
Robust Regression for Minimum-Delay
Load-Balancing

Federico Larroca and Jean-Louis Rougier
Télécom ParisTech, Paris, France - Email: name.surname@telecom-paristech.fr

Abstract—By providing origin-destination pairs with several
possible paths,Dynamic Load-Balancing has been shown to obtain
excellent results in terms of robustness and effective resource
usage. In these dynamic schemes, paths are defined a priori,
and the portion of traffic routed through each path is (typically)
adjusted so that the sum over all links of a certain link-cost
function is minimized. Queueing delay is usually used as this cost
function due to its versatility and simplicity. However, all load-
balancing schemes require an analytical expression of the delay,
for which oversimplistic models are used (such as the classic
M/M/1 model). In this paper we propose a framework that instead
learns this queueing delay function from measurements, while
restricting the assumptions to the minimum. For this, we use
a novel robust regression method that, given a set of link load
and delay measurements, returns a very simple regression delay
function. Some adjustments to this regression function allow us to
use it as the link cost of a greedy load-balancing algorithm that
converges to the actual minimum-delay configuration. We also
compare our framework with previous load-balancing proposals,
showing for instance that using theM/M/1 model results in a
total delay that may easily exceed the minimum by 10%, and
can go as high as more than 100%.

I. I NTRODUCTION

Network convergence is a reality. Many new services such
as P2P or HD-TV are offered on the same network, increasing
the unpredictability of traffic patterns. To make matters worse,
access rates have increased at such pace that the old assump-
tion that core link capacities are several orders of magnitude
bigger than access rates is no longer true. Moreover, there are
new emerging architectures with intrinsically scarce resources
(e.g. Wireless Mesh Networks). Thus, simply upgrading link
capacities may not be a viable solution any longer. This means
that network operators are now, more than ever, in need of
Traffic Engineering (TE) mechanism which are efficient (make
good use of resources), but also automated (as much self-
configured as possible), more robust with respect to network
variations (changes in traffic matrix, or characteristics of
transported flows) and more tolerant (in case of node/link
failures).

Dynamic load-balancing(DLB) [1]–[3] is a TE mechanism
that meets these requirements. If an origin-destination (OD)
pair is connected by several paths, the problem is simply
how to distribute its traffic among these paths in order to
achieve a certain objective. In these dynamic schemes, paths
are configured a priori and the portion of traffic routed through

This work was partially funded by CELTIC project TRANS and FP7 project
Euro-NF

each of them (demand vector) depends on the current traffic
matrix (TM) and network condition. Since DLB only uses
the present situation as an input, it clearly obtains the best
performance out of the available resources. For instance,
Robust Routing [4] (which finds a single routing configuration
to support a whole set of TMs) can only guarantee a worst-
case performance and support a subset of the TMs that DLB
can support.

Formally, DLB is generally defined in terms of a link-cost
function of the load, where the demand vector is adjusted in
order to minimize the sum over all links of their respective
cost. The rationale behind this definition is that the cost
function should represent the congestion on the link, for which
the queueing delay is generally used. The choice is justified
by its versatility (big queueing delays mean bad performance
for all traffic) and simple algebra (the total delay of a path is
the addition over its links of their respective delay). However,
most DLB schemes require an analytical formula of this delay,
for which classic and oversimplistic models (e.g.M/M/1 [5])
are used [1], resulting in a not so good performance [6] and,
as we shall show, an actual total delay that is significantly
bigger than the optimum.

In this paper, we propose a framework that makes no
assumption on the delay function, other than some reasonable
hypothesis on its shape (e.g. delay may not decrease with
load). We learn this function from measurements instead, for
which we turn our attention to the recent work of Kuos-
manen [7]. Given a set of measurements of link load and
delay, the method allows us to obtain a very simple regression
(or approximative) function that fulfills the required shape
constraints. This function can be easily adapted to be used
as a link-cost function by a greedy load-balancing algorithm
that converges to the actual minimum-delay configuration.

In an initial version of our framework [8], we concentrated
on analyzing what constitutes a “good” set of measurements
and discussed some shortcomings of the resulting regression
function. In this paper we will first verify that the homoscedas-
ticity assumption (i.e. measurement errors have all the same
variance) made in [7] (and thus in [8]) is not suitable in
our context. This heterogeneous variance, together with the
presence of outliers, may have an important negative impact
on the resulting regression. We will then derive a similar but
more robust regression method, and compare its performance
with the original one. Furthermore, we will extend the study
by presenting simulations with a real topology and several real

2

TMs, which indicate that the gain achieved by our framework
in terms of delay over an oversimplistic approximation (like
theM/M/1) may be significant. Moreover, the comparison with
previous proposals in terms of link utilization shows that our
framework either outperforms them, or the difference is not
significant.

The rest of the paper is structured as follows. In the
following section we define the network model and discuss the
greedy algorithm used to minimize the total delay when the
link delay function is known. In Sec. III we present the method
to obtain a robust approximation of the delay function from
past measurements, and derive some necessary adjustments to
the approximate function to enable its use with the greedy
algorithm. We make a performance analysis of our framework
in Sec. IV, where we compare it with previous load-balancing
methods and we discuss some implementation issues. We
conclude the paper in Sec. V.

