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PolSAR Data Segmentation by Combining Tensor
Space Cluster Analysis and Markovian Framework

Yinghua Wang, Chongzhao Han, Florence Tupin

Abstract—We present a new segmentation method for the
fully polarimetric synthetic aperture radar (PolSAR) data by
coupling the cluster analysis in the tensor space and the Markov
random field (MRF) framework. The PolSAR data are usually
obtained as a set of 3×3 Hermitian positive definite polarimetric
covariance matrices, which do not form a Euclidean space. If we
regard each matrix as a tensor, the PolSAR data space can be
represented as a Riemannian manifold. Firstly, the mean shift
algorithm is extended to the manifold to cluster such tensors.
Then under the MRF framework, the data energy term is defined
by the memberships of all tensors in all the clusters, while
the smoothness energy term is defined according to the cluster
overlap rates. These parameters regarding the cluster analysis are
computed under the Riemannian framework. The total energy is
minimized using a graph cut based optimization to achieve the
segmentation results. The effectiveness of the proposed method
is verified using real fully PolSAR data and synthetic images.

Index Terms—Polarimetric synthetic aperture radar (PolSAR),
image segmentation, Markov random field (MRF), cluster anal-
ysis, Riemannian manifold.

I. INTRODUCTION

THe segmentation of fully polarimetric synthetic aperture
radar (PolSAR) data is still a challenging problem due to

speckle. The speckle effects on the segmentation results can
be suppressed to some extent when contextual information is
introduced. Markov random fields (MRFs) [1] have proven to
be powerful tools to impose spatial regularity constraint on the
segmentation. Let T = {TTT s, s ∈ S} be the observed data set,
where S is the pixel set. The goal of segmentation is to obtain
a label set L = {Ls, s ∈ S}. The MRF based segmentation
can be achieved via minimizing an energy of the form

E(L) =
∑

s∈S
Ds(Ls) +

∑

{s,t}∈N
V (Ls, Lt) (1)

where {s, t} ∈ N indicates pixels s and t are neighbors. In
(1), the data term Ds(Ls) measures the disagreement between
the label value Ls and the observation TTT s. The smoothness
term V (Ls, Lt) imposes the spatial regularity constraint and
penalizes the spatial inhomogeneity in the label set.
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Ds(Ls) is commonly defined by the log-likelihood as
Ds(Ls) = − ln(P (TTT s|Ls)). The parametric models assume
the observation distribution P (·) is known and defined by
some parameters. The non-parametric models, such as the
approach in [2] using the kernel methods to estimate P (·), do
not impose any observation distributions. Thus they may be
more appropriate for describing the complicated and arbitrary
observations. For V (Ls, Lt), the Potts model [3] is often
used for classification, which is defined as V (Ls, Lt) =
λU(Ls 6= Lt). The user defined parameter λ specifies the
overall homogenization; U(·) is 1 if its argument is true and
otherwise 0. This model assigns the same penalty for the label
pair (Ls, Lt) as long as Ls 6= Lt. Thus it may eliminate some
image details.

In this letter, we aim to define the data term by the non-
parametric methods. However, some non-parametric methods
such as the Parsen window techniques [4] often require to
compute the Euclidean distances among the observations.
Whereas the PolSAR data do not form a Euclidean space
when for each pixel s ∈ S, the observed value TTT s is the
3×3 Hermitian positive definite (HPD) polarimetric covariance
matrix. One way to extend these non-parametric methods to
the PolSAR data space is to transform the HPD matrix space
into a Euclidean space. In addition, we define the smoothness
term using an adaptive V (Ls, Lt) which is dependent on the
specific (Ls, Lt) values. The cluster overlap rate (OLR) [5] is
extended to the matrix space for defining V (Ls, Lt).

