Widgets Mobility

Jean Le Feuvre

Cyril Concolato

Jean-Claude Dufourd

Telecom ParisTech; Institut Telecom; CNRS LTCI
46, rue Barrault
75634 PARIS CEDEX 13
{lefeuvre, concolato, dufourd}@telecom-paristech.fr

ABSTRACT

Widgets are becoming a natural way to design sniatilitive

application, and their usage is becoming widespmatoth the
desktop and the mobile world. However, most widgatstems
are web-centric and cannot address service mobiligpplication
migration without heavy workarounds. In this papee, describe
a mechanism enabling the communication between etsdgnd
their environment (other widgets, remote servic&gg proposed
solution provides mechanisms to handle applicatind service
mobility while retaining compatibility with existgqn Widget
technologies. A description of an implementatioal& provided.

Categories and Subject Descriptors

H.5.3 [Information Interfaces And Presentation]: Group and

Organization Interfaces- Asynchronous interaction, web-based

interaction; 1.3.2 [Computer Graphics]: Graphics Systems-
Distributed/network graphics

General Terms
Design, Experimentation, Standardization.

Keywords
Application Communication, Mobility, Widget.

1. INTRODUCTION

With the ever-growing deployment of mobile commuaricg

devices, applications are carried across variong@mments as
the user moves, either benefiting from the envirentmor
enriching it with their own services. Additionallysers are
constantly switching devices, using TV sets, molpil®ones or
desktop computers, and expect to have their apigicaon every
device they use. In this paper, we address the lityobin

environments constantly modified by near-by devices a
particular kind of applications: widgets.

Widgets are small interactive multimedia applicasidhat can be
found on desktop computers, mobile devices or, mecently,
TV sets. Whether embedded in a web page or ussthadalone
applications, most if not all widgets systems agsighed in the
same way. A configuration file (sometimes called nifest)
provides metadata about the widget
technologies such as (X)HTML, SVG, JavaScript ar8iSCare
used to display the widget. The standardizatiothe§e common
Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers oredgistribute to lists,
requires prior specific permission and/or a fee.
Mobility 2009, Sep 2-4, Nice, France Copyright @20
ACM 978-1-60558-536-9/00/0009...... $5.00

practices is in progress by the W3C [1]. Such wislgare of
particular interest in application mobility as theye designed
with standard, platform-independent technologies.

Typical widgets present information and media ested from the
Internet, such as weather forecasts, news, stookesupictures
from community web sites, ... Such widgets rely orchasmisms
similar to the XMLHttpRequest API to query textuaintent or
media from a server in pull scenarios, or througtadstreaming
(video, ...) for push scenarios. In both scenaribs, lbcation of
the server is known by the widget at authoring time

Other widgets are used to present information alloeitdevice
they run on, such as time, CPU, memory usage,rgatietwork
or mailbox status. They rely heavily on proprietaigvaScript
bindings with the system, even though some effarts being
made to achieve interoperability on these exteission

As we can see, existing widgets systems such agl&&@adgets,
Microsoft Gadgets, Opera Widgets, Apple Dashboard @hoo

Widgets allow communication with external entit@yy in cases
where the entity is known at the widget authorimget (remote
server, multicast address, local service binding. .\While

sufficient for web-based scenario, this approaclts same
limitations when considering widget mobility, inrgaular in the
home domain. Indeed, in such scenarios, devicesl tteerefore
the associated services - may appear and disappesany time,
with changing IP addresses. There is thereforeea ne define
how widgets can be authored without knowing thecexaldress
of data sources.

In this paper, we present a method for the creatiowidgets

compatible with mobility scenarios, based on théniten of a

service abstraction model and on tools to dynaiyicdsociate
widgets with network services. In particular, thegpsed method
supports asynchronous messages exchange betwedget and
its sources. Finally, this paper shows how the gsed method
allows widgets to be transferred between devices.