II. GREEDY LOAD-BALANCING

A. Network Model

The network is defined as a graphG = (V, E). In it there
are a number of so-calledcommodities(or OD pairs), indexed
by s = 1, .., S, specified in terms of the tripletos, qs andds;
i.e. origin node, destination node and a certain fixed demand
of traffic from the former to the latter. Each commoditys can
usens paths connectingos to qs (each noted asPsi for i =
1, .., ns), and can distribute its total demand arbitrarily among
them. Commoditys sends an amountdsi of its traffic through
pathPsi, wheredsi ≥ 0 and

∑
dsi = ds. This distribution of

traffic induces the demand vectord = (dsi).
Given the demand vector, the total load on linkl is then

ρl =
∑

s

∑
i:l∈Psi

dsi. The presence of this traffic on the
link induces a certain mean queueing delay given by the
non-decreasing functionDl(ρl). The total delay of pathP
is defined asDP =

∑
l:l∈P Dl(ρl). As a measure of the

congestion in the network, we shall use themean total delay
D(d) defined as:

D(d) =

S∑

s=1

ns∑

i=1

dsiDPsi
=

L∑

l=1

Dl(ρl)ρl :=

L∑

l=1

fl(ρl)

That is to say, a weighted mean delay, where the weight for
each path is how much traffic is sent through it, or in terms
of the links, the weight of each link is how much traffic is
traversing it. We prefer this congestion measure to a simple
total delay because it reflects more precisely performance as
perceived by traffic. Two situations where the total delay is
the same, but in one of them most of the traffic is traversing
heavily delayed links should not be considered as equivalent.
Note that, by Little’s law,fl(ρl) := Dl(ρl)ρl is proportional
to the average number of bytes in the queue of linkl. We will
then use this last value asfl(ρl) which (like the mean load)
is readily available in most routers.

We are now in conditions to write the problem explicitly:

minimize
d

L∑

l=1

fl(ρl) s.t. dsi ≥ 0

ns∑

i=1

dsi = ds (1)

Note that no explicit constraint onρl was made. This
is assumed to be implicitly included in the delay function.
For instance,fl(ρl) goes to infinity (or a relatively high
value) asρl reachescl (the link capacity) and remains at
infinity after this point. It should also be noted that in the
framework described above the destination for a commodity is
not necessarily a single node (e.g. two gateways to the internet
may be seen as a single destination).

B. Wardrop Equilibrium

In this section we present and discuss how to solve problem
(1) in a distributed fashion. In particular, we will consider
mechanisms where each commodity greedily minimizes a
certain cost function of its paths (φP), which require minimum
coordination. This context constitutes an ideal case studyfor
game theory, and is known asRouting Gamein its lingo [9].
The case in which the path cost is the sum over its links
of a positive non-decreasing link-cost function of the load
(φP =

∑
l:l∈P φl(ρl)) is known asCongestion Routing Game

and has several important properties such as uniqueness of the
equilibrium.

In a routing game like ours, commodities are assumed to
be constituted by infinitely many agents, each controlling an
infinitesimal amount of the demand. Each of these agents (or
players) decides through which path to send its traffic. In this
context the divisiondsi/ds represents the portion of agents
of commoditys that havePsi as their choice. If every agent
acts selfishly, then the system will be at equilibrium when no
agent can decrease its cost by changing its path choice. This
situation constitutes what is known as aWardrop Equilibrium
(WE) [10], which is defined as follows.

Definition 1: A demand vector is a Wardrop Equilibrium if
for each commoditys = 1 . . . S and for each pathPsi with
dsi > 0 it holds thatφPsi

≤ φPsj
for all Psj with j = 1, .., ns.

It may be proved that a WE results in a local minimum of
the so-called potential function [9]:

Φ(d) =

L∑

l=1

∫ ρl

0

φl(x)dx

This means that, given an objective function like (1), we
may find a cost function such that the resulting WE is the
optimum demand vector. In this case, let us consider the
following cost function:

φl(ρl) =
∂fl(ρl)

∂ρl

⇒ (2)

Φ(d) =

L∑

l=1

∫ ρl

0

∂fl(x)

∂x
dx =

L∑

l=1

(fl(ρl) − fl(0))

This means that the Wardrop Equilibrium of a congestion
routing game where the link cost is the derivative offl(ρl)

3

results in a local minimum of (1) (note that sincefl(0) is
a constant, the optimumd is the same with or without its
addition). Moreover, iffl(ρl) is convex, this local minimum is
then the unique global minimum demand vector. A distributed
algorithm that converges towards such equilibrium is described
in the following subsection.

C. REPLEX: Exploration-Replication Policy

The concept of Wardrop Equilibrium was first proposed in
the context of transportation to characterize the equilibrium
of users who greedily want to minimize their travel time. In
this context, users are assumed rational and their behavior
is the mechanism through which the equilibrium is attained.
However, in our case routers make the choice for every user
(i.e. packets), and an algorithm that when independently ran
in every router reaches the equilibrium as fast as possible
and does not oscillate has to be specified. In [11] the authors
present such mechanism and use it to design a load-balancing
scheme called REPLEX in [3], which we now briefly describe.

