese, (the link capacity) and remains at
greedy algorithm used to minimize the total delay when the or ! pactty

7 S Infinity after this point. It should also be noted that in the
link delay function is known. In Sec. Il we present the meatho . L o
i . . framework described above the destination for a commoslity i
to obtain a robust approximation of the delay function from ; : ;
: . not necessarily a single node (e.g. two gateways to thenieter
past measurements, and derive some necessary adjustments h N
. . : . ay be seen as a single destination).
the approximate function to enable its use with the greedy

algorithm. We make a performance analysis of our framewogK Wardrop Equilibrium
in Sec. IV, where we compare it with previous load-balancing
methods and we discuss some implementation issues. w
conclude the paper in Sec. V.

=1

In this section we present and discuss how to solve problem
in a distributed fashion. In particular, we will conside
mechanisms where each commodity greedily minimizes a

certain cost function of its pathg£), which require minimum

Il. GREEDY LOAD-BALANCING coordination. This context constitutes an ideal case sfody
game theory, and is known &pouting Gamen its lingo [9].
A. Network Model The case in which the path cost is the sum over its links

) ) ) of a positive non-decreasing link-cost function of the load
The network is defined as a g_r(_’:\ph: (v, E): In |_t there (6p = X piep é1(p1)) is known asCongestion Routing Game
are a number of so-calletbmmoditiegor OD pairs), indexed gnq has several important properties such as uniqueness of t
by s =1,..,.5, specified in terms of the triplet;, ¢s andds;  aquilibrium.
i.e. origin node, destination node and a certain fixed demanan a routing game like ours, commodities are assumed to
of traffic from the former to the latter. Each commoditgan o constituted by infinitely many agents, each controlling a

usen, paths connecting; 1o g; (each noted ad’y; fqr ! = infinitesimal amount of the demand. Each of these agents (or

1,..,ns), and can distribute its total demand arbitrarily among;,yers) decides through which path to send its traffic. Is th

them. Commodity sends an amount; of its traffic through ¢ niext the divisiond,; /d, represents the portion of agents

path Py;, whered,; > 0 and}_ ds; = ds. This distribution of o commodity s that haveP,; as their choice. If every agent

traffic induces the demand vectdr= (ds:). acts selfishly, then the system will be at equilibrium when no
Given the demand vector, the total load on lihks then agent can decrease its cost by changing its path choice. This

pL = >y > iiep, dsi- The presence of this traffic on thesjtuation constitutes what is known as\ardrop Equilibrium

link induces a certain mean queueing delay given by trQWE) [10], which is defined as follows.

non-decreasing functio);(p;). The total delay of path?  pefinition 1: A demand vector is a Wardrop Equilibrium if

is defined asDp = > ,,cp Di(pi). As @ measure of the for each commoditys = 1...S and for each pattP,; with
congestion in the network, we shall use thean total delay ;. - ( it holds thatpp.. < ¢p. . for all P.; with j = 1,.., n.

P—

D(d) defined as: It may be proved that a WE results in a local minimum of
the so-called potential function [9]:

S ns L =
D(d) = dsi D si D = 3 :
(d) ZZ P ; (e pu ;fz(ﬂl) ®(d) :Z/O ¢ (x)dx
=1

s=1 i=1

That is to say, a weighted mean delay, where the weight forThis means that, given an objective function like (1), we
each path is how much traffic is sent through it, or in termgay find a cost function such that the resulting WE is the

of the links, the weight of each link is how much traffic is5ptimum demand vector. In this case, let us consider the
traversing it. We prefer this congestion measure to a simgl§jowing cost function:

total delay because it reflects more precisely performasce a

perceived by traffic. Two situations where the total delay is b)) = 0fi(p1) - )
the same, but in one of them most of the traffic is traversing opl
heavily delayed links should not be considered as equitialen L dfi(z) L
Note that, by Little's law,f;(p;) := D;(p;)p; is proportional o(d) = Z/O 5y = > (filpr) = £1(0))
=1 =1

to the average number of bytes in the queue of lirk/e will
then use this last value g%(p;) which (like the mean load) This means that the Wardrop Equilibrium of a congestion
is readily available in most routers. routing game where the link cost is the derivative fofp;)



results in a local minimum of (1) (note that singg0) is in the training set and obtain an estimatig?(p), restricting

a constant, the optimund is the same with or without its the assumptions on its functional form as much as possible.
addition). Moreover, iff;(p;) is convex, this local minimum is So far, we have only these three necessary requirements:
then the Unique g|0ba| minimum demand vector. A distributed 1) f(p) is C|ear|y non_decreasing (more load may never

algorithm that converges towards such equilibrium is dbedr lead to a smaller queue size).

