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Abstract—In this paper, we present a game theoretical frame-
work for DSA (Dynamic Spectrum Access) in cellular networks.
We model and analyze the interaction between cellular operators
with packet services, in a spectrum sharing context. We present
inter-operator DSA algorithms based on game theory. A two-
players non-zero sum game is formulated, where the operators
are the players. We define a utility function, for the operator
that takes: (1) the users throughput, (2) the spectrum price, and
(3) the blocking probability into consideration. We present two
system models: a) a centralized model where a DSA algorithm,
for the global welfare in terms of the operators rewards, is
inspired by the Pareto optimality concept. b) a distributed model,
where a DSA algorithm is based on Nash equilibria concept.
The convergence to NE in the distributed model is analyzed.
The rewards of the operators in the centralized DSA algorithm
are compared with those in the FSA (Fixed Spectrum Access)
situation. The obtained rewards using the centralized DSA
algorithm significantly exceed the FSA rewards. The obtained
blocking probabilities are shown not to exceed the target value.

I. INTRODUCTION

Spectrum sharing and DSA techniques have been active
research topics for the past decade due to the spectrum crowd
situation. The existing spectrum allocation process, denoted as
FSA, headed for static long-term exclusive rights of spectrum
usage [1] and shown to be inflexible [2].

In the cellular context two main axis of resource manage-
ment exist. The JRRM (Joint Radio Resource Management)
axe, in which one operator manages jointly his networks (or
Radio Access Technology) making benefit of his own licensed
bands [3]. The second axe, which we call operator shar-
ing DSA (or Inter-operator DSA), in which the competition
and/or the cooperation aspects between different operators
are explored. Competition aspects are referred to the costs
and revenues partitioned among the operators as a result of
spectrum sharing.

In this paper, we are interested in developing inter-operator
DSA algorithms for cellular networks in a spectrum sharing
context. DSA algorithms are being investigated as new promis-
ing techniques to overcome the inflexible FSA situation which
has leaded to resources limitation problem. For instance, in
[4], the authors propose a dynamic algorithm to allocate the
spectrum to competing base stations. The base stations are
sharing a common spectrum band controlled by a spectrum
broker. The broker assigns the spectrum to the base stations
to maximize its revenue, without violating the interference
constraint.

As cellular operators pay high prices for the license, hence
their main interest in sharing the spectrum lies behind the
expected benefits [5]. The revenue maximization, under the
interference constraint, in a spectrum auction framework has
been studied in [6]. Reference [7] analyzes a network model
where the service-providers base stations are sharing a com-
mon amount of spectrum. A distributed DSA algorithm is
proposed where each user maximizes his utility (bit rate)
minus the payment for the spectrum.

In this paper we present and analyze inter-operator DSA
algorithms based on game theory, with cellular operators
sharing a common pool of spectral resources. A two-players
non-zero sum game is formulated where the operators are the
players.

Game theory has been used to study several telecommunica-
tion problems and spectrum sharing techniques. Game theory
equips us with various optimality criteria for the spectrum
sharing problem [8]. In [9] the authors made use of game
theory to analyze the power allocation problem of peer-to-peer
systems in unlicensed bands. The authors in [10] also analyze
peer-to-peer node conflicts. Each player (system) wants to
determine the operating channel in a spectrum sharing game.
A distributed channel allocation algorithm has been proposed
in [11] for BFWA (Broadband Fixed Wireless Access) net-
works to replace the regular frequency planning method. The
algorithm is based on a mixed strategy game.

Most of the research done for DSA using game theory
has focused on decentralized networks (i.e. peer-to-peer sys-
tems) [9], [10], and [12] or on primary/secondary usage
context [13]. However no research exists where game theory
is used to study the conflicts between cellular operators.

Our main contributions are: modeling the interaction be-
tween the operators in the form of utility function, and
proposing a DSA algorithm based on the Pareto optimality
concept. We address the pricing and reward issue by defining
a model for the operators reward that takes into consideration:
(1) the spectrum price as a function of demand, (2) the end-
user satisfaction as a function of the achieved throughput, and
(3) the blocking probability.

In this paper we extend our work presented in [14] to more
realistic scenarios. A SMDP (Semi Markov Decision Process)
framework for DSA in cellular networks is proposed in [14].