The rest of this paper is organized as followstiBe@ presents
the scenarios we want to address and derives sequirements.
Section 3 describes related work in this area.i@edt details our
contribution, describing in particular service ahstion, widget

and standard Webdlscovery, interfaces between the widget and thaces. Section

5 presents some results and gives some implemamtdétails.
We conclude this paper and present future worl&eiction 6.

2. SCENARIOSAND REQUIREMENTS

In this paper, we address the following scenatibagine a user,
Stanley, watching his pictures on his mobile phavith his
favourite image gallery application, implemented asvidget.
Stanley visits his girlfriend and finds a large LCDY in his
surrounding environment, on which the images wdoddk better

and can be shared with his girlfriend; he therefpushes his
personal gallery widget to the TV. The widget oe ffiV then
requests the images from the mobile phone andadisghem. In
this scenario, a fixed device (the TV) controlseavie on a
mobile device.

Later that day, Stanley decides to watch a movig ases his
phone to control the lights, DVD players and otfieed devices
by means of widgets.

From these two scenarios, we set the following irequents:

- It should be possible to interface widgets with oém
services not localizable at authoring time, to seodtrol
messages to them or to retrieve data or notifinatisom
them.

- It should be possible to push a widget instancenfane
device to another.

In this paper, we propose a system that does ngtiree
modification to existing devices and network stacksd does not
modify the existing widget architecture either. Yéeget a generic
method working with most multimedia description daages
(HTML, SVG) and describing most of the existing
communication services (UPnP, Bonjour, Web Servicgs

3. RELATED WORK

Application mobility is a topic of interest for mamesearchers,
most of the time with a strong focus on client-semnodels (Web
2.0, web services). Regarding application mobiityCE devices,
Cesar et al. [2] envisage the usages of a secorsgaegn in an
interactive TV environment. The mobile device isedisfor

example to display the electronic program guide emwtrol the

TV channel. However, they do not envisage a tecttrsolution.

We believe these usages are perfectly achievabta the

mechanisms proposed in this paper.

From a commercial point of view, there are seve@lltions

which try to address scenarios similar to thosecrilesd above.
For example, it is already possible to use an iBhas a remote
control for an iTunes application located in thensanetwork.

This is very similar to what we want to achieve wéwer, in this

case and many others, the controlling applicatiorainative
application, not a widget; therefore, the mobiligf that

application is not possible.

We can also mention the work done in the Web4CHA4]3]
standard. This standard defines how to combine ¥fenologies
like HTML, CSS and JavaScript with UPnP and defimesI
service to access web applications on CE devicea alient-
server model. We differ from this approach becawsedo not
define new services for Ul but rather map existgggvices to
existing Ul technologies. Furthermore, our approiachot server
centric and we intend to be agnostic of the undteglyrotocol
and of the presentation format.

4. PROPOSED APPROACH

This section describes our contribution. We firsegent an
abstraction of services with which a widget may ocamicate.
We then describe how service discovery is handledour
proposal, how messages are exchanged between dgetvéand
the external entity using the service abstractibmally, we
discuss how widgets mobility is achieved.

4.1 Service Abstraction

In our approach, a service is seen as a set ofagesshat may be
sent by or received from the remote entity. Eactssage can
additionally trigger and/or require a potentiallyep

Web-based communications with remote entities asaally
asynchronous processes where data packets arengechaver
the network, and can not rely on a threading motlleis can be
illustrated by the heavy use of AJAX programmingeixisting
web sites. Supporting synchronous handling of ngessavithin a
widget would imply suspending its processing utité response
is received. This may freeze user interactionsasnrounication
with other services, which is not acceptable iimterof user
experience. Another solution could be to restriesgages to one-
way only communications (no reply), but it would\ery hard to
map to existing service classes, e.g. UPnP, whest messages
have both input and output parameters. We thereforly
consider asynchronous messages and provide optatibhcks
in the widget to handle replies.