in the following subsection. 2) f(p) should be convex. This is to guarantee the existence

C. REPLEX: Exploration-Replication Policy f\hnd\ijrsziqueness of the optimum, and its coincidence with
e WE.

The concept of Wardrop Equilibrium was first proposed in 3) ¢
the context of transportation to characterize the equilibr enable a correct operation of REPLEX (and probably
of users who greedily want to minimize their travel time. In

. ) ) . all distributed optimization algorithms).
this context, users are assumed rational and their behavior il ider th . . hich
is the mechanism through which the equilibrium is attaine .V]ye V‘;: now consider the t;]/vo Irst requwerrents, W,(';l are
However, in our case routers make the choice for every uddf far the most restrictive. There are several regressiah-me

(i.e. packets), and an algorithm that when independently r8ds that makero a_lss_umpti(_)ns_on the regression fu_nction a_nd
in every router reaches the equilibrium as fast as possilﬁ\gow one to obta|r_1 its derivative (for a good overview ofsthi
and does not oscillate has to be specified. In [11] the auth@?d Other regression methods see [12]). For instabeeal
present such mechanism and use it to design a Ioad—balan(ﬁﬁ nomial Regressiois a kernel-type regression method that

scheme called REPLEX in [3], which we now briefly descrip!'OWs one to estimate any Om_'er derivative of the regrgssio
At regular intervals, each OD pair changes a portion {function through a standard weighted least square. Howitver

traffic from the paths with bigger total costp to those presents several problems. First of all, estimating thetfan

with a smaller one. The exact amount is proportional to tf @y point is as costly as learning it, i.e. a weighted least

relative difference in cost times a parameter that controjgu@re problem has to be solved every time the function or

the algorithm's speed (noted a3. Details on the algorithm its derivative wants to be estimated. In a way, the functiona

may be consulted on the references, although we shall mrtﬁgpresentation _oﬁ‘(p) is the whole training set, which can

highlight the fact that convergence is guaranteed as Iongha% relatively big. Se_condly,_ all kemel-type methods suffe

X is smaller thark/r, wherek is a suitable constant and from the so-called blas-v_arlance tradeoff, _controlled _by' t

is an upper-bound to the relative slope of @i(p;), which is bandwidth parameter, which can be very tricky to assign and

defined as follows: on which the quality of the estimation depends heavily. ina
Definition 2: A differentiable cost functiony(x) hasrel- in order to enforce shape constraints, such as monotomicdy

ative sloper at z if ¢)(x) < r¢,(x)/z. A cost function has convexity, “indirect” methods have to be used. For instance

relative sloper if it has relative slope- over the entire range [13] deéscribes a method to transform the training set so
at when the local polynomial method is applied, shape

[0,1] that when the local poly I thod pplied, shap
Intuitively, migration from one path to the other should pLestrictions are assured. Anyway, the intrinsic problerhs o

slow if the cost function has abrupt changes. On the Othlé(?rnel-type methods we already mentioned are still present

hand, if the cost function is relatively “soft”, changes iz We turn our attention then to th€onvex Nonparametric
Least Square§CNLS) problem [7]. LetF be the set of con-

(p) should have a finite relative slope in order to

faster. tinuous, monotonic increasing and globally convex funttio
I1l. N ON-PARAMETRIC REGRESSIONWITH SHAPE CNLS consists on finding € F that minimizes the sum of
RESTRICTIONS squares of the residuals. However, this minimization isvkmo

A. Weighted Convex Non-Parametric Least Squares to be very sensitive to outliers, and results in a biasedhestr

when measurement errors present heteroscedasticity. As we
@Qall see in the examples, both kinds of problems are present
In our measurements. A possible solution to these issues is
fo consider a weighted version of the original problem, Whic

0 ; ;

we shall callWeighted Convex Nonparametric Least Squares
(WCNLS):