The contribution of this paper is twofold: 1) we represent
the PolSAR data space as a Riemannian manifold, then 2)
we propose a practical segmentation algorithm. Firstly, the
clustering of PolSAR data over the manifold is achieved by ex-
tending the original mean shift algorithm [6]. Then a new MRF
based segmentation method employing the cluster analysis is
presented. Under the Riemannian framework, we compute the
degrees of membership of all polarimetric covariance matrices
in all the clusters and the OLRs between every two clusters,
which are respectively used to define the data term and the
smoothness term in the MRF framework. The total energy is
minimized using a graph cut based optimization to achieve the
regularized segmentation.

II. POLSAR DATA SPACE

The PolSAR data space can be represented as a Rieman-
nian manifold as follows. A Riemannian manifold M is a
differentiable manifold endowed with a Riemannian metric.
The Riemannian metric smoothly assigns to each XXX ∈M an
inner product on the tangent space TXXX . The space of n × n
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HPD matrices is known to be a differentiable manifold [7]. We
endow it with the Riemannian metric defined in [8], where the
inner product between two tangent vectors yyy, zzz ∈ TXXX is given
by

< yyy,zzz >XXX= trace
(
XXX− 1

2yyyXXX−1zzzXXX− 1
2

)
. (2)

Note that (2) was initially defined for the space of symmetric
positive definite (SPD) matrices. In this paper, we consider
the straightforward extension of this framework to define the
Riemannian manifold for the n × n HPD matrices, and in
particular, the PolSAR data. Indeed all the concepts of [8] can
be extended since the exponential, logarithm and power are
well-defined for HPD matrices [9] as well.1 Henceforth each
HPD matrix on M will also be termed as a tensor, the same
terminology used in [8]. Following [8] we now briefly describe
some key concepts that will be used in the sequel.

For each point XXX ∈ M, two maps are defined in a
neighborhood of XXX between M and TXXX . The exponential map
expXXX : TXXX → M maps each tangent vector yyy ∈ TXXX to the
point YYY ∈ M. The inverse of the exponential map at point
XXX is the logarithm map logXXX : M→ TXXX , which maps each
point YYY ∈ M to the tangent vector yyy ∈ TXXX . The exponential
and logarithm maps associated to (2) are defined as

expXXX(yyy) = XXX
1
2 exp

(
XXX− 1

2yyyXXX− 1
2

)
XXX

1
2 (3)

logXXX(YYY ) = XXX
1
2 log

(
XXX− 1

2YYY XXX− 1
2

)
XXX

1
2 (4)

where exp(·) and log(·) are the matrix exponential and loga-
rithm, respectively.

Here each tangent vector yyy is an n × n Hermitian matrix.
Since there are only n2 independent real coefficients in the
upper or lower triangular part of yyy, the minimal representation
for yyy in TXXX is given by the vector operator

VecXXX(yyy) = VecIII(XXX− 1
2yyyXXX− 1

2 ) (5)

where III is the identity matrix, and VecIII(·) is defined as

VecIII(yyy) =[y1,1,
√

2Re(y1,2),
√

2Im(y1,2),
√

2Re(y1,3),√
2Im(y1,3), ..., y2,2,

√
2Re(y2,3), ..., yn,n]T .

(6)

In (6), (·)T means transpose; Re(·) and Im(·) take the real
and imaginary part of a complex number, respectively. The
mapping VecXXX(·) realizes an isomorphism between TXXX and
Rn2

with the canonical metric.
The geodesic length between two tensors XXX and YYY defines

the Riemannian distance d(XXX,YYY ), which can be computed by

d2(XXX,YYY ) = trace
(
log2

(
XXX− 1

2YYY XXX− 1
2

))
. (7)

The mean value µ̄ of a set of tensors {XXXi}n
i=1 on M is

defined as the tensor on M that minimizes the sum of the

1Consider a Hermitian matrix WWW . Let WWW = UUUDDDUUU∗T be the eigenvalue
decomposition of WWW , where (·)∗T denotes the Hermitian transpose. The
exponential of WWW is given by exp(WWW ) = UUU exp(DDD)UUU∗T , where exp(DDD) is
the diagonal matrix of the eigenvalue exponentials. For a HPD matrix WWW , its
logarithm and power can be computed similarly, by replacing the eigenvalue
exponentials with the eigenvalue natural logarithms and powers, respectively.