The paper is organised as follows: Section II presents the
network model in terms of system model, traffic model, and



the principle of DSA operation. In section III, we illustrate the
game theory framework, the Pareto optimality, and we give the
utility function details. Section IV gives the numerical results.
Conclusion is finaly given in section V.

II. NETWORK MODEL

A. System models

We intend to study DSA among cellular operators on the cell
level. For the centralized model, we consider a meta-operator
who owns and manages a common pool of spectral resources
in a specific region. The authors in [2] refer to the common
sepctrum pool notation as (Coordinated Access Band or CAB).
In this paper, each operator operates one RAN (Radio Access
Network) of packet services. The operators (RANs) do not
own the spectrum but rather share the pool. According to the
load variations of the RANs, the meta-operator dynamically
attributes frequency blocks to the operators.

The cellular networks (RANs) are supposed to be homo-
geneous in propagation and in traffic, and the operators are
assumed to deploy classical frequency reuse scheme (i.e. reuse
1 or reuse 3). Based on these assumptions, all cells of an
operator statistically behave the same way, we can thus focus
on a single cell per operator. Note that, the main difference
among frequency reuse schemes lies on their impact on in-
terference production and hence on the achievable throughput
(section II-B).

The CAB is subdivided into mmax elementary spectrum
bands (blocks) where a number of blocks mi is allocated
momentarily to operator (cell) i. The assigned blocks to
the operators are non-overlapping blocks. Fig. 1 gives the
general schema of our centralized system model. Parameters
ni, i = 1, 2 are the number of active users in cell i, and λi is
the arrival rate of cell i.

Fig. 1. Centralized model: two operators access to a common spectrum pool

Our model could be coherent with SOFDMA (Scalable
Orthogonal Frequency Division Multiple Access) cellular net-
works (i.e. WiMAX, 3GPP-LTE), where the bandwidth of the
system is scalable [17]. In these systems, the operator has
indeed an additional flexibility in resource allocation through
the possibility of scaling the bandwidth.

For the centralized model, we are presenting a DSA al-
gorithm that assigns bandwidth to the operators based on

Pareto optimality concept. The meta-operator is aware of the
operators situations such as: number of users, maximum cell
throughput, the arrival rates, etc... As for the distributed model,
the central entity (i.e. the meta-operator) does not exist and the
operators have direct, and simultaneous, access to the CAB.
The DSA algorithm in the distributed model is based on Nash
equilibrium, where each operator knows his own arrival rate
value and does not know the opponent arrival rate.

B. Traffic
We consider a bursty packet traffic, such as web browsing or

file downloading on the downlink: a user alternates between
packet calls (several packets are transferred in a very short
time) and reading times (there is no transfer). In this paper,
we focus on the packet call level and so we neglect the details
of the packet level. An illustration of the traffic model is shown
in Fig. 2.

We assume Poisson arrivals of user downlink packet calls
with rate λi in cell i. Traffic is supposed to be elastic: the
packet call size is exponentially distributed with mean XON

bits for all cells and so the service rate depends on the available
cell throughput. We assume a fair share of resources between
users of a given cell (for both operators). For cell i let Di be
the data rate (in bits/s) accessible with one spectrum block.
Then the service rates can be written as:

µi =
miDi

XON
.

The average data rate accessible by users in a cell is propor-
tional to the bandwidth allocated to the cell. We assume the
cell throughput is equally divided among all users of the cell.

As the frequency reuse scheme mainly impacts the achieved
throughput, and as all cells (within each operator) have the
same throughput (because the reuse is regular and the networks
are homogeneous), we can adapt the traffic model in order to
take the effect of interference generated by the reuse scheme.
We consider the results obtained in [15], and we make use of
the average cell throughput obtained (i.e. Di) for reuse 3 case.

Fig. 2. Assumed traffic model.

The authors in [15] have presented an analytical evaluation
of different frequency reuse schemes for OFDMA networks.

Based on the presented model, we can see that each cell
behaves as M/M/1/nmax

i system, where nmax
i is the maximum

number of users the cell accepts (according to the Connection
Admission Control configuration).



III. GAME THEORY FRAMEWORK

In this section we introduce our game theoretical frame-
work, and we give the details of the players utility function. We
formulate a two-players non-zero sum game, where the players
are the operators. The game G is defined as, G = (P, S, U),
where P is the set of players (in this paper we have two
players), S is the strategy (action) set for each player, and
U is the payoff (utility) obtained by each player given the
strategy S.