The problem we address now is how to ledip;) from
measurements (actually we are interested in its derivati
¢1(p1), but we can only observe the queue sizép;)). For
the sake of clarity we will concentrate on the problem f
a single link, so we shall omit the sub-indéx We are
given n pairs of observation$p,, Y1), (p2, Y2),..., (pn, Yn)
(also calledtraining se), where theresponse variablé@” (the & )
measured mean queue size) is related toctheariate p (the In;nZwi Yi—f(p))” stferF (4)
link load) by the equation: ©oi=l

. . where the weighi; is a positive constant that indicates the
Yi=flpi) + e t=L...,n 3) importance of each observation. For instance, outliersilsho
Where f(p) is now called theregression functiorand the have a small weight. Due to the size &f, problem (4) is
measurement errors = (e1,...,€,) are assumed to bevery difficult to solve in such general version. The idea is to
uncorrelated random variables wilt(e;) = 0 and Vale;) = identify a subset of representor functiofs: G C F such
0? < oo. The problem is to “learn’f (p) from the observations that by substituting the constraint € F by f € G the



resulting optimum is left unchanged but the problem is easimentioned earlier, the size of problem (5) will represent a
to solve. Consider then the following family of piecewis@roblem if we were to solve it several times. We shall then

linear functions: proceed as follows. We perform an initial simple estimation
fo(pi), and calculate the weights as:
g(P)—{giR—’RW(P)—_HllaX ai + Bip; 1
e Wi = (6)
Gi>0Vi=1,...,n; ‘fo(pi)—Yi

@+ Bipi 2 0 + Bipi Vi =1, ’n} As the initial fo(p;) we used thek-nearest neighbors

) . algorithm (with £ = 10), which simply estimateg(p) as the
Itis clear thatG(P) belongs taF for any arbitrary set of ob- median of thek measurements; corresponding to the:'s

servations” = {p;};. It turns out that we may substitu® P)  aarest tqp. In this way, we seek to find a curve that fits the

in (4) and obtain the same optimal solution. This equivadaenBulk of the data, and minimize the effect of outliers.
may be demonstrated just like in the original CNLS [7]. Its

demonstration relied on the fact that the optimization fgob B. An Example

depends only on the value d¢f(p) at a finite set of points
pi» which is also the case for WCNLS. This result aIIow%
us to transform the infinite dimensional problem (4) into th
following standard finite dimensional Quadratic Programgni

(QP) problem:

To illustrate the method we will apply it to a training set
btained by injecting a 72 hours long packet trace (obtained
from [15]) to a simple queue emulator we developed. In the
absence of information we assumed a relatively big buffar si
of 100 MB. Measurements correspond to the mean load and

& ) gueue size in a 60 seconds period, obtained from 12 hours
Emal%z Wi€; (5) spanning the complete second day of the original trace réigu
Tl 1(a) shows the 720 measurements, the estimated fungtjon
subjectto Y, =a; +Gipi t€Vi=1,....n through WCNLS and CNLS, and the estimation tkiéM/1
a; + Bipi > o + Bipi Vj,i=1,...,n  modelyields p/(c — p)), all in logarithmic scale for the sake
3>0¥i=1,....n of clarity. First of all, it should be noted that thel/M/1

