Laryngeal activity in the production of consonants clusters and geminates in Moroccan Arabic

Mohamed Yeou¹, Shinji Maeda², Kiyoshi Honda³

¹Univ Chouaib Doukkali (Morocco), ²CNRS and ENST (France), ³ATR-CIS (Japan)

m_yeou@yahoo.com, maeda@tsi.enst.fr, honda@atr.jp

ABSTRACT

The laryngeal adjustments in voiceless consonant clusters and geminates in Moroccan Arabic were examined by means of electroglottography. Findings indicate that speech rate and word boundary have an effect not only on the shape of laryngeal abduction-adduction gestures but also on laryngeal-oral coordination.

1. INTRODUCTION

The phenomenon of laryngeal coarticulation or coproduction has previously been investigated in various sequences of voiceless consonants for languages such as Dutch, American English, Icelandic, Japanese and Swedish [5, 6, 7, 8, 9; cf. a review, 12]. Recently, the phenomenon has been studied in German [3, 4] and Berber [10]. The common method used in these studies was transillumination and fiberoptic video recording.

One conclusion that comes out from these studies is that glottal opening and closing gestures are produced with a one-, two-, or more-than- two-peaked shape depending on the phonetic nature of the consonant sequence. In English, Icelandic and Swedish, clusters of voiceless fricative + voiceless plosive generally show a one-peak pattern as the plosive is unaspirated. When the plosive is accompanied by aspiration or frication noise and the cluster is separated by a word boundary, two separate peaks occur with maximum glottal opening during the fricative and just before stop release. Geminated sequences (e.g. /s#s/) are characterized by one single peak in Dutch, English and Icelandic. Another important finding reported by [8] was that the observable presence of a single peak may actually correspond underlyingly to two separate glottal movements. The authors confirmed this assumption by varying speech rate during the production of /s#t/ in the utterance Kiss Ted. Results showed that at slow rates show two separate laryngeal gestures occurred, while at fast rates only a single laryngeal gesture was produced. At intermediate rates, partially overlapping movements were observed.

The present paper purports to study voiceless consonant clusters and geminates in Moroccan Arabic (MA) in terms of coarticulation at the laryngeal level, with a view to examining the validity of the reviewed results. There are three objectives: 1) to examine how a combination of (two) successive laryngeal abduction-adduction gestures are organized and how they influence one another; 2) to investigate the phonetic effect, if any, of speech rate and word boundary on laryngeal adjustments in the production of different sequences of voiceless consonants; 3) to examine some aspects of laryngeal-oral interarticulator coordination as these are very much related to laryngeal coarticulation and have not been much investigated at a quantitative level.

2. METHOD

Oral air flow, glottographic and audio signals were recorded simultaneously in direct mode on three channels of an instrumentation recorder. Measurements were done manually on a computer. Analysis of only glottographic data will be reported here. One adult male native speaker of MA (the author) served as subject. The target words were uttered in a frame sentence “galak ...” (“He told you...”) five times. The subject produced the utterances at two self-chosen speaking rates, slow and fast.

χɔsɔ’tu hila /s#t/ “He needs to be inspired”
qɔsɔ’tu hila /s#t/ “He is very cunning”
lmeχɔ tar /χ#t/ “the brain revolts”
lmeχɔ tar /χ#t/ “personal name”
nɔɔsɔ karim /s#k/ “the brain revolts”
lɔɔkarı /sk/ “the soldier”
χɔsɔ’s əra /s#s#/ “we need Sara”
χɔsɔ’s əra /s#s#/ “wrong-doer”
χɔsɔ’ara /s#/ “what a shame”
hɔɔ sasu /s#s#/ “he felt its groundwork”
hɔɔsasu /ss/ “his sensitive (man)”
hi sabu /s/ “his account”

3. RESULTS

3.1. Effect of word boundary

Figure 1 shows glottographic patterns for clusters of voiceless consonants produced medially and across a word boundary at slow rate. It can clearly be seen that the presence of a word boundary requires the occurrence of two separate glottal gestures associated with the fricative and the stop, respectively. A closer comparison of these two laryngeal movements reveals that the amplitude of the first movement was higher than the second (as indicated by the measurement given in Figure 2). Also, the initial glottal abduction is rapid, while the following adduction-abduction movements are rather slow. These facts seem to indicate two important tendencies: attaining maximal glottal opening during the fricative rather than...
the plosive and skewing of the opening peak to the left in cross-boundary geminates. An explanation for this given in [3, 6] suggests that for fricatives the onset of the abductory movement critically requires a rapid and large glottal area so that airflow can generate the friction source. When this requirement is satisfied, it is not critical to maintain this pattern for the following voiceless consonant.

The timing of the peak glottal opening (PGO) also seems to vary as a function of the word boundary. When the word boundary intervenes within the voiceless sequences /sˤt/, /sk/ and /Χt/, PGO occurs during the fricative and just before the release of the stop (cf. 3.2. for quantitative data). On the other hand, when /sˤt/, /sk/ and /Χt/ are produced medially, one laryngeal gesture occurs. The peak timing of this gesture tends to occur not during the stop period but during the frication noise. It is interesting to note here that plosives in MA are aspirated although they are preceded by fricatives. The tendency to have a two-peak pattern for fricative + aspirated stop combinations in Swedish [11] and English [6] does not apply to MA (cf. a similar result for Berber, [10]).