At regular intervals, each OD pair changes a portion of
traffic from the paths with bigger total costφP to those
with a smaller one. The exact amount is proportional to the
relative difference in cost times a parameter that controls
the algorithm’s speed (noted asλ). Details on the algorithm
may be consulted on the references, although we shall further
highlight the fact that convergence is guaranteed as long as
λ is smaller thank/r, wherek is a suitable constant andr
is an upper-bound to the relative slope of allφl(ρl), which is
defined as follows:

Definition 2: A differentiable cost functionφl(x) has rel-
ative sloper at x if φ′

l(x) ≤ rφl(x)/x. A cost function has
relative sloper if it has relative sloper over the entire range
[0, 1].

Intuitively, migration from one path to the other should be
slow if the cost function has abrupt changes. On the other
hand, if the cost function is relatively “soft”, changes maybe
faster.

III. N ON-PARAMETRIC REGRESSIONWITH SHAPE

RESTRICTIONS

A. Weighted Convex Non-Parametric Least Squares

The problem we address now is how to learnfl(ρl) from
measurements (actually we are interested in its derivative,
φl(ρl), but we can only observe the queue sizefl(ρl)). For
the sake of clarity we will concentrate on the problem for
a single link, so we shall omit the sub-indexl. We are
given n pairs of observations(ρ1, Y1), (ρ2, Y2), . . . , (ρn, Yn)
(also calledtraining set), where theresponse variableY (the
measured mean queue size) is related to thecovariateρ (the
link load) by the equation:

Yi = f(ρi) + ǫi i = 1, . . . , n (3)

Where f(ρ) is now called theregression functionand the
measurement errorsǫ = (ǫ1, . . . , ǫn)′ are assumed to be
uncorrelated random variables withE(ǫi) = 0 and Var(ǫi) =
σ2

i < ∞. The problem is to “learn”f(ρ) from the observations

in the training set and obtain an estimation̂f(ρ), restricting
the assumptions on its functional form as much as possible.
So far, we have only these three necessary requirements:

1) f(ρ) is clearly non-decreasing (more load may never
lead to a smaller queue size).

2) f(ρ) should be convex. This is to guarantee the existence
and uniqueness of the optimum, and its coincidence with
the WE.

3) φ(ρ) should have a finite relative slope in order to
enable a correct operation of REPLEX (and probably
all distributed optimization algorithms).

We will now consider the two first requirements, which are
by far the most restrictive. There are several regression meth-
ods that makeno assumptions on the regression function and
allow one to obtain its derivative (for a good overview of this
and other regression methods see [12]). For instance,Local
Polynomial Regressionis a kernel-type regression method that
allows one to estimate any order derivative of the regression
function through a standard weighted least square. However, it
presents several problems. First of all, estimating the function
at any point is as costly as learning it, i.e. a weighted least
square problem has to be solved every time the function or
its derivative wants to be estimated. In a way, the functional
representation of̂f(ρ) is the whole training set, which can
be relatively big. Secondly, all kernel-type methods suffer
from the so-called bias-variance tradeoff, controlled by the
bandwidth parameter, which can be very tricky to assign and
on which the quality of the estimation depends heavily. Finally,
in order to enforce shape constraints, such as monotonicityand
convexity, “indirect” methods have to be used. For instance,
[13] describes a method to transform the training set so
that when the local polynomial method is applied, shape
restrictions are assured. Anyway, the intrinsic problems of
kernel-type methods we already mentioned are still present.

We turn our attention then to theConvex Nonparametric
Least Squares(CNLS) problem [7]. LetF be the set of con-
tinuous, monotonic increasing and globally convex functions.
CNLS consists on findinĝf ∈ F that minimizes the sum of
squares of the residuals. However, this minimization is known
to be very sensitive to outliers, and results in a biased estimator
when measurement errors present heteroscedasticity. As we
shall see in the examples, both kinds of problems are present
in our measurements. A possible solution to these issues is
to consider a weighted version of the original problem, which
we shall callWeighted Convex Nonparametric Least Squares
(WCNLS):

min
f

n∑

i=1

ωi (Yi − f(ρi))
2 s.t. f ∈ F (4)

where the weightωi is a positive constant that indicates the
importance of each observation. For instance, outliers should
have a small weight. Due to the size ofF , problem (4) is
very difficult to solve in such general version. The idea is to
identify a subset of representor functionsG : G ⊂ F such
that by substituting the constraintf ∈ F by f ∈ G the

4

resulting optimum is left unchanged but the problem is easier
to solve. Consider then the following family of piecewise
linear functions:

G(P) =

{
g : R → R | g(ρ) = max

i=1,...,n
αi + βiρ;

βi ≥ 0 ∀i = 1, . . . , n;