model has little to do with the measurements. It consistentl
Regarding the set of representor functicgh&”), it may underestimates them, except at light loads, where they are
seem that we actually transformed a nonparametric probleefatively small. Regarding the estimation by CNLS, we can
into a parametric one. However, it should be noted thaee that it very similar to WCNLS at light loads, where the
although we look for a piecewise linear function, the panit variance is relatively constant and there are almost naeositl|
of the linear segments is not fixed a priori. That is to saljowever, afterp = 8000kB/s, several notorious outliers
the number and location of the segments are endogenougthrt to appear. Note how CNLS is very influenced by these
determined to minimize the weighted squared residual. Morautliers and how the resulting estimation does not reptesen
over, although problem (5) is a standard QP problem ftine majority of the measurements. On the other hand, WCNLS
which mature methods to solve it exist (such as interior fpoiilgnores these outliers almost completely and represemts th
algorithms) and that several solver software are availéble mean queue size more accurately. Finally, it should be noted
instance, we used MOSEK [14]), its size is considerable.that measurements verify the convexity condition, meaning
has a total ofn + n + n variables andn + n(n — 1) + n that this requirement is not only required mathematicilly,
constraints. The second set of constraints, which are thie ke also verified by reality.
to enforcing the convexity of (p), are quadratic in the number In Fig. 1(b) we show the estimation of the derivativé)
of observations. The size of the problem is clearly the majtirough WCNLS and thév/M/1 model ¢/(c — p)?). Since
drawback of the method. the WCNLS estimation is piecewise linear, the estimation of
We will now discuss how to assign the values.gf A typ-  ¢(p) is a piecewise constant function, and outside the support
ical procedure to address both heteroscedasticity anéemutl of the observation it becomes constant. As a consequence,
in the classic least squares problem is to iteratively ceang/CNLS will produce a good estimation af(p) inside this
the weights, in what is known as lteratively Reweightetkgion, after which it will systematically underestimaiteTihe
Least Squares. This kind of methods begins with arbitral/M/1 model again underestimates the derivative throughout
weights, perform the regression (the result at iteratiois the range of observations, except at light loads where they a
called f:(p)), and re-calculate the weights depending on tHeoth small.
distance between the measurements and the regressiod (not€&inally, Fig. 1(c) shows the pairéa;,3;) in the plane.
as w!). The last two steps are repeated until the weighi¢otice how, although there are 720 different values, andhas i
converge. For instance, if the weights are recalculated the original CNLS, significantly different pairs are releaty
wi™ =1/|f:(p:)—Y;|, in the limit the resulting weighted leastfew. In all the regressions we performed, the actual number
squares problem finds the minimum of the sum of absolut¢ different pairs resulted in a very small fraction aof
errors, which is known to be very robust to outliers. AFhis means that, in contrast to kernel-type regressf(s)



the v parameter since:

4 Flp) < F(p) < Flp) + = log(n) ®)
@ 10 Meas. 0
§ iév,\?i\lsl's This means that optimizing Witrf*(p) as the objective
0 == M/M/1 function instead off will result in an error of at most
g:; 102 log(n’)/~. Actually, this bound is rather conservative, and the
< resulting error will generally be much smaller. As a rule of
= thumb, we then recommend - parameter that results in a
maximum error of approximately 30%:
10° B ‘ ] /
0.5 1 15 2 25 v = —log(@) 9)
p (kBJs) <10 0.3Y
(a) Measurementsf(p) for CNLS and WCNLS, and thé/M/1 WhereY is the mean or median of the observatioks);— ...
model We are now in conditions to write the final soft approximation
10° o0 to the link cost explicitly, which is simply the derivativé ):

10° o 15 é N 1 n’
| o (p) = ———— Z @,ev(awﬁm) (10)

'=========:=" 0.5 Z e'y(ai J,»ﬁip) =1

-=WCNLS
--M/M/1 0 % i=1

2 25 -3 -2 -1 0

0.5 1

1.5 . .
p (kBJs) <10° @ x10 Finally, to find a value of\ that assures the convergence of

(b) &(p) for WCNLS, and theVM/M/1 (c) The pairs(8;, o) in the plane  REPLEX, we need to calculate an upper bound to the relative
model sloper of (10). Using definition 2 we see that:

Fig. 1. A le of i I

[o] n example or a regression 8¢* (p) P)
r > max =
pelod] | Op ¢*(p)

is completely represented by a number of parameters thazl_h derivati G () is:
will generally be much smaller than, and that once these € derivative 0" (p) is:

arameters are estimated, evaluatif@) and its derivative .~ ’ ) ’ g 2
P @) 09" (p) _ S BRen(eitBie) - <Z?—1 ﬁie'v(aﬂrﬁm))

is computationally very cheap. ;
o(p) p y very p o S

Z?;l ev(ai+Bip)

C. Obtaining a Soft Approximation B

A t.g qi Spp I-B dv OD pairs that Which, by using the first term as a bound and assuming it
s mentioneéd in Sec. 1l-b, greedy pairs that Use gg 5 good approximation tg#(p)?, means that a reasonable

the link cost the derivative of its mean queue siz¢p{ = approximation to the relative slope is:

f'(p)) will converge to the minimum-delay demand vector.
We have so far obtained a very good approximation of the { 2
P

queue size (the regression functigip)), and its derivative "~ pelo]