TABLE I
THE MS CLUSTERING ALGORITHM FOR POLSAR DATA

Input: TTT s, s ∈ S, h, and M

• For each pixel s

- Map TTT s into the tangent space by ttts = logIII(TTT s)

- Obtain the minimal representation xxxs for ttts by xxxs = VecIII(ttts)

- Compute the convergence point yyys corresponding to xxxs using (13)
- Change yyys back to the 3× 3 tangent vector zzzs by zzzs = Vec−1

III (yyys)

- Map zzzs back to the tensor space by ZZZs = expIII(zzzs)

• As proposed in [6], obtain the clustering results by grouping the pixels
whose yyys values are closer than h into the same cluster

• Eliminate the clusters containing less than M pixels, which results in
Nc clusters {Sp}Nc

p=1

• For each pixel s, assign Ls = p if yyys ∈ Sp

Output: Ls, ZZZs, s ∈ S, and Nc

squared distances: µ̄ = arg min
XXX∈M

∑n
i=1 d2(XXX,XXXi). It can be

computed by the gradient descent algorithm as follows:

µ̄t+1 = expµ̄t

(
1
n

n∑

i=1

logµ̄t
(XXXi)

)
. (8)

The linear interpolation ZZZ of two tensors XXX and YYY is on
the geodesic joining these two tensors. It can be computed by

ZZZ = expXXX(t · logXXX(YYY )), t ∈ [0, 1]. (9)

III. MEAN SHIFT (MS) CLUSTERING OF POLSAR DATA

We first briefly review the MS algorithm [6], to which the
readers may refer for more details. The MS algorithm extracts
the local maxima of the empirical probability density function
(p.d.f.), i.e., so-called density modes, in the feature space.

Given n data points {xxxi}n
i=1 in the d dimensional Euclidean

space Rd, the kernel density estimator at point xxx with kernel
K(xxx) and bandwidth h is given by

f̂h,K(xxx) =
ck,d

nhd

n∑

i=1

k

(∥∥∥∥
xxx− xxxi

h

∥∥∥∥
2
)

(10)

where k(x) is the profile of the kernel K(xxx) and ck,d is the
normalization constant. The gradient of f̂h,K(xxx) is

5f̂h,K(xxx) = f̂h,G(xxx)
2ck,d

h2cg,d
mh,G(xxx) (11)

where G is another kernel and its profile g(x) = −k′(x);
mh,G(xxx) is the MS vector, expressed as

mh,G(xxx) =
∑n

i=1 xxxig(‖xxx−xxxi

h ‖2)∑n
i=1 g(‖xxx−xxxi

h ‖2) − xxx. (12)

For each data point xxx, the general MS procedure contains two
steps:
• Initialize yyy0 with yyy0 = xxx.
• Update yyyj by yyyj+1 until ‖yyyj+1 − yyyj‖ is small enough,

where
yyyj+1 = yyyj + mh,G(yyyj). (13)

Then we apply the MS algorithm to the PolSAR data. Since
this algorithm is defined for the Euclidean space, we will
transform first the PolSAR data space into a vector space. This
transformation can be achieved by the logarithm map logIII(·)
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and the vector operator VecIII(·), which is equivalent to using
the Log-Euclidean metric [10].

Table I depicts the MS clustering algorithm for PolSAR
data. The input includes the polarimetric covariance matrix
TTT s for each pixel s, the MS bandwidth h, and the defined
minimum number of pixels M for each cluster; the output
contains each pixel’s label value Ls and density mode ZZZs that
TTT s belongs to, and the number of clusters Nc.

IV. MRF BASED SEGMENTATION ALGORITHM

The MRF based segmentation is achieved via minimizing
the energy in (1), in which Ds(Ls) and V (Ls, Lt) will be
newly defined in the following.