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , n

}

It is clear thatG(P) belongs toF for any arbitrary set of ob-
servationsP = {ρi}i. It turns out that we may substituteG(P)
in (4) and obtain the same optimal solution. This equivalence
may be demonstrated just like in the original CNLS [7]. Its
demonstration relied on the fact that the optimization problem
depends only on the value of̂f(ρ) at a finite set of points
ρi, which is also the case for WCNLS. This result allows
us to transform the infinite dimensional problem (4) into the
following standard finite dimensional Quadratic Programming
(QP) problem:

min
ǫ,α,β

n∑

i=1

ωiǫ
2
i (5)

subject to Yi = αi + βiρi + ǫi ∀i = 1, . . . , n

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , n

βi ≥ 0 ∀i = 1, . . . , n

Regarding the set of representor functionsG(P), it may
seem that we actually transformed a nonparametric problem
into a parametric one. However, it should be noted that
although we look for a piecewise linear function, the partition
of the linear segments is not fixed a priori. That is to say,
the number and location of the segments are endogenously
determined to minimize the weighted squared residual. More-
over, although problem (5) is a standard QP problem for
which mature methods to solve it exist (such as interior point
algorithms) and that several solver software are available(for
instance, we used MOSEK [14]), its size is considerable. It
has a total ofn + n + n variables andn + n(n − 1) + n
constraints. The second set of constraints, which are the key
to enforcing the convexity of̂f(ρ), are quadratic in the number
of observations. The size of the problem is clearly the major
drawback of the method.

We will now discuss how to assign the values ofωi. A typ-
ical procedure to address both heteroscedasticity and outliers
in the classic least squares problem is to iteratively change
the weights, in what is known as Iteratively Reweighted
Least Squares. This kind of methods begins with arbitrary
weights, perform the regression (the result at iterationt is
called f̂t(ρ)), and re-calculate the weights depending on the
distance between the measurements and the regression (noted
as ωt

i). The last two steps are repeated until the weights
converge. For instance, if the weights are recalculated as
ωt+1

i = 1/|f̂t(ρi)−Yi|, in the limit the resulting weighted least
squares problem finds the minimum of the sum of absolute
errors, which is known to be very robust to outliers. As

mentioned earlier, the size of problem (5) will represent a
problem if we were to solve it several times. We shall then
proceed as follows. We perform an initial simple estimation
f̂0(ρi), and calculate the weights as:

ωi =
1∣∣∣f̂0(ρi) − Yi

∣∣∣
(6)

As the initial f̂0(ρi) we used thek-nearest neighbors
algorithm (withk = 10), which simply estimatesf(ρ) as the
median of thek measurementsYi corresponding to theρi’s
nearest toρ. In this way, we seek to find a curve that fits the
bulk of the data, and minimize the effect of outliers.

B. An Example

To illustrate the method we will apply it to a training set
obtained by injecting a 72 hours long packet trace (obtained
from [15]) to a simple queue emulator we developed. In the
absence of information we assumed a relatively big buffer size
of 100 MB. Measurements correspond to the mean load and
queue size in a 60 seconds period, obtained from 12 hours
spanning the complete second day of the original trace. Figure
1(a) shows the 720 measurements, the estimated functionf̂(ρ)
through WCNLS and CNLS, and the estimation theM/M/1
model yields (ρ/(c− ρ)), all in logarithmic scale for the sake
of clarity. First of all, it should be noted that theM/M/1
model has little to do with the measurements. It consistently
underestimates them, except at light loads, where they are
relatively small. Regarding the estimation by CNLS, we can
see that it very similar to WCNLS at light loads, where the
variance is relatively constant and there are almost no outliers.
However, afterρ ≈ 8000 kB/s, several notorious outliers
start to appear. Note how CNLS is very influenced by these
outliers and how the resulting estimation does not represent
the majority of the measurements. On the other hand, WCNLS
ignores these outliers almost completely and represents the
mean queue size more accurately. Finally, it should be noted
that measurements verify the convexity condition, meaning
that this requirement is not only required mathematically,but
is also verified by reality.

In Fig. 1(b) we show the estimation of the derivativeφ(ρ)
through WCNLS and theM/M/1 model (c/(c − ρ)2). Since
the WCNLS estimation is piecewise linear, the estimation of
φ(ρ) is a piecewise constant function, and outside the support
of the observation it becomes constant. As a consequence,
WCNLS will produce a good estimation ofφ(ρ) inside this
region, after which it will systematically underestimate it. The
M/M/1 model again underestimates the derivative throughout
the range of observations, except at light loads where they are
both small.

Finally, Fig. 1(c) shows the pairs(αi, βi) in the plane.
Notice how, although there are 720 different values, and as in
the original CNLS, significantly different pairs are relatively
few. In all the regressions we performed, the actual number
of different pairs resulted in a very small fraction ofn.
This means that, in contrast to kernel-type regressors,f̂(ρ)

5

0.5 1 1.5 2 2.5

x 10
4

10
0

10
2

10
4

ρ (kB/s)

M
e

a
n

 Q
u

e
u

e
 S

iz
e

 (
k
B

)

Meas.

WCNLS

CNLS

M/M/1

(a) Measurements,̂f(ρ) for CNLS and WCNLS, and theM/M/1
model

0.5 1 1.5 2 2.5

x 10
4

10
0

10
−2

10
−4

10
2

ρ (kB/s)

WCNLS
M/M/1

(b) φ̂(ρ) for WCNLS, and theM/M/1
model

−3 −2 −1 0

x 10
4

0

0.5

1

1.5

2

α

β

(c) The pairs(βi, αi) in the plane

Fig. 1. An example of a regression

is completely represented by a number of parameters that
will generally be much smaller thann, and that once these
parameters are estimated, evaluatingf̂(ρ) and its derivative
φ̂(ρ) is computationally very cheap.