P
«
is very easy to calculate, resulting in a piece-wise corstan ()
function. However, the greedy algorithm we chose (and to theThe above equation makes explicit the intuitive fact that
best of our knowledge, all greedy algorithms) requires @ cde biggery is (and better the approximation) the less soft
function with a finite relative slope (cf. item 3 in Sec. ll)}fa the resultingy™(p) is. This means that using a biggerthan
condition that a non-continuous function such as ours does that of (9), even if it results in a smaller maximum error,
meet. We will now discuss how to adapt our initial regressidfianslates into an insignificant improvement in precisiod a
to a soft function, suitable to be used by a greedy algorith@¢crease in the convergence speed attainable by REPLEX (cf.
and that has a minimum effect on the precision of the fin&ec. 1I-C).
result. -~ IV. SIMULATIONS
Consider thatf(p) is defined byn’ pairs («;, 5;) so that _ ' _
Flp) = ‘max {a; + f;p}. A possible approximation to this A. Assessing the Performance Gain
function is the so-calletbg-sum-exgfunction: In the previous section we showed queue size measurements
and the corresponding estimated functjitp;), and compared
f* (p) = 1 log nZeV(‘“*ﬁ”’) 0 |tth\évr|;h tshe l\/_l/ll\l/lll_ model, highlighting the difference b(_etween
v . , specially in terms of shape. If we assume this model
=1 instead of the realf;(p;) we would incur in an increase of
This convex non-decreasing function is clearly soft. Morehe total mean delayl{(d)) with respect to the optimum that
over, the precision of the approximation can be controllgd bmay be important. To quantify this increase more precisely,

} ~o max i (11)



o
(]
W

~=-WCNLS
10° =M
~-Soft WONLS 10

o
&)
n
2]

H

H

i
+

/

-=WCNLS

10° /,// 10 -+ Soft WCNLS

—=M/M/1
0.5 1 2 25 0.5 1 1.5 2 25
p (kB/s)

0 &

iy

M/M/A MaxU

]
-
2]

Mean Queue Size (kB)

s
—

Total Mean Delay (gain)
N

Total Mean Delay (gain)
n

15
p (kB/s) x 10* x 10°

(a) f(p), f* (p) and the M/M/1 (b) ¢A>(p), 3* (p) and the M/M/1 (a) M/M/1 and MaxU with respect t¢b) Using theﬁ(pl) of the day before
model model MinD

Fig. 2. The regression used on the comparison Fig. 3. Increase in Total Mean Delay in the Abilene network

we will take a real network together with real demands, apptye can see that the total mean delay obtained by M/M/1 is
REPLEX using both théW/M/1 model andg; (p;) (we shall generally between 5 and 50% bigger than the ones obtained
note the former as M/M/1 and the latter as MinD), and measupg MinD. This difference may actually go as high as a 125%,
the difference inD(d) assumingf;(p;) as the truef;(p;). and in some cases even more (although not shown for the sake
As the real topology we will take the Abilene networkOf clarity of the graph, the actual maximum was 760%). If
[16]. This academic network consists of 12 nodes and ¥4 !ook ca.refully at Fig. 2(a) we can see that this d_|fference
bidirectional links all with the same capacity. The topglogOriginates in the fact that th&1/M/1 model underestimates
comes as an example in the TOTEM toolbox [17] and we usétl?:)- In particular, the abrupt increase in queue size that
395 real traffic demands (spanning a complete week) frdPRcurs atp =~ 13000kB/s, is also present in thé/M/1
dataset X1 from [18]. The paths we used were constructggfimation, but at a much higher load pf~ 17500kB/s.
by hand, trying to give OD pairs as much path diversity akhis Igads it to “believe” th.at_ links are operating at a low
possible, but limiting the hop count. We will assume the sanfleueing delay load, when it is actually the opposite. On the
J1(p) for all links in the network, namely the one obtained i?ther hand, the difference in total mean delay obtained by
Sec. IlI-B. In Fig. 2 we can see again the WCNLS regressidfiaxU is generally between 10 and 25%, with a maximum
and the resulting/M/1, now together with the corresponding®’ 90%. Although MaxU tries to avoid loaded links (thus
soft approximations (we used (9) to calculate Note how, lobtalryng. better r.esults than M/M/1), it is 0 congervatwe
although we only used 13 of the 72Q,(3;) pairs, the IS objective that it ends up unnecessarily increasing oie t
resulting soft approximation follows very tightly the oingl Mean delay.
function. As discussed in the previous section, decreasiag In what concerns the link utilization, we calculated the
number of different pairs has the double benefit of improvindgsults obtained by the three considered schemes, anchprese
the precision of the soft approximation and simplifying itéhe difference between the reference (MaxU) and the other
calculation. It is then strongly recommended to cluster tH&0 schemes, which we show in Fig. 4. It should be noted that
pairs (ay, 5;) and use only the centers, for which relativelyhe results for M/M/1 and MinD are very similar, except for a
simple clustering methods may be used. smaller maximum in the latter and a relatively smaller mean i
For the sake of completeness, we will also make tHBe former. Quiet surprisingly, both the mean and the gleant
comparison in terms of the link utilizationy( = p,/c;). A @re bigger in MaxU. The argument is the same as before.
link with a u, close to one is operating near its capacit!axU is so conservative in its objective, that, although it
and in order to be able to support sudden increases in traffglimizes the maximum link utilization (where the diffecen
and link/node failures, network operators prefer to keafsii With our proposal is generally less than 49%), it overlooks
utilization relatively low. It would not make much sense tdh€ 1€ss loaded links. These results confirm that minimizing