It is known that the fuzzy memberships in the Fuzzy k-
means algorithm [4] describe the agreement between each
observed value and each cluster. Therefore we define the data
term by the memberships of all tensors in all the clusters.

Different from [4], we compute the memberships using the
results of the MS algorithm in Table I, and the computations
are carried out under the Riemannian framework. The mem-
bership depends on the cluster center. Once Ls and ZZZs, s ∈ S,
are obtained, the cluster centers {CCCp}Nc

p=1 are given by

CCCp = EM[ZZZs|Ls = p] (14)

where EM[·] denotes the mean of tensors computed by (8).
The membership of TTT s in the pth cluster, denoted by us,p, is
based on the Riemannian distance (7):

us,p =
1/d2(TTT s,CCCp)∑Nc

k=1 1/d2(TTT s,CCCk)
. (15)

Equation (15) will be calculated for each pixel in each cluster.
Then the data term Ds(Ls) is given by

Ds(Ls = p) = −us,p. (16)

Note that (16) does not impose any assumptions about the
observation distribution. Moreover, Nc is not required to be
set beforehand; it is derived from the parameters h and M in
the MS algorithm, which can be set more intuitively.

Now we define the smoothness term V (Ls, Lt) based on
the cluster OLRs in the tensor space.

Given the cluster centers {CCCp}Nc
p=1, the OLR between the

pth and qth clusters, denoted by OLR(p, q), is defined as

OLR(p, q) =
P (saddle)

min[P (CCCp), P (CCCq)]
(17)

where P (CCCp) and P (CCCq) are the p.d.f. values of the cluster
centers CCCp and CCCq, respectively; P (saddle) is the p.d.f. value
of the saddle point on the geodesic joining these two cluster
centers. Equation (17) has the same expression as the OLR
definition in [5], but all the p.d.f. values are estimated in a
different way. If we extend the kernel density estimator (10)
to the manifold using the Riemannian distance (7), the p.d.f.
value of a tensor XXXs with profile k and bandwidth h is

P (XXXs) =
ck

n

∑

t∈S
k

(
d2(XXXs,TTT t)

h2

)
(18)

Fig. 1. The span image of the original data set. The two test sites used are
chosen as the areas in the two boxes. The data contained in the six ellipses
are employed to define the six classes in our simulated images.

where ck is the normalization constant. The saddle point is the
point with the lowest p.d.f. value on the geodesic that joins
CCCp and CCCq. This implies

P (saddle) = min
XXXs

P (XXXs) (19)

where each point XXXs on the geodesic can be computed by
(9). Finally, with {OLR(p, q)}(p,q)∈{1,2,...,Nc}2 , we have the
definition for V (Ls, Lt):

V (Ls, Lt) =

{
0 Ls = Lt

λ OLR(Ls,Lt)
max
(p,q)

OLR(p,q) Ls 6= Lt
(20)

which is the same as the Potts model if for all the (p, q) ∈
{1, 2, ..., Nc}2, we assign OLR(p, q) = 1.

Notice that (20) provides adaptive smoothness depending
on the class labels. When the pth and qth clusters are well
separated in the feature space, OLR(p, q) tends to be 0. No
regularization is imposed in this case. Thus edges between
the pth and qth classes are preserved. On the contrary, if
the pth and qth clusters are totally overlapping, OLR(p, q)
becomes 1. In this case the spatial relations are essential and
our smoothness term induces strong regularization.

The total energy (1) is minimized using a graph cut based
optimization, i.e., the α-β-swap algorithm [11], which is a
fast algorithm converging to the approximate global minimum
with guaranteed optimality bounds.

V. QUANTITATIVE EVALUATION OF SEGMENTATIONS

The quantitative segmentation evaluation is fulfilled in the
same way as [12]. Given a set of segments {Qi}Nc

i=1 and a
ground truth region G, the ratio RIU(G) ∈ [0, 1] is defined as

RIU(G) = max
i

|Qi

⋂G|
|Qi

⋃G| . (21)

RIU(G), based on the cardinality of set intersection and union,
measures the best spatial support for the region G. For an entire
data set, the segmentation performance can thus be evaluated
by computing the mean RIU value, denoted by R̄IU, across
all the ground truth regions.