C. Obtaining a Soft Approximation

As mentioned in Sec. II-B, greedy OD pairs that use as
the link cost the derivative of its mean queue size (φ(ρ) =
f ′(ρ)) will converge to the minimum-delay demand vector.
We have so far obtained a very good approximation of the
queue size (the regression function̂f(ρ)), and its derivative
is very easy to calculate, resulting in a piece-wise constant
function. However, the greedy algorithm we chose (and to the
best of our knowledge, all greedy algorithms) requires a cost
function with a finite relative slope (cf. item 3 in Sec. III-A), a
condition that a non-continuous function such as ours does not
meet. We will now discuss how to adapt our initial regression
to a soft function, suitable to be used by a greedy algorithm
and that has a minimum effect on the precision of the final
result.

Consider thatf̂(ρ) is defined byn′ pairs (αi, βi) so that
f̂(ρ) = max

i=1...n′

{αi + βiρ}. A possible approximation to this

function is the so-calledlog-sum-expfunction:

f̂∗(ρ) =
1

γ
log

n′∑

i=1

eγ(αi+βiρ)

 (7)

This convex non-decreasing function is clearly soft. More-
over, the precision of the approximation can be controlled by

the γ parameter since:

f̂(ρ) ≤ f̂∗(ρ) ≤ f̂(ρ) +
1

γ
log(n′) (8)

This means that optimizing witĥf∗(ρ) as the objective
function instead off̂ will result in an error of at most
log(n′)/γ. Actually, this bound is rather conservative, and the
resulting error will generally be much smaller. As a rule of
thumb, we then recommend aγ parameter that results in a
maximum error of approximately 30%:

γ =
log(n′)

0.3Ȳ
(9)

WhereȲ is the mean or median of the observations(Yi)i=1..n.
We are now in conditions to write the final soft approximation
to the link cost explicitly, which is simply the derivative of (7):

φ̂∗(ρ) =
1

n′∑

i=1

eγ(αi+βiρ)

n′∑

i=1

βie
γ(αi+βiρ) (10)

Finally, to find a value ofλ that assures the convergence of
REPLEX, we need to calculate an upper bound to the relative
sloper of (10). Using definition 2 we see that:

r ≥ max
ρ∈[0,1]

{
∂φ̂∗(ρ)

∂ρ

ρ

φ̂∗(ρ)

}

The derivative ofφ̂∗(ρ) is:

∂φ̂∗(ρ)

∂ρ
= γ

∑n′

i=1 β2
i eγ(αi+βiρ)

∑n′

i=1 eγ(αi+βiρ)
− γ

(∑n′

i=1 βie
γ(αi+βiρ)

∑n′

i=1 eγ(αi+βiρ)

)2

Which, by using the first term as a bound and assuming it
is a good approximation toγφ(ρ)2, means that a reasonable
approximation to the relative slope is:

r ≈ max
ρ∈[0,1]

{
γφ(ρ)2

ρ

φ̂∗(ρ)

}
≈ γ max

i=1,...,n′

βi (11)

The above equation makes explicit the intuitive fact that
the biggerγ is (and better the approximation) the less soft
the resultingφ̂∗(ρ) is. This means that using a biggerγ than
that of (9), even if it results in a smaller maximum error,
translates into an insignificant improvement in precision and a
decrease in the convergence speed attainable by REPLEX (cf.
Sec. II-C).

IV. SIMULATIONS

A. Assessing the Performance Gain

In the previous section we showed queue size measurements
and the corresponding estimated functionf̂l(ρl), and compared
it with the M/M/1 model, highlighting the difference between
them, specially in terms of shape. If we assume this model
instead of the realfl(ρl) we would incur in an increase of
the total mean delay (D(d)) with respect to the optimum that
may be important. To quantify this increase more precisely,

6

0.5 1 1.5 2 2.5

x 10
4

10
0

10
2

10
4

ρ (kB/s)

M
e

a
n

 Q
u

e
u

e
 S

iz
e

 (
k
B

)

WCNLS
M/M/1
Soft WCNLS

(a) f̂(ρ), f̂∗(ρ) and the M/M/1
model

0.5 1 1.5 2 2.5

x 10
4

10
0

10
−2

10
−4

10
2

ρ (kB/s)

WCNLS

M/M/1

Soft WCNLS

(b) φ̂(ρ), φ̂∗(ρ) and the M/M/1
model

Fig. 2. The regression used on the comparison

we will take a real network together with real demands, apply
REPLEX using both theM/M/1 model andφ̂∗

l (ρl) (we shall
note the former as M/M/1 and the latter as MinD), and measure
the difference inD(d) assumingf̂l(ρl) as the truefl(ρl).

