
Widgets Mobility
Jean Le Feuvre Cyril Concolato Jean-Claude Dufourd

Telecom ParisTech; Institut Telecom; CNRS LTCI
46, rue Barrault

75634 PARIS CEDEX 13
{lefeuvre, concolato, dufourd}@telecom-paristech.fr

ABSTRACT
Widgets are becoming a natural way to design small, intuitive
application, and their usage is becoming widespread on both the
desktop and the mobile world. However, most widgets systems
are web-centric and cannot address service mobility or application
migration without heavy workarounds. In this paper, we describe
a mechanism enabling the communication between widgets and
their environment (other widgets, remote services). The proposed
solution provides mechanisms to handle application and service
mobility while retaining compatibility with existing Widget
technologies. A description of an implementation is also provided.

Categories and Subject Descriptors
H.5.3 [Information Interfaces And Presentation]: Group and
Organization Interfaces – Asynchronous interaction, web-based
interaction; I.3.2 [Computer Graphics]: Graphics Systems –
Distributed/network graphics

General Terms
Design, Experimentation, Standardization.

Keywords
Application Communication, Mobility, Widget.

1. INTRODUCTION
With the ever-growing deployment of mobile communicating
devices, applications are carried across various environments as
the user moves, either benefiting from the environment or
enriching it with their own services. Additionally, users are
constantly switching devices, using TV sets, mobile phones or
desktop computers, and expect to have their applications on every
device they use. In this paper, we address the mobility, in
environments constantly modified by near-by devices, of a
particular kind of applications: widgets.

Widgets are small interactive multimedia applications that can be
found on desktop computers, mobile devices or, more recently,
TV sets. Whether embedded in a web page or used as standalone
applications, most if not all widgets systems are designed in the
same way. A configuration file (sometimes called manifest)
provides metadata about the widget and standard web
technologies such as (X)HTML, SVG, JavaScript and CSS are
used to display the widget. The standardization of these common

practices is in progress by the W3C [1]. Such widgets are of
particular interest in application mobility as they are designed
with standard, platform-independent technologies.

Typical widgets present information and media retrieved from the
Internet, such as weather forecasts, news, stock quotes, pictures
from community web sites, … Such widgets rely on mechanisms
similar to the XMLHttpRequest API to query textual content or
media from a server in pull scenarios, or through data streaming
(video, …) for push scenarios. In both scenarios, the location of
the server is known by the widget at authoring time.

Other widgets are used to present information about the device
they run on, such as time, CPU, memory usage, battery, network
or mailbox status. They rely heavily on proprietary JavaScript
bindings with the system, even though some efforts are being
made to achieve interoperability on these extensions.

As we can see, existing widgets systems such as Google Gadgets,
Microsoft Gadgets, Opera Widgets, Apple Dashboard or Yahoo
Widgets allow communication with external entities only in cases
where the entity is known at the widget authoring time (remote
server, multicast address, local service binding …). While
sufficient for web-based scenario, this approach has some
limitations when considering widget mobility, in particular in the
home domain. Indeed, in such scenarios, devices - and therefore
the associated services - may appear and disappear at any time,
with changing IP addresses. There is therefore a need to define
how widgets can be authored without knowing the exact address
of data sources.

In this paper, we present a method for the creation of widgets
compatible with mobility scenarios, based on the definition of a
service abstraction model and on tools to dynamically associate
widgets with network services. In particular, the proposed method
supports asynchronous messages exchange between a widget and
its sources. Finally, this paper shows how the proposed method
allows widgets to be transferred between devices.

The rest of this paper is organized as follows. Section 2 presents
the scenarios we want to address and derives some requirements.
Section 3 describes related work in this area. Section 4 details our
contribution, describing in particular service abstraction, widget
discovery, interfaces between the widget and the services. Section
5 presents some results and gives some implementation details.
We conclude this paper and present future works in Section 6.

2. SCENARIOS AND REQUIREMENTS
In this paper, we address the following scenarios. Imagine a user,
Stanley, watching his pictures on his mobile phone with his
favourite image gallery application, implemented as a widget.
Stanley visits his girlfriend and finds a large LCD TV in his
surrounding environment, on which the images would look better

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobility 2009, Sep 2-4, Nice, France Copyright © 2009
ACM 978-1-60558-536-9/00/0009……$5.00

and can be shared with his girlfriend; he therefore pushes his
personal gallery widget to the TV. The widget on the TV then
requests the images from the mobile phone and displays them. In
this scenario, a fixed device (the TV) controls a service on a
mobile device.