Each message is defined as a set of input and toppameters
representing the data being exchanged betweenitlyetand the
remote entity. In order to support as many serdesgcriptions as
possible while keeping the solution generic, thessage syntax is
kept simple and does not describe complex objeattsires, only

supporting simple data types like string, Booleannamber.

When complex parameters are exchanged (e.g. UPoRsBr
request response), we consider the parameter &gng ®© be

further interpreted by the widget (e.g. DIDL XMLrsang).

In order to be able to describe a service, we asdat service
messages and their parameters are labeled, ditloeigh existing
description documents (such as SDCP in the UPniroement
or WSDL for Web Services), or through naming cortigers (for
example in the service technical specificationctEmessage and
its related parameters are then identified by theme, and each
service is identified by a URN, whether existinguqls as
"upnp:..."), or yet to be defined. Messages and patara can be
in input (from external entity to widget) or outpitom widget to
remote service) direction. An example of the syntagd is given
in Section 5.

We should note here that this service abstracscapplicable to
services provided by remote servers, local entiéied even to
widgets providing services. A Widget can indeedvimved by
another widget as a regular service, enabling th&n
communicate with each other or to act as proxiestioér remote
services.

4.2 Service Discovery and Binding

In our system, services can be discovered in skweeys.
Services exposed by other widgets are discoveregnwhese
widgets are loaded. Services exposed by other eevic the
network are typically discovered using UPnP or Zzof
protocols. However, in a mobile environment, desic@nd
therefore the services they provide) may appeardisappear at
any time. In order to communicate efficiently with remote
entity, a widget shall therefore be aware that avise is
becoming available or not.

For a widget to interface with a service, two solu$ are
possible:

« Wait for the indicated service to be discoveredittoy

widget manager before running the widget, and shut

down the widget when the service disappears;

¢ Run the widget and define a mechanism to inform the

presentation when a service appears or disappears.

The first solution is not elegant, since a widgetild disappear
from the screen without the user consent. It ispnattical either
since a widget could have interfaces with differsgnvices not all
present at the same time. We therefore choose ¢lcend
approach, allowing a widget to be running even whene of its
interfaced services have been discovered. The Igigna
mechanism between the service discovery and thdimadia
scene is called the “binding” of an interface.

In our proposal, the service discovery and bindingandled by
the widget manager. Once a service is discovetwssl,widget
manager checks all widgets interfaces. A widgeterfate
matches the service if the following conditions waédated:

¢ The type (URN) of the interface is the same asotie
of the service;

each input parameter of the message and triggeragbociated
scene construct.

Our solution relies on the manager implementing theer
workings of the service protocol used (e.g. UPnPvid&e
Architecture) but having no special knowledge oe #ervice
itself (e.g. UPnP Media Renderer). The main adwmnta that
once a service protocol is supported in a widgehagar, any
new service can be controlled provided there isdget for this
task.

4.4 Widget Migration

As stated in our requirements, the ability to maweapplication
from device to device is fundamental in mobilityesario. The
choice of platform-independent languages in widggstems
provides the bases of the application mobility.

Our solution provides mechanisms to migrate widg@&tss is
achieved by making all target devices discoverabigosing a
URL exchange service very similar to the UPnP AVfiBgort
service. The device initiating the transfer of Wieget integrates
a file delivery mechanism (typically a very simp#@ TP server)
and is able to discover these services. Upon aecisi migrate a

» Each message declared in the widget interface is widget, the user is proposed a list of compatibdeickes. The

supported by the service;

widget manager simply instructs the selected desgéreice about
the location of the widget to be migrated.

e Each parameter of each message is understood by the . -) .
service. Note that there may be parameters from the Our solution also provides a mechanism for a detac@nnounce

service not used by the widget interface.