As the real topology we will take the Abilene network
[16]. This academic network consists of 12 nodes and 15
bidirectional links all with the same capacity. The topology
comes as an example in the TOTEM toolbox [17] and we used
395 real traffic demands (spanning a complete week) from
dataset X1 from [18]. The paths we used were constructed
by hand, trying to give OD pairs as much path diversity as
possible, but limiting the hop count. We will assume the same
f̂l(ρl) for all links in the network, namely the one obtained in
Sec. III-B. In Fig. 2 we can see again the WCNLS regression
and the resultingM/M/1, now together with the corresponding
soft approximations (we used (9) to calculateγ). Note how,
although we only used 13 of the 720(αi, βi) pairs, the
resulting soft approximation follows very tightly the original
function. As discussed in the previous section, decreasingthe
number of different pairs has the double benefit of improving
the precision of the soft approximation and simplifying its
calculation. It is then strongly recommended to cluster the
pairs (αi, βi) and use only the centers, for which relatively
simple clustering methods may be used.

For the sake of completeness, we will also make the
comparison in terms of the link utilization (ul = ρl/cl). A
link with a ul close to one is operating near its capacity,
and in order to be able to support sudden increases in traffic
and link/node failures, network operators prefer to keep links
utilization relatively low. It would not make much sense to
minimize the total mean delay if it meant highly utilized links.
As a reference for the comparison we will use the results
obtained by a greedy load-balancing mechanism whose path
cost is the maximum link utilization (φP = max

l∈P
{ul}), which

converges to a demand vector that minimizes the maximum
utilization over all links [2], [3] (we shall note it as MaxU).
We will measure three network-wide performance indicators:
mean, 90% quantile and maximum link utilization.

In Fig. 3(a) we can see the boxplot of the results on the
total mean delay. In particular, for each traffic demand, we
calculatedD(d) for the three considered schemes (MinD,
M/M/1 and MaxU), and we present the division between the
value obtained by the two other schemes and ours. First of all,

M/M/1 MaxU

1

1.5

2

2.5

3

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

g
a

in
)

(a) M/M/1 and MaxU with respect to
MinD

1

1.5

2

2.5

3

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

g
a

in
)

(b) Using thef̂l(ρl) of the day before

Fig. 3. Increase in Total Mean Delay in the Abilene network

we can see that the total mean delay obtained by M/M/1 is
generally between 5 and 50% bigger than the ones obtained
by MinD. This difference may actually go as high as a 125%,
and in some cases even more (although not shown for the sake
of clarity of the graph, the actual maximum was 760%). If
we look carefully at Fig. 2(a) we can see that this difference
originates in the fact that theM/M/1 model underestimates
fl(ρl). In particular, the abrupt increase in queue size that
occurs atρ ≈ 13000 kB/s, is also present in theM/M/1
estimation, but at a much higher load ofρ ≈ 17500kB/s.
This leads it to “believe” that links are operating at a low
queueing delay load, when it is actually the opposite. On the
other hand, the difference in total mean delay obtained by
MaxU is generally between 10 and 25%, with a maximum
of 90%. Although MaxU tries to avoid loaded links (thus
obtaining better results than M/M/1), it is so conservativein
its objective that it ends up unnecessarily increasing the total
mean delay.

In what concerns the link utilization, we calculated the
results obtained by the three considered schemes, and present
the difference between the reference (MaxU) and the other
two schemes, which we show in Fig. 4. It should be noted that
the results for M/M/1 and MinD are very similar, except for a
smaller maximum in the latter and a relatively smaller mean in
the former. Quiet surprisingly, both the mean and the quantile
are bigger in MaxU. The argument is the same as before.
MaxU is so conservative in its objective, that, although it
minimizes the maximum link utilization (where the difference
with our proposal is generally less than 4%), it overlooks
the less loaded links. These results confirm that minimizing
D(d) is a good objective, since it does not neglect links
utilization. On the contrary, although it obtains a somewhat
bigger maximum utilization than MaxU, all the rest of the
links are more lightly loaded.

B. Temporal Behavior

A natural question that arises in our framework is how often
links need to be characterized. In other words, how long can
f̂l(ρl) be used as a good approximation offl(ρl)? Although
more frequent updates of the links characterization will mean
a more optimal or fine-tuned network, it will also mean greater
computational expenses. This tradeoff between the optimality
of the network and computational burden should be addressed.

7

Mean 90% quantile Max

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o

n
 (

d
if
f)

(a) MaxU minus MinD

Mean 90% quantile Max

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o

n
 (

d
if
f)

(b) MaxU minus M/M/1

Fig. 4. Difference in link utilization between MaxU, MinD and M/M/1 in
the Abilene network

Here we will give a partial answer to this question, and, as
a reference, provide a lower bound to the validity of the link
characterization used in the previous subsection (which we
will note as(αi, βi)PREV). The idea is the following. From the
same 72 hours long packet trace used before, we take the same
12 hours worth of measurements, but from the third day this
time. We will note the characterization resulting from thisnew
training set as(αi, βi)NEXT. We now assume that the correct
fl(ρl) for all links in Abilene is f̂l(ρl)NEXT, and measure the
increase in the total mean delay if we were to apply the load-
balancing algorithm usinĝφ∗

l (ρl)PREV instead.
In Fig. 3(b) we show the boxplot corresponding to the

results obtained in this case. We can see that although in some
few cases the increase due to the misspecification can be more
than 20%, it is generally under 10%. These results are to be
compared to those obtained by the other two schemes, which
obtained an excess in the total mean delay of more than 10%
in half of the cases.