Later that day, Stanley decides to watch a movie and uses his
phone to control the lights, DVD players and other fixed devices
by means of widgets.

From these two scenarios, we set the following requirements:

- It should be possible to interface widgets with remote
services not localizable at authoring time, to send control
messages to them or to retrieve data or notifications from
them.

- It should be possible to push a widget instance from one
device to another.

In this paper, we propose a system that does not require
modification to existing devices and network stacks, and does not
modify the existing widget architecture either. We target a generic
method working with most multimedia description languages
(HTML, SVG) and describing most of the existing
communication services (UPnP, Bonjour, Web Services …).

3. RELATED WORK
Application mobility is a topic of interest for many researchers,
most of the time with a strong focus on client-server models (Web
2.0, web services). Regarding application mobility on CE devices,
Cesar et al. [2] envisage the usages of a secondary screen in an
interactive TV environment. The mobile device is used for
example to display the electronic program guide and control the
TV channel. However, they do not envisage a technical solution.
We believe these usages are perfectly achievable with the
mechanisms proposed in this paper.

From a commercial point of view, there are several solutions
which try to address scenarios similar to those described above.
For example, it is already possible to use an iPhone as a remote
control for an iTunes application located in the same network.
This is very similar to what we want to achieve. However, in this
case and many others, the controlling application is a native
application, not a widget; therefore, the mobility of that
application is not possible.

We can also mention the work done in the Web4CE [3][4]
standard. This standard defines how to combine Web technologies
like HTML, CSS and JavaScript with UPnP and defines a UI
service to access web applications on CE devices in a client-
server model. We differ from this approach because we do not
define new services for UI but rather map existing services to
existing UI technologies. Furthermore, our approach is not server
centric and we intend to be agnostic of the underlying protocol
and of the presentation format.

4. PROPOSED APPROACH
This section describes our contribution. We first present an
abstraction of services with which a widget may communicate.
We then describe how service discovery is handled in our
proposal, how messages are exchanged between the widget and
the external entity using the service abstraction. Finally, we
discuss how widgets mobility is achieved.

4.1 Service Abstraction
In our approach, a service is seen as a set of messages that may be
sent by or received from the remote entity. Each message can
additionally trigger and/or require a potential reply.

Web-based communications with remote entities are usually
asynchronous processes where data packets are exchanged over
the network, and can not rely on a threading model. This can be
illustrated by the heavy use of AJAX programming in existing
web sites. Supporting synchronous handling of messages within a
widget would imply suspending its processing until the response
is received. This may freeze user interactions or communication
with other services, which is not acceptable in terms of user
experience. Another solution could be to restrict messages to one-
way only communications (no reply), but it would be very hard to
map to existing service classes, e.g. UPnP, where most messages
have both input and output parameters. We therefore only
consider asynchronous messages and provide optional callbacks
in the widget to handle replies.

Each message is defined as a set of input and output parameters
representing the data being exchanged between the widget and the
remote entity. In order to support as many service descriptions as
possible while keeping the solution generic, the message syntax is
kept simple and does not describe complex object structures, only
supporting simple data types like string, Boolean or number.
When complex parameters are exchanged (e.g. UPnP Browse
request response), we consider the parameter as a string to be
further interpreted by the widget (e.g. DIDL XML parsing).

In order to be able to describe a service, we assume that service
messages and their parameters are labeled, either through existing
description documents (such as SDCP in the UPnP environment
or WSDL for Web Services), or through naming conventions (for
example in the service technical specification). Each message and
its related parameters are then identified by their name, and each
service is identified by a URN, whether existing (such as
"upnp:…"), or yet to be defined. Messages and parameters can be
in input (from external entity to widget) or output (from widget to
remote service) direction. An example of the syntax used is given
in Section 5.

We should note here that this service abstraction is applicable to
services provided by remote servers, local entities and even to
widgets providing services. A Widget can indeed be viewed by
another widget as a regular service, enabling them to
communicate with each other or to act as proxies of other remote
services.

4.2 Service Discovery and Binding
In our system, services can be discovered in several ways.
Services exposed by other widgets are discovered when these
widgets are loaded. Services exposed by other devices in the
network are typically discovered using UPnP or ZeroConf
protocols. However, in a mobile environment, devices (and
therefore the services they provide) may appear and disappear at
any time. In order to communicate efficiently with a remote
entity, a widget shall therefore be aware that a service is
becoming available or not.