minimize the total mean delay if it meant highly utilizedk; (d) 1S @ good objective, since it does not neglect links
As a reference for the comparison we will use the resulfdilization. On the contrary, although it obtains a somewha
obtained by a greedy load-balancing mechanism whose pg_tgger maximum utilization than MaxU, all the rest of the
cost is the maximum link utilizations> = max{u;}), which links are more lightly loaded.

S

converges to a demand vector that minimizes the maximum .
utilization over all links [2], [3] (we shall note it as MaxU) B. Temporal Behavior
We will measure three network-wide performance indicators A natural question that arises in our framework is how often
mean, 90% quantile and maximum link utilization. links need to be characterized. In other words, how long can
In Fig. 3(a) we can see the boxplot of the results on th&(p;) be used as a good approximation ffp;)? Although
total mean delay. In particular, for each traffic demand, waore frequent updates of the links characterization wilame
calculated D(d) for the three considered schemes (MinDa more optimal or fine-tuned network, it will also mean greate
M/M/1 and MaxU), and we present the division between theomputational expenses. This tradeoff between the optymal
value obtained by the two other schemes and ours. First,of aif the network and computational burden should be addressed



0.1 ; 0.1 = the obtained parameters to all ingress routers (we assume
g 005 + g 005l T E that these routers, through which commodities inject waffi
8 = E S = to the network, distribute this traffic). This first possityil
é o + é é 0 - - presents the advantage that the required new functicesbti
2 -0.05 : 2 -0.05 : E the router are minimal. However, as all centralized schemes
y '{ y 4 it may not be possible to implement it in some network
Mean 90% quantile Max Mean 90% quantile Max scenarios, and handling the failure of this central entityld
(2) MaxU minus MinD (b) MaxU minus M/M/1 be very complicated. An alternative is that links (or better

said, the router at the origin of the link) perform the regres.
Links keep the mean queue size measurements for themselves,
perform the regression and communicate the result to isgres
routers. The regression could be done once a day, in the
Here we will give a partial answer to this question, and, geriods of low intensity (i.e. the night) so that normal cgiem
a reference, provide a lower bound to the validity of the linis not affected by it. Recall that, as discussed in the previo
characterization used in the previous subsection (which \wgbsection, frequent updates in the regression functematr
will note as(«, 5;)prev). The idea is the following. From the necessary.
same 72 hours long packet trace used before, we take the sanWith respect to REPLEX, we said in Sec. II-C that the
12 hours worth of measurements, but from the third day théégorithm converges if the parameter(which should be the
time. We will note the characterization resulting from thesv same for all commodities) is less thanr (wherek is a
training set ag«;, B;)next. We now assume that the correcconstant and- an upper bound to the relative slope of all
fi(py) for all links in Abilene is f;(p;)next, and measure the links). The problem is how to find, i.e. finding the biggest
increase in the total mean delay if we were to apply the load:7: of all links. In the centralized architecture we described
balancing algorithm using; (p;)erev instead. before, the problem is straightforward, since the centnétye
In Fig. 3(b) we show the boxplot corresponding to thBas all the information, and it should only communicate this
results obtained in this case. We can see that although ie soralue along with the links’ characterization to all routeirs
few cases the increase due to the misspecification can be nibgedistributed scenario it is somewhat more difficult. iiters
than 20%, it is generally under 10%. These results are to bave information of some of the links, they cannot calcutate
compared to those obtained by the other two schemes, whigid have to communicate with the rest to find it. Fortunately,
obtained an excess in the total mean delay of more than 108stributed and efficient algorithms exist [19].
in half of the cases. Concerning the training set, it is very important that the
Our partial answer is then that the characterization of l&k load measurements encompass as many operating points
link obtained from the measurements of any given day, is al8§ possible. That is to say, a good training set should ieclud
valid the next day. It should be noted that the trace used i¢asurements from the lowest to the highest possible load.
this study contained only working days. Our conjecture & thAs observed in Sec. IlI-B, the estimated cost function is
the characterization obtained from any working day holds féonstant and underestimates the real one outside the suppor
the rest of the working days in the same week. The traffic m@f the observations in the training set. This means two #ing
generally changes on weekends, which will probably result First of all, if the optimum link load is not contained in
a differentf;(p;) than that of the working days, thus requiringhe training set, there is no guarantee that the scheme will