Our partial answer is then that the characterization of a
link obtained from the measurements of any given day, is also
valid the next day. It should be noted that the trace used in
this study contained only working days. Our conjecture is that
the characterization obtained from any working day holds for
the rest of the working days in the same week. The traffic mix
generally changes on weekends, which will probably result in
a differentfl(ρl) than that of the working days, thus requiring
its own characterization.

C. Implementation Issues and Further Discussion

The application of our framework in a real-world network is
relatively simple. Once all links have been characterized,each
OD pair receivesρl from the links it uses (for this purpose, a
TE-enabled routing protocol such as OSPF-TE may be used),
calculates its paths cost with (10), and applies REPLEX to
update the portion of traffic routed through each of them.
This process is repeated indefinitely every some seconds. This
update period should be long enough so that the quality of
the obtained measurements is reasonable, but not too long to
avoid unresponsiveness (in particular, we suggest 60 sec).

Regarding the learning phase (i.e. gathering the training set
and performing the regression) we envisage several possibil-
ities, differing in the degree of distribution of the resulting
architecture. One possibility is that a central entity gathers
the measurements, performs the regression and communicates

the obtained parameters to all ingress routers (we assume
that these routers, through which commodities inject traffic
to the network, distribute this traffic). This first possibility
presents the advantage that the required new functionalities on
the router are minimal. However, as all centralized schemes,
it may not be possible to implement it in some network
scenarios, and handling the failure of this central entity could
be very complicated. An alternative is that links (or better
said, the router at the origin of the link) perform the regression.
Links keep the mean queue size measurements for themselves,
perform the regression and communicate the result to ingress
routers. The regression could be done once a day, in the
periods of low intensity (i.e. the night) so that normal operation
is not affected by it. Recall that, as discussed in the previous
subsection, frequent updates in the regression function are not
necessary.

With respect to REPLEX, we said in Sec. II-C that the
algorithm converges if the parameterλ (which should be the
same for all commodities) is less thank/r (where k is a
constant andr an upper bound to the relative slope of all
links). The problem is how to findr, i.e. finding the biggest
βilγl of all links. In the centralized architecture we described
before, the problem is straightforward, since the central entity
has all the information, and it should only communicate this
value along with the links’ characterization to all routers. In
the distributed scenario it is somewhat more difficult. If routers
have information of some of the links, they cannot calculater
and have to communicate with the rest to find it. Fortunately,
distributed and efficient algorithms exist [19].

Concerning the training set, it is very important that the
link load measurements encompass as many operating points
as possible. That is to say, a good training set should include
measurements from the lowest to the highest possible load.
As observed in Sec. III-B, the estimated cost function is
constant and underestimates the real one outside the support
of the observations in the training set. This means two things.
First of all, if the optimum link load is not contained in
the training set, there is no guarantee that the scheme will
converge to it. Finally, and even if the optimum was observed,
during the convergence the algorithm may heavily load a link
and “believe” the opposite if this load is outside the support
of the observations for that particular link. These comments
highlight the fact that measurements of a heavily loaded link
(which are relatively rare) should be kept preciously and be
included in all future training sets until significantly more
recent measurements under similar loads become available.

A final aspect that should be highlighted is the form of
the regression function̂fl(ρl). As we mentioned in Sec.
II-A, no constraint onρl was made since we assumed that
fl(ρl) would contain such constraint implicitly, by for instance
going to infinity when the link load exceeds the capacity.
This is clearly not true for anyf̂l(ρl) obtained from any
training set, which means that a link may be overloaded at
optimality. However, if the training set was reasonably well
constructed, an overloaded link means that the network can
barely support the corresponding TM independently of the

8

used demand vector. Anyway, and in order to enforce the
constraints, we may add a non-decreasing corrective function
to the approximatêφ∗

l (ρ) that does go to infinity when the
load exceeds the capacity, but is negligible at lower and more
reasonable loads (for instance, we could use theM/M/1 model
for this corrective function).

V. CONCLUSIONS

In this paper we presented a Dynamic Load-Balancing
(DLB) scheme that converges to the minimum total mean
delay (D(d) =

∑
l fl(ρl), where fl(ρl) is the mean queue

size) demand vector. The advantage of our proposal is that we
make almost no a priori assumption on the functionfl(ρl),
but learn its actual form from past measurements of mean
load and queue size (both readily available in most routers),
thus converging to the real minimum.

The DLB algorithm was based on the known fact that
the Wardrop Equilibrium of a Routing Congestion Game
whose link cost is the derivative offl(ρl) (φl(ρl) = f ′

l (ρl)),
and if fl(ρl) is convex, is actually the unique minimizer
of D(d). We thus needed a regression method that allowed
us to enforce convexity and non-decreasing constraints on
the regression function, but also that its derivative couldbe
evaluated. These requirements were fulfilled by theWeighted
Constrained Nonparametric Least Squaresproblem (WC-
NLS), which fits a convex non-decreasing piecewise linear
function to the measurements. The advantage of the weighted
regression method over the original CNLS is that it can deal
with heteroscedasticity and outliers, minimizing its impact on
the regression. We discussed a method to assign the weights in
WCNLS, which worked very well in the examples we studied.
However, there are obviously many possibilities in this respect,
and a thorough comparison of different methods would surely
improve the framework.