For each validated interface, the widget managedsa bound
event to the widget when a new service of the niagchype

becomes available, and sends an unbound event tvbeservice
disappears. This solution is flexible enough to tle¢ widget
author decide how (un)connected services shoulchddled
within the widget. This allows for instance disablia button in
the widget if a service is not available and emaplihe button
upon binding of the service. It also provides thdity for the

author to handle multiple services of the same tygeically to

control with a single widget multiple devices swchlights.

4.3 Message Exchange

For each message and parameter of the servicdargerwe

associate a widget presentation construct to bgdred when an
input message is received or to be monitored irerotd send a
message. With scene representations such as HTNMUP&G-4

BIFS, this scene construct can either be a JayaSttmction

name (foo), an attribute of an element (image.widthan event
on a particular element (“image.click”).

In order to notify the presentation of service &lality, we also
defined two pseudo messages in the interface deidarcalled
“bindAction” and “unbindAction”. These messages @&@ano
associated parameters, and are called wheneveastheciated
service becomes available or unavailable (see ekeab)p

For each output message and parameter of a newiyndbo
interface, the manager creates listeners for thecésted widget
presentation constructs. When such construct trigge output
(message or reply to an input message), the maragects all
values of the output parameters listed in the faterand calls the
associated service. When an input message or ageessply is
received, the manager modifies the scene constsstciated to

itself along with a widget which can be used totoanits own
services. It uses the underlying service discovangtocols to
embed a URL pointing to the widget.

5 RESULTS
5.1 Example

Our proposal relies on [1] for the description bk twidget
configuration file. We extended the syntax to dexlife services
supported by the widget. Each supported servidedtared in an
<interface> element, and each service messageclardd in a
<messageln> or <messageOut> element.

The following example shows the part of the confagion
document that declares the communication capaslitof a
widget designed to display and control the stathig simple
UPNnP SwitchPower service.

<interfaces>
<interface type="urn:schemas-upnp-org:service:Swi
bindAction="button1.boolean” unbindAction="button2.
<messageOut name="SetTarget"
outputTrigger="elt_1.boolean">
<output name="newTargetValue"
attributeModified=" elt_2.boolean"/>
</messageOut>
<messageln name="Status" inputAction=" elt_3.ac
<input name="Status"
setAttribute=" elt_4.boolean"/>
</messageln>
</interface>
</interfaces>

tchPower:1"
boolean”>

tivate">

Example 1: Usage of the service abstraction syntax for
interfacing a widget with a UPnP Light device.

The interface element declares that the widgetapable to
communicate with a service of the specified typbe Tame
attribute of all elements in this fragment comesrfrthe SCPD
XML description of the UPNnP SwitchPower service. eTh
messageOut

element declares when and how to generate

messages going from the widget to the device. Tkesage is
triggered when the attributeoolean of the elemenelt_1 is
modified. The value of the output paramatewTargetValue

is taken from the attributBoolean of the elemenelt_2 . The
messag&etTarget is then sent to the UPnP service.

The messageln element declares how to process messages

coming from the device carrying the information abthe status
of the device: on or off. When the mess&jatus is received
by the widget manager, the value of 8tatus parameter of the
message is copied to the attributeolean of the element
elt_4 andthe everdactivate s sent to the elemestt_3

In this example, both messages are connected iibudtis of
elements, thus allowing a script-less implementatibshould be
noted that an input message can also be conneetedstript
function and an output message can be triggereal &script.

5.2 Architecture

We have implemented our proposal in the GPAC fraomkew
[5][5]. The implementation is divided into two mdds: one for
UPnP communications, one for the management ofetsdg

The UPnP stack is using the Platinum UPnP SDK \uititlevel
protocol functionalities allowing us to create amst UPnP
devices as well as communicating with third-partiénP devices
(media renderer and controllers).

The service discovery follows the usual UPnP precé¥hen
desired, we use the existing presentationURL in de¥ice
description to announce a widget capable of intergavith the
device services.