The strategy performed by each player (operator) represents
the number of spectrum blocks mi allocated to the player i,
i.e. m1,m2 ∈ S. The utility obtained by player i is the mean
(over the number of users) achieved reward given the number
of allocated blocks to both operators (m1,m2), and the user
arrival rates to both operators (λ1, λ2). More details about the
operator utility will be given in section III-C.

For each couple of arrival rates (λ1, λ2), we formulate a
strategic game (matrix game). By solving the game, NE (Nash
Equilibrium) points as well as PO (Pareto Optimal) points are
obtained.

A. Distributed model

Let ui(si, s−i) be the utility of player i given his strategy
si, and the strategy s−i of the opponent players. The strategy
profile s∗ is a strict NE strategy if, for each player i,

ui(s∗i , s
∗
−i) > ui(si, s

∗
−i),∀si ∈ Si.

According to our network model the strategy si represents
the number of assigned blocks mi to the operator i.

In the distributed model, each operator plays his best-
response strategy against the opponent player. The best-
response function bri(si) of player i to the opponents’ strate-
gies s−i is denoted by,

bri(si) = maxui(si, s−i), si ∈ Si

Note that, the operator does not need to know the opponent
arrival rate, however he knows the opponent strategy.

B. Centralized model

The strategy s
′

is a Pareto-superior to the strategy profile s
if, for at least one player i,

ui(s
′

i, s
′

−i) > ui(si, s−i),∀si ∈ Si,

without making another player worse off [16].
A strategy is a Pareto-Optimal (PO) when no Pareto im-

provements can be made. It is worth mentioning that, in the
centralized model and from the meta-operator point of view,
the PO points are more interesting to focus on for the sake
of an efficient DSA algorithm. The NE points are not always
efficient compared to PO points [8].

It is likely to have more than one PO point for the same
game. In this case a selection criterion is needed in order to
choose a unique PO point. We choose to maximize the sum
of operators utilities (social welfare maximization) in case the
game solution gives more than one PO point.

C. Utility function

The operator’s utility represents the revenues (obtained
through the connected end-users) as well as the costs in terms
of spectrum price and blocked users. On one hand, revenue is
assumed to be proportional to the satisfaction of the users. On
the other hand, it is supposed that spectrum cost follows the
‘law’ of supply and demand.

The challenging issue in DSA techniques for the operator
lies in the trade-off between the cost paid for the spectrum and
the revenues obtained from the satisfied users: more spectrum
means a higher cost for the operator but also means higher
throughputs for the end-users. Based on this principle we
define a utility function that takes into account: (1) the user
throughput, (2) the blocking probability and (3) the spectrum
price.

The higher the satisfaction of users, the higher the operator
revenue. The revenue obtained from a given customer in cell
i increases with its satisfaction:

φi(ni,mi) = Ku(1− exp(−µi/(niµcom))), (1)

where Ku is a constant in euros per unit of satisfaction, µcom

is a constant called comfort service rate, and the satisfaction
is an increasing function of the user data rate (without unit)
[18]. Note that, the users satisfaction function considers only
the admitted users to the system.

In order to consider the non-admitted users in the utility, the
operator is penalized by susbtracting P bk

i from the revenues
due to the blocked users. The substracted value is supposed
to be very low as long as the blocking probability is below a
threshold value, and very high when the blocking probability
approaches the threshold. The penality P bk

i can be denoted as:

P bk
i = exp((πbk

i − δπth)Kbk), (2)

where πbk
i is the blocking probability at the steady state of

the Markov chain, πth is the blocking probability threshold
value, Kbk is a parameter which decides how fast the penality
increases as a function of the blocking probability, and δ is
a parameter that controls the increasing start point of the
penality, 0 < δ < 1. The penality can also be seen as if
the operator loses money due to the blocked users.

As the spectrum price depends on the market demand, the
price increases when the amount of free spectrum decreases.
The spectrum price paid by operator p can be given as:

P sp
i = KBmi exp

(
−mmax −m1 −m2

mcom

)
, (3)

where mcom is a constant that controls the variation of the
price and KB is a constant in euros per block. If mcom is
high, the exponential function is close to 1 whatever the state.
If mcom is small, there is a high discount when the CAB
is free. Note that the price paid by the operator for a given
elementary band varies with the occupation of the spectrum
pool. As the pool size is limited and as spectrum cost increases
with increasing demand, there is a strong interaction between
the operators.