In order to quantify the increase incurred by a misspecifi-
cation offl(ρl), we conducted a study using a real topology,
several real demands and a realisticfl(ρl). In it, we applied the
greedy algorithm with our soft approximation̂φ∗

l (ρl) and the
derivative of theM/M/1 model, and measured the difference
in the mean total delay (assuming that our regression offl(ρl)
was the true delay function). The results showed that in halfof
the cases the increase exceeded 10%, and that it could be more
than 100%. We have also studied the performance in terms of
link utilization (where we took as a reference a greedy algo-
rithm that minimized the maximum link utilization). Results
indicate a very similar performance between theM/M/1 model
and our approximateφl(ρl). They both obtain a somewhat
bigger maximum utilization than the optimum, but distribute
the load among the rest of the links more evenly.

As discussed in Sec. I, DLB (and TE in general) is usually
defined in terms of afl(ρl) that is arbitrarily chosen, as long
as it is convex and goes to infinity when load reaches the link
capacity. In terms of link utilization and TCP performance the
difference between the differentfl(ρl) may be considered as
somewhat unimportant (besides the results presented here,see
[6]). However, in this paper we have shown that when the

objective is minimizing queueing delays (the most important
performance indicator for real-time traffic, an increasingpart
of traffic nowadays) this choice is crucial, and a misspecifi-
cation can result in significant increases of total delay with
respect to the optimum.

Another possible improvement to the framework has to do
with the model used when definingfl(ρl). Although, as we
saw in Sec. III-B, the mean queue size can be reasonably
modeled with such function in wired mediums, this is not
necessarily true in a wireless medium. Actually, as discussed
for instance in [20], the MAC-layer interactions between
routers play a significant role in determining the capacity of
a link (and thus its queue size). This means that thef of any
given link should include the load of all neighbor links in its
collision domain, and not only itself. A deeper analysis of this
non-local model also represents interesting future work.

REFERENCES

[1] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” inINFOCOM 2001, vol. 3, Anchorage, USA, April
2001, pp. 1300–1309.

[2] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
responsive yet stable traffic engineering,” inACM SIGCOMM ’05,
Philadelphia, USA, 2005, pp. 253–264.

[3] S. Fischer, N. Kammenhuber, and A. Feldmann, “Replex: dynamic traffic
engineering based on wardrop routing policies,” inProceedings of the
2006 ACM CoNEXT conference (CoNEXT ’06), Lisboa, Portugal, 2006,
pp. 1–12.

[4] W. Ben-Ameur and H. Kerivin, “Routing of uncertain traffic demands,”
Optimization and Engineering, vol. 6, no. 3, pp. 283–313, september
2005.

[5] L. Kleinrock, Queueing Systems. Wiley-Interscience, 1975.
[6] F. Larroca and J.-L. Rougier, “Routing games for traffic engineering,”

in International Conference on Communications (ICC 2009), Dresden,
Germany, June 2009.

[7] T. Kuosmanen, “Representation theorem for convex nonparametric least
squares,”Econometrics Journal, vol. 11, no. 2, pp. 308–325, July 2008.

[8] F. Larroca and J.-L. Rougier, “Minimum-delay load-balancing through
non-parametric regression,” inIFIP/TC6 Networking 2009, Aachen,
Germany, May 2009.

[9] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L.Wynter, “A
survey on networking games in telecommunications,”Comput. Oper.
Res., vol. 33, no. 2, pp. 286–311, 2006.

[10] J. Wardrop, “Some theoretical aspects of road traffic research,” Pro-
ceedings of the Institution of Civil Engineers, Part II, vol. 1, no. 36, pp.
352–362, 1952.

[11] S. Fischer, H. Räcke, and B. Vöcking, “Fast convergence to wardrop
equilibria by adaptive sampling methods,” inSTOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing,
2006, pp. 653–662.

[12] L. Wasserman,All of Nonparametric Statistics: A Concise Course in
Nonparametric Statistical Inference. Springer, 2006.

[13] Y. Ait-Sahalia and J. Duarte, “Nonparametric option pricing under shape
restrictions,” Journal of Econometrics, vol. 116, no. 1-2, pp. 9–47,
September-October 2003.

[14] “The MOSEK Optimization Software,” http://www.mosek.com/.
[15] K. Cho, “WIDE-TRANSIT 150 Megabit Ethernet Trace 2008-03-18,”

http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/.
[16] “The Abilene Network,” http://www.internet2.edu/network/.
[17] “TOTEM: TOolbox for Traffic Engineering Methods,”

http://totem.info.ucl.ac.be/.
[18] Yin Zhang, “Abilene Dataset,” http://www.cs.utexas.edu/∼yzhang/re-

search/AbileneTM/.
[19] D. Peleg, Distributed Computing: A Locality-Sensitive Approach.

SIAM, 2000.
[20] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-

mance anomaly of 802.11b,”IEEE INFOCOM 2003, vol. 2, pp. 836–
843, March-3 April 2003.