VI. EXPERIMENTAL RESULTS

The German Aerospace Center (DLR) E-SAR L-band fully
PolSAR data2 are used for experiments. The original images

2These data are downloaded from http://earth.esa.int/polsarpro/datasets.html.
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(a) (b) (c) (d)

Fig. 2. Segmentation of the test site in the green rectangle in Fig. 1 into
Nc = 3 classes using (a) WishAdaptNum, (b) Mem+0, (c) Mem+Potts with
λ = 0.05, and (d) Mem+OLR with λ = 0.05.

have 1540× 2816 pixels. The span image is shown in Fig. 1.
Two sites in Fig. 1 are tested first, then a simulated data set
constructed from this E-SAR data set is tested.

The proposed MRF based approach is denoted by
Mem+OLR (using memberships to define the data term and
OLRs to define the smoothness term). Firstly, to verify the
effectiveness of the proposed data term, we assign the smooth-
ness term of Mem+OLR to be 0 (no regularization is imposed)
to get another approach Mem+0. Mem+0 is compared with
the Wishart clustering method having adaptive number of
clusters (denoted by WishAdaptNum) [13]. This is equivalent
to comparing the proposed data term with the Wishart log-
likelihood (WLL). Then, to demonstrate the effectiveness of
the proposed smoothness term, Mem+OLR is compared with
Mem+0 and Mem+Potts (substituting the smoothness term
by the Potts model). In our experiments, speckle filtering is
implemented beforehand using Lee’s filter [14]. All the kernels
used are the uniform kernels. In each segmentation, the classes
are rank ordered by span and colored from dark blue to green
to dark red according to their rank.

The first test site is selected as the 176 × 152 image in
the green rectangle in Fig. 1. Since it is obviously composed
of 3 classes, it can help us to choose the appropriate values
for the MS parameters h and M . h = 0.5, 1, 1.5, 2 and
M = 20, 40, 60 are tested. With h = 1 and M = 40, the
image is rightly segmented into 3 classes by our methods.
The results are shown in Fig. 2. Let us first consider the
case without regularization. Fig. 2(a) and (b) show respectively
the WishAdaptNum result and the Mem+0 result. The similar
segmentation performance here verifies the effectiveness of
the proposed data term. More regular results can be observed
after regularization, as shown in Fig. 2(c) and (d). Now the
same data term is used, but the small structures are better
preserved as we use the proposed smoothness term [Fig. 2(d)]
rather than the Potts model [Fig. 2(c)], such as the region in
the red ellipse. This verifies the performance improvement of
the proposed smoothness term over the Potts model. For the
following test sites (including the simulated images), h and
M are fixed to 1 and 40.

The second test site is the 512 × 512 image in the red
rectangle in Fig. 1. The corresponding optical image [Fig.
3(a)] shows that this test site is complex enough due to plenty
of typical targets. The segmentation results are shown in Fig.
3(b)−(f). Let us first compare the Mem+0 result [Fig. 3(c)]
with the WishAdaptNum result [Fig. 3(b)]. It is observed
that Mem+0 provides a more detailed segmentation of strong
scatterers, and WishAdaptNum more finely segments the low
return areas. The regularized results by various methods are

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) The optical image from Google Earth c©2008 Google for the test
site in the red rectangle in Fig. 1. Segmentation of this test site into Nc = 11
classes using (b) WishAdaptNum, (c) Mem+0, (d) Mem+Potts with λ = 0.05,
(e) Mem+OLR with λ = 0.05, and (f) Mem+OLR with λ = 0.25.

shown in Fig. 3(d)−(f), in which we obtain more uniform
region for each class. Then we compare Mem+OLR with
Mem+Potts. With the same λ value, although the Mem+OLR
result in Fig. 3(e) is a little noisier than the Mem+Potts result
in Fig. 3(d) due to weaker smoothness constraint for some
classes, the details are better preserved by Mem+OLR, such
as the building in the red rectangle and the fine structures in the
red ellipses. When λ is set to 0.25 for Mem+OLR, the result
in Fig. 3(f) shows comparable smoothness to the Mem+Potts
result [Fig. 3(d)] while representing the fine structures as
precisely as the Mem+OLR result with λ = 0.05 [Fig. 3(e)].