For a widget to interface with a service, two solutions are
possible:

• Wait for the indicated service to be discovered by the
widget manager before running the widget, and shut
down the widget when the service disappears;

• Run the widget and define a mechanism to inform the
presentation when a service appears or disappears.

The first solution is not elegant, since a widget could disappear
from the screen without the user consent. It is not practical either
since a widget could have interfaces with different services not all
present at the same time. We therefore choose the second
approach, allowing a widget to be running even when none of its
interfaced services have been discovered. The signaling
mechanism between the service discovery and the multimedia
scene is called the “binding” of an interface.

In our proposal, the service discovery and binding is handled by
the widget manager. Once a service is discovered, the widget
manager checks all widgets interfaces. A widget interface
matches the service if the following conditions are validated:

• The type (URN) of the interface is the same as the one
of the service;

• Each message declared in the widget interface is
supported by the service;

• Each parameter of each message is understood by the
service. Note that there may be parameters from the
service not used by the widget interface.

For each validated interface, the widget manager sends a bound
event to the widget when a new service of the matching type
becomes available, and sends an unbound event when the service
disappears. This solution is flexible enough to let the widget
author decide how (un)connected services should be handled
within the widget. This allows for instance disabling a button in
the widget if a service is not available and enabling the button
upon binding of the service. It also provides the ability for the
author to handle multiple services of the same type, typically to
control with a single widget multiple devices such as lights.

4.3 Message Exchange
For each message and parameter of the service interface, we
associate a widget presentation construct to be triggered when an
input message is received or to be monitored in order to send a
message. With scene representations such as HTML or MPEG-4
BIFS, this scene construct can either be a JavaScript function
name (foo), an attribute of an element (image.width) or an event
on a particular element (“image.click”).

In order to notify the presentation of service availability, we also
defined two pseudo messages in the interface declaration called
“bindAction” and “unbindAction”. These messages have no
associated parameters, and are called whenever the associated
service becomes available or unavailable (see example 1).

For each output message and parameter of a newly bound
interface, the manager creates listeners for the associated widget
presentation constructs. When such construct triggers an output
(message or reply to an input message), the manager collects all
values of the output parameters listed in the interface and calls the
associated service. When an input message or a message reply is
received, the manager modifies the scene construct associated to

each input parameter of the message and triggers the associated
scene construct.

Our solution relies on the manager implementing the inner
workings of the service protocol used (e.g. UPnP Device
Architecture) but having no special knowledge on the service
itself (e.g. UPnP Media Renderer). The main advantage is that
once a service protocol is supported in a widget manager, any
new service can be controlled provided there is a widget for this
task.

4.4 Widget Migration
As stated in our requirements, the ability to move an application
from device to device is fundamental in mobility scenario. The
choice of platform-independent languages in widget systems
provides the bases of the application mobility.

Our solution provides mechanisms to migrate widgets. This is
achieved by making all target devices discoverable, exposing a
URL exchange service very similar to the UPnP AVTransport
service. The device initiating the transfer of the widget integrates
a file delivery mechanism (typically a very simple HTTP server)
and is able to discover these services. Upon decision to migrate a
widget, the user is proposed a list of compatible devices. The
widget manager simply instructs the selected device service about
the location of the widget to be migrated.

Our solution also provides a mechanism for a device to announce
itself along with a widget which can be used to control its own
services. It uses the underlying service discovery protocols to
embed a URL pointing to the widget.

5. RESULTS
5.1 Example
Our proposal relies on [1] for the description of the widget
configuration file. We extended the syntax to declare the services
supported by the widget. Each supported service is declared in an
<interface> element, and each service message is declared in a
<messageIn> or <messageOut> element.

The following example shows the part of the configuration
document that declares the communication capabilities of a
widget designed to display and control the status of a simple
UPnP SwitchPower service.

<interfaces>
 <interface type="urn:schemas-upnp-org:service:Swi tchPower:1"
bindAction=”button1.boolean” unbindAction=”button2. boolean”>
 <messageOut name="SetTarget"
 outputTrigger="elt_1.boolean">
 <output name="newTargetValue"
 attributeModified=" elt_2.boolean"/>
 </messageOut>
 <messageIn name="Status" inputAction=" elt_3.ac tivate">
 <input name="Status"
 setAttribute=" elt_4.boolean"/>
 </messageIn>
 </interface>
</interfaces>

Example 1: Usage of the service abstraction syntax for
interfacing a widget with a UPnP Light device.