Each widget manager has a UPnP control point mangahe
available devices and services, and performing U&eti®n and
event subscription. The monitoring is unaware @f type of the
service and can be used with usual UPnP AV senasesell as
any custom service. The validation of the widgenBmnterfaces
is achieved by checking the SDCP (service desoriptiocument
which is available as part of the service discoyencess.

In order to transfer a running widget from deviceoAdevice B,
we use a regular UPnP media setup. Device A acsUznP AV
control point as well as a small web server, andi&®eB is a
UPnP media renderer. Note that these services netdbe
associated with any widget.

5.3 Experiments

We have been able to create UPnP widgets commiungcadth
third-party UPnP devices such as Intel Media Seamd Intel
Media Render.

Since the GPAC player supports the XMLHttpRequégta, we
have been able to create various classic widgets as News or

Weather widgets. We have demonstrated several isesna

covering our requirements:

- battery widget communicating with a home-made P/Barvice
notifying about battery status. In this demonsbratithe widget is
announced along with the UPnP service and is autcatigt
installed, and the service can be disabled fronwidget,

- widget controlling a remote UPnP light device,

- photo album widget communicating with any UPnP RMédia
Server for Image Browsing,

- media control Widget communicating with any UPAN? Media
Renderer for simple operation (play/pause/stop)info

Each widget in our system can be migrated betwesitéds, and
we successfully tested widget migration across xinvindows
and Windows Mobile platforms.

6. CONCLUSION AND FUTURE WORK

We have described scenarios for widget mobility ivading our
work. We have
highlighted their limitations for our use cases. Wae proposed
a mechanism enabling the communication between etsdgnd
their environment, handling application and servitebility
while retaining compatibility with existing Widgeechnologies.
This proposal has been submitted to MPEG and ispanwof the
Working Draft of MPEG-U, “Rich Media UlI".

Future work includes the extension of the describbedhanism to
handle application context migration without anyniext server,
allowing the seamless transfer of a widget fromickevo device
with its execution state; and the extension ofithplementation
to other message exchange and service discovetycpts such
as Bonjour and WSDL.

7. ACKNOWLEDGMENT

This work has been partially financed by the Euespdletwork
of Excellence INTERMEDIA (IST-FP6-38419).

8. REFERENCES

[1] M. Caceres, Widgets 1.0: Packaging and Configumatio
W3C Working Draft 22 December 2008, available at
http://www.w3.org/TR/widgets/

[2] Cesar, P., Bulterman, D. C., and Jansen, A. J..2088ges
of the Secondary Screen in an Interactive Telenisio
Environment: Control, Enrich, Share, and Transfer
Television Content. IfProceedings of the 6th European
Conference on Changing Television Environmégtdzburg,
Austria, July 03 - 04, 2008). M. Tscheligi, M. Gdiriand A.
Lugmayr, Eds. Lecture Notes In Computer Scienck, vo
5066. Springer-Verlag, Berlin, Heidelberg, 168-177.

[3] Dees, W. and Shrubsole, P. 2007. Web4CE: acceashbg
based applications on consumer device®rbreedings of
the 16th international Conference on World Wide Web
(Banff, Alberta, Canada, May 08 - 12, 2007). WW\W.'0
ACM, New York, NY, 1303-1304. DOI=
http://doi.acm.org/10.1145/1242572.1242820

[4] CEA, ANSI/CEA-2014 Web-based Protocol and Framework
for Remote User Interfaces on UPnP Networks and the
Internet (Web4CE), June 2006,
http://www.ce.org/standards/StandardDetails.asp2865
&number=CEA-2014

[5] Le Feuvre, J., Concolato, C., and Moissinac, J72QPAC:
open source multimedia framework.Rnoceedings of the
15th international Conference on Multimediaugsburg,
Germany, September 25 - 29, 2007). MULTIMEDIA '07.
ACM, New York, NY, 1009-1012. DOI=
http://doi.acm.org/10.1145/1291233.1291452

reviewed existing widgets systems and