Figure 1: Production of sequences of voiceless consonants with a) two laryngeal gestures for /Χt/ and /sˤsˤ/ (top) and with b) a single laryngeal gesture for /Χt/ and /sˤsˤ/ (bottom).

Similar patterns like those for voiceless cluster are also found in geminated sequences /ss/ and /sˤsˤ/, where the presence of the word boundary varies. When /ss/ and /sˤsˤ/ are produced medially only one single glottal gesture is found. However, when a word boundary occurs between /s/ and /s/ or between /sˤ/ and /sˤ/, two consecutive gestures are seen (Figure 1).

Figure 2: the amplitude of peak glottal opening in arbitrary units during the initial consonant in the sequence of voiceless consonants.

3.2. Effect of speech rate

Before we investigate the effect of speech rate on the laryngeal adjustments of the sequences of voiceless segments, we present in Figure 3 the temporal interval between two successive peaks of glottal opening as a function of speaking rate. Speaking rate was indexed by the duration of the interval between the offset of the vowel preceding the first consonant in a sequence and the onset of the vowel following the second consonant in that sequence as in [8].

Figure 3: Peak to peak interval as a function vowel-offset-to-vowel-onset.

Figure 3 shows that glottal opening and closing gestures are produced with a one- or two-peaked pattern depending on speech rate. The occurrence of single peak movements is indicated by zero duration for the temporal interval peak-one-to-peak-two. Variation of speech rate are well defined here as there are two separate non-overlapping zones: 1) one peak productions at fast rates with intervowel duration in the range of 150-220 ms; and 2) two peak productions at slow rates with intervowel...
duration ranging from 460 to 730 ms. The occurrence of one glottal movement at fast rates as opposed to two movements at slow rates applies not only to the clusters /sˤt/, /sk/ and /skXt/ but also to the geminated combinations /ss/ and / sˤsˤ/ (see Figure 6).

3.2. Laryngeal-oral coordination

We have already noted in § 3.1 the effect of word boundary on the coordination between laryngeal and oral articulation. Figure 4 compares the location of peak glottal opening (PGO) for the different sequences of voiceless consonants produced at a slow rate. PGO location was calculated in % as follows: 100 x position of PGO relative to fricative onset / duration of fricative. For the geminated sequences /ss/ and /sˤsˤ/, PGO generally occurs in the first half of the frication phase indicating that these geminates are articulated with an early devoicing gesture. On the other hand, for singleton /s/ and /sˤ/, PGO is attained just before the consonant mid-point. As for the clusters /sˤt/, /sk/ and /skXt/, the location of PGO varies as a function of the word boundary. When the word boundary spans these sequences, PGO is just before mid-frication, similar to singleton /s/ and /sˤ/. The absence of the boundary, however, produces a delaying of PGO, which occurs later than mid-frication. A similar peak delay, which is probably due to the perturbing effect of the adjacent plosive, was reported to occur for final /st/ in English by Saltzman & Munhall (1989) cited in [12]. [2] also notes that PGO may be delayed in fricative-stop sequences compared to single fricatives. Other researchers [3, 10] have also indicated that the location of PGO is not systematically aligned with the midpoint of the fricative.

This result is in agreement with the finding reported in [3]. So it seems that the location of PGO is not systematically aligned with the midpoint of the fricative and this contradicts with a rule that formulates laryngeal-oral coordination as follows: “if fricative gesture is present, coordinate the PGO with the mid-point of the fricative...[2: 228]”

![Figure 4: Location of peak glottal opening in % relative to the duration of the fricative (slow rate production).](image)

The peak of glottal opening is delayed even more when the sequence of fricative + plosive is produced at fast rates as illustrated by Figure 5. The peak occurs in the second half of the frication phase and sometimes towards the frication end.

![Figure 5: Location of peak glottal opening in % relative to the duration of the fricative (fast rate production).](image)

Another interesting aspect of laryngeal adjustment concerns the production of the schwa /ə/ in the vicinity of voiceless obstruents. It was observed in most productions of consonant clusters that the glottis tended to begin opening while the vocal folds were still vibrating for the schwa /ə/ preceding fricatives. Generally abduction for the fricatives was found to be synchronized with the onset of this vowel. An explanation for this devoicing gesture is that since the two consonants in the cluster are voiceless, the presence of the schwa would require a rapid change
from a very abducted glottis to a brief moment of voicing for the vowel to, again an abducted glottis for the voiceless stop.

4. CONCLUSION

The overall patterns of laryngeal adjustment in sequences of voiceless consonants reported in the present paper are in general agreement with previous studies. Speech rate and word boundary have an effect not only on the shape of laryngeal abduction-adduction gestures but also on laryngeal-oral coordination.

5. BIBLIOGRAPHY


Figure 6: Productions of sequences of voiceless consonants with (a) two laryngeal gestures at slow rate and (b) a single laryngeal gesture at fast rate for /s#k/, /sˤ#t/ and /s#s/, respectively. The small lines on the glottal movements for the plosives correspond to the release.