To evaluate the segmentation methods quantitatively, a sim-
ulated data set is built in the same way as [15]. A ground truth
image with six class labels is first designed as shown in Fig.
4(a). Then we manually select six homogeneous regions from
the real E-SAR data set as those enclosed in the red ellipses in
Fig. 1 and use them to fill in the six classes. The span image
of the simulated data is shown in Fig. 4(b). The segmentation
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TABLE II
THE RIU VALUES FOR THE SEGMENTATION RESULTS OF THE SIMULATED DATA SET

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 R̄IU

WishAdaptNum 0.9028 0.8577 0.8945 0.8056 0.9120 0.9629 0.8892
Mem+0 0.9251 0.8792 0.8982 0.8203 0.9061 0.9691 0.8997
Mem+Potts, λ = 0.1 0.9523 0.9379 0.9390 0.9157 0.9262 0.9788 0.9416
Mem+Potts, λ = 0.45 0.9493 0.9125 0.9147 0.8858 0.9148 0.9671 0.9240
Mem+OLR, λ = 0.1 0.9211 0.9328 0.9323 0.8787 0.9290 0.9622 0.9260
Mem+OLR, λ = 0.45 0.8183 0.9128 0.9300 0.8914 0.9362 0.9734 0.9103

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a) The ground truth label image. (b) The span image of the
simulated data set. Segmentation of this data set into Nc = 6 classes using (c)
WishAdaptNum, (d) Mem+0, (e) Mem+Potts with λ = 0.1, (f) Mem+Potts
with λ = 0.45, (g) Mem+OLR with λ = 0.1, and (h) Mem+OLR with
λ = 0.45.

results are shown in Fig. 4(c)−(h), and evaluated quantitatively
in terms of the RIU values, which are displayed in Table
II. Firstly, R̄IU of Mem+0 is higher than WishAdaptNum,
which verifies the performance improvement of the proposed
data term over WLL. Then, Mem+OLR is compared with
Mem+Potts. When λ = 0.1, R̄IU of Mem+OLR is lower than
Mem+Potts due to weaker smoothness constraint for some
classes, but for Class 5 RIU of Mem+OLR is higher. Class 5
is the one in red color, to which the thin red line belongs. This
means the fine structures are better preserved by the proposed
smoothness term, which can also be observed by comparing
Fig. 4(g) with (e). When λ = 0.45, for five of the six classes,
using Mem+OLR yields higher RIU values than Mem+Potts.
This implies the proposed smoothness term performs better
than the Potts model, as it is displayed in Fig. 4(h) and (f). To
sum up, for the Potts model, more regular results may imply
less details, yet with certain λ values, the proposed smoothness
term can provide results with comparable smoothness while
preserving most of the details.

VII. CONCLUSION AND PERSPECTIVE

We represent the PolSAR data space as a Riemannian
manifold, and propose a new segmentation method applied
to the data. The MS algorithm is first extended to cluster the
data over the manifold. Then based on the clustering results,
we propose the new definitions for the energy terms in the
MRF framework. The effectiveness of the proposed method
is verified by experimental results with the real fully PolSAR
data and synthetic images. The proposed data term defined
by cluster memberships shown to be advantageous over the
Wishart log-likelihood. With the appropriate bandwidth for

the MS algorithm, the proposed smoothness term defined by
the cluster OLRs may yield better performance than the Potts
model, in terms of preserving the image details. Moreover,
no prior knowledge about the observation distribution or the
cluster number is required in our method. The future work
includes improving the proposed method using adaptive MS
bandwidth and applying it to the terrain classification.
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