From equations 1, 2, and 3, the mean (over the number
of users) obtained reward per cell for operator i can thus be
written:

ūi =
nmax

i∑
ni=0

niπni
φi(ni,mi)− P sp

i − P
bk
i ,

where πni
is the steady state probability that the cell has

ni active users.

IV. NUMERICAL RESULTS

A. Parameters

Hereafter we define the paremeters we used to illustrate
the DSA algorithm. The spectrum pool is assumed to have a
size of 2 MHz, the elementary band (mp = 1 block) has a
size of 100 KHz (that gives a total number of blocks equal to
20 blocks), and mcom = 1 MHz. For the sake of simplicity,
we assume all cells have the same characteristics: XON =
2 Mbits, and nmax

i = 8 users for cell i. Based on the results
in [15], the average cell data rates Di is considered to be 2.6
Mb/s per MHz for reuse 3 case.

The pricing constants are fixed as follows: Ku = 100
euros/unit of satisfaction, KB = 400 euros/MHz, Kbk = 40
euros, πth = 20% and δ = 0.9. Parameter µcom is set to
0.25 s−1, which corresponds to a comfort throughput of 500
kb/s.

The FSA case is the case where the CAB is divided equally
between the two operators no matter the values of their arrival
rates.

B. Distributed model case

We analyze the distributed model in terms of convergence to
NE. Each of the operators uses the best-response algorithm.
For the considered parameters set, Fig. 3 shows the simul-
taneous plays of the operators in a game with (λ1, λ2) =
(0.7, 1.8)s−1. The figure shows two different cases where the
players have different initial strategies for each case. Note that
the game has two NE points: the number of blocks obtained
by the operators at NE, m(NE) = (6, 14) and (5, 15). In one
of the cases (on the left side of Fig. 3) the operators converge
to one of the NE points. Though in the other case, they do
not converge but they oscillate between a mix of the two NE
strategies.

Simulations show that in 62% of the cases the operators
converge to NE (they oscillate in 38% of the cases), depending
on the initial strategy of both players.

For the games with a unique NE, the best-response algo-
rithm converges in 100% of the cases. It is obvious that the
best-response does not guarantee the convergence to NE when
non of the NE points dominates the other.

C. Centralized model case

In this section we give the results for the centralized
model case, based on the Pareto optimality concept. For the
considered parameter set, Fig. 4 gives the obtained per-cell
utilities for operator 1.

Fig. 3. Distributed model for a game with (λ1, λ2) = (0.7, 1.8)s−1.

First of all, it is clear that in FSA situation, the utilities
of operator i are dependant only on λi. The arrival rates in
the opponant operator has no effect. However in DSA situ-
ation, the interaction between the operators are more visible
especially for high arrival rates.

We can notice that the operators’ utilities obtained using
DSA algorithm (PO utilities) considerably exceed the utilities
achieved with FSA.

Fig. 4. Utilities obtained with FSA, and with Pareto Optimal DSA algorithm.

Fig. 5 gives the percentage of the CAB utilization for the
DSA case. We can notice the algorithm gives more spectrum
to the operators with the increase of the arrival rates. Note that
in FSA case, the CAB is 100% used for all arrival rate values.

It is worth to mention that, the interaction between the
operators becomes less remarkable as the spectrum price
goes down. The gain of DSA over FSA in terms of rewards
decreases.

The effect of the penality function (equation 2) on the
obtained blocking probability is illustrated in Fig. 6. The figure
gives the obtained blocking probability for operator 1 using
centralized DSA (i.e. Pareto based DSA) as function of λ1,
for different values of πth. The arrival rate of operator 2 λ2

is set to 0.2s−1.

D. Distributed versus centralized

According to our analyses of several games with (λ1, λ2)
ranging from (0.05, 0.05) to (2, 2)s−1, the obtained NE points



Fig. 5. CAB utilization using Pareto optimality concept.

Fig. 6. Obtained blocking probability for operator 1. λ2 = 0.2s−1.

are shown to have a PoA (Price of Anarchy) equals to:
• 1 for all the games at πth = 10%,
• 0.97 for the game (λ1, λ2) = (1.4, 1.4) at πth = 20%,

and
• 1 for all the other games at πth = 20%.
Note that the PoA is the ratio of reward obtained at the

NE point compared to the reward obtained at the PO point.
The PoA analyses show that the NE points are as efficient
as Pareto. In a practical situation the operators are supposed
to stop executing the best-response algorithm after a certain
number of plays whether they converge or not.