Fig. 4. Difference in link utilization between MaxU, MinD drM/M/1 in
the Abilene network

its own characterization. converge to it. Finally, and even if the optimum was observed
. ) ) during the convergence the algorithm may heavily load a link
C. Implementation Issues and Further Discussion and “believe” the opposite if this load is outside the suppor

The application of our framework in a real-world network i®f the observations for that particular link. These comment
relatively simple. Once all links have been characterieagh highlight the fact that measurements of a heavily loadekl lin
OD pair receiveg; from the links it uses (for this purpose, a(which are relatively rare) should be kept preciously and be
TE-enabled routing protocol such as OSPF-TE may be useidiluded in all future training sets until significantly neor
calculates its paths cost with (10), and applies REPLEX tecent measurements under similar loads become available.
update the portion of traffic routed through each of them. A final aspect that should be highlighted is the form of
This process is repeated indefinitely every some seconds. Thhe regression functiory;(p;). As we mentioned in Sec.
update period should be long enough so that the quality A, no constraint onp; was made since we assumed that
the obtained measurements is reasonable, but not too longfte;) would contain such constraint implicitly, by for instance
avoid unresponsiveness (in particular, we suggest 60 sec). going to infinity when the link load exceeds the capacity.

Regarding the learning phase (i.e. gathering the trainitg Fhis is clearly not true for anyf;(p;) obtained from any
and performing the regression) we envisage several pbssiliaining set, which means that a link may be overloaded at
ities, differing in the degree of distribution of the redudf optimality. However, if the training set was reasonably lwel
architecture. One possibility is that a central entity gath constructed, an overloaded link means that the network can
the measurements, performs the regression and communichtely support the corresponding TM independently of the



used demand vector. Anyway, and in order to enforce tlobjective is minimizing queueing delays (the most impartan
constraints, we may add a non-decreasing corrective fumctperformance indicator for real-time traffic, an increaspagt
to the approximatey; (p) that does go to infinity when the of traffic nowadays) this choice is crucial, and a misspecifi-
load exceeds the capacity, but is negligible at lower andemaration can result in significant increases of total delayhwit
reasonable loads (for instance, we could useMid/1 model respect to the optimum.
for this corrective function). Another possible improvement to the framework has to do
with the model used when defining(p;). Although, as we
saw in Sec. llI-B, the mean queue size can be reasonably
In this paper we presented a Dynamic Load-Balancingodeled with such function in wired mediums, this is not
(DLB) scheme that converges to the minimum total meatecessarily true in a wireless medium. Actually, as disediss
delay (O(d) = >, fi(p), where fi(p;) is the mean queue for instance in [20], the MAC-layer interactions between
size) demand vector. The advantage of our proposal is that mters play a significant role in determining the capacity o
make almost no a priori assumption on the functi6fy;), a link (and thus its queue size). This means thatfthaf any
but learn its actual form from past measurements of megiven link should include the load of all neighbor links is it
load and queue size (both readily available in most routerspllision domain, and not only itself. A deeper analysisti$t
thus converging to the real minimum. non-local model also represents interesting future work.
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