V. CONCLUSION

In this paper, we have presented DSA algorithm for cellular
operators based on game theory. We have defined utility
function for the operators that considers the users bit rate,
the blocking probability and the spectrum price. We have
presented a penality function for the blocking probability
control. We have presented two system models: a distributed
model based on Nash equilibria, and a cenralized model based
on Pareto optimality. We have studied the distributed system in
terms of convergence to NE. A convergence period is needed
to reach the unique NE point, and there is a possibility of
not converging to NE using the best-response algorithm. The

studied Nash equilibrium points are shown to have a PoA
of 1. The obtained operators’ utilities using the centralized
DSA algorithm are shown to considerably exceed the utilities
achieved using FSA. The obtained blocking probabilities are
shown not to exceed the target value, thanks to the introduction
of the penality notion to the reward function.

ACKNOWLEDGMENT

This work is part of the French program Systematic/URC
funded by Paris Region and the national authorities.

REFERENCES

[1] M. Buddhikot, Understanding Dynamic Spectrum Allocation: Models,
Taxonomy and Challenges, Proc. of IEEE DySPAN, 2007.

[2] T. Kamakaris, M. Buddhikot, and R. Iyer, A Case of Coordinated Dy-
namic Spectrum Access in Cellular Networks, Proc. of IEEE DySPAN,
2005.

[3] M. Coupechoux, J.M. Kelif, and Ph. Godlewski, SMDP Approach
for JRRM Analysis in Heterogeneous Networks, Proc. of European
Wireless, 2008.

[4] A. P. Subramanian, M. Al-Ayyoub, H. Gupta, S. R. Das and M.
Buddhikot, Near Optimal Dynamic Spectrum Allocation in Cellular
Networks, Proc. of IEEE DySPAN, 2008.

[5] J.M. Chapin and W.H. Lehr, Cognitive Radios for Dynamic Spectrum
Access - The Path to Market Success for Dynamic Spectrum Access
Technology, IEEE Communications Magazine, May 2007.

[6] S. Gandhi, C. Buragohain, L. Cao, H. Zheng, and S. Suri, A General
Framework for Wireless Spectrum Auctions, Proc. of DySPAN, 2007.

[7] J. Acharya, and R.D. Yates, A Price Based Dynamic Spectrum Alloca-
tion Scheme, Proc. of ACSSC, 2007.

[8] Z. Ji and K.J. Ray Liu, Dynamic Spectrum Sharing: A Game Theoretical
Overview, Proc. of IEEE Communication Magazine, 2007.

[9] R. Etkin, A. Parekh, D. Tse, Spectrum Sharing for Unlicensed Bands,
Proc. of IEEE DySPAN, 2005

[10] N. Nie and C. Comaniciu, Adaptive Channel Allocation Spectrum
Etiquette for Cognitive Radio Networks, Proc. of IEEE DySPAN, 2005.

[11] S. Wong I.J. Wassell, Application of Game Theory for Distributed
Dynamic Channel Allocation, Proc. of IEEE VTC, 2002.

[12] R. Menon, A.B. MacKenzie, R.M. Buehrer and J.H. Reed, Game Theory
and Interference Avoidance in Decentralized Networks, Proc. of SDR’04
Technical Conference and Product Exposition. 2004.

[13] B. Wang, Z. Ji, and K.J. Ray Liu, Self-Learning Repeated Game Frame-
work for Distributed Primary-Prioritized Dynamic Spectrum Access,
Proc. of IEEE SECON, 2007.

[14] M. Coupechoux, H. Kamal, Ph. Godlewski, and J.M. Kelif, Optimal and
Heuristic DSA Policies for Cellular Networks with Coordinated Access
Band, Proc. of European Wireless, 2009.

[15] Ph. Godlewski, M. Maqbool, M. Coupechoux and J.M. Kelif, Analytical
Evaluation of Various Frequency Reuse Schemes in Cellular OFDMA
Networks, Proc. of ACM Valuetools, 2008.

[16] M. Felegyhazi, and J.P. Hubaux, Game Theory in Wireless Net-
works: A Tutorial, EPFL Technical report: LCA-REPORT-2006-002,
http://infoscience.epfl.ch/record/79715/files/

[17] IEEE 802.16-2005 standard for local and metropolitain area networks.
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