The interface element declares that the widget is capable to
communicate with a service of the specified type. The name
attribute of all elements in this fragment comes from the SCPD
XML description of the UPnP SwitchPower service. The
messageOut element declares when and how to generate

messages going from the widget to the device. The message is
triggered when the attribute boolean of the element elt_1 is
modified. The value of the output parameter newTargetValue
is taken from the attribute Boolean of the element elt_2 . The
message SetTarget is then sent to the UPnP service.

The messageIn element declares how to process messages
coming from the device carrying the information about the status
of the device: on or off. When the message Status is received
by the widget manager, the value of the Status parameter of the
message is copied to the attribute boolean of the element
elt_4 and the event activate is sent to the element elt_3 .

In this example, both messages are connected to attributes of
elements, thus allowing a script-less implementation. It should be
noted that an input message can also be connected to a script
function and an output message can be triggered from a script.

5.2 Architecture
We have implemented our proposal in the GPAC framework
[5][5]. The implementation is divided into two modules: one for
UPnP communications, one for the management of widgets.

The UPnP stack is using the Platinum UPnP SDK with low-level
protocol functionalities allowing us to create custom UPnP
devices as well as communicating with third-parties UPnP devices
(media renderer and controllers).

The service discovery follows the usual UPnP process. When
desired, we use the existing presentationURL in the device
description to announce a widget capable of interacting with the
device services.

Each widget manager has a UPnP control point monitoring the
available devices and services, and performing UPnP action and
event subscription. The monitoring is unaware of the type of the
service and can be used with usual UPnP AV services as well as
any custom service. The validation of the widget UPnP interfaces
is achieved by checking the SDCP (service description) document
which is available as part of the service discovery process.

In order to transfer a running widget from device A to device B,
we use a regular UPnP media setup. Device A acts as a UPnP AV
control point as well as a small web server, and Device B is a
UPnP media renderer. Note that these services need not be
associated with any widget.

5.3 Experiments
We have been able to create UPnP widgets communicating with
third-party UPnP devices such as Intel Media Server and Intel
Media Render.

Since the GPAC player supports the XMLHttpRequest object, we
have been able to create various classic widgets such as News or
Weather widgets. We have demonstrated several scenarios
covering our requirements:

- battery widget communicating with a home-made UPnP service
notifying about battery status. In this demonstration, the widget is
announced along with the UPnP service and is automatically
installed, and the service can be disabled from the widget,

- widget controlling a remote UPnP light device,

- photo album widget communicating with any UPnP AV Media
Server for Image Browsing,

- media control Widget communicating with any UPnP AV Media
Renderer for simple operation (play/pause/stop/info).

Each widget in our system can be migrated between devices, and
we successfully tested widget migration across Linux, Windows
and Windows Mobile platforms.

6. CONCLUSION AND FUTURE WORK
We have described scenarios for widget mobility motivating our
work. We have reviewed existing widgets systems and
highlighted their limitations for our use cases. We have proposed
a mechanism enabling the communication between widgets and
their environment, handling application and service mobility
while retaining compatibility with existing Widget technologies.
This proposal has been submitted to MPEG and is now part of the
Working Draft of MPEG-U, “Rich Media UI”.

Future work includes the extension of the described mechanism to
handle application context migration without any context server,
allowing the seamless transfer of a widget from device to device
with its execution state; and the extension of the implementation
to other message exchange and service discovery protocols such
as Bonjour and WSDL.

7. ACKNOWLEDGMENT
This work has been partially financed by the European Network
of Excellence INTERMEDIA (IST-FP6-38419).

8. REFERENCES
[1] M. Caceres, Widgets 1.0: Packaging and Configuration,

W3C Working Draft 22 December 2008, available at
http://www.w3.org/TR/widgets/

[2] Cesar, P., Bulterman, D. C., and Jansen, A. J. 2008. Usages
of the Secondary Screen in an Interactive Television
Environment: Control, Enrich, Share, and Transfer
Television Content. In Proceedings of the 6th European
Conference on Changing Television Environments (Salzburg,
Austria, July 03 - 04, 2008). M. Tscheligi, M. Obrist, and A.
Lugmayr, Eds. Lecture Notes In Computer Science, vol.
5066. Springer-Verlag, Berlin, Heidelberg, 168-177.

[3] Dees, W. and Shrubsole, P. 2007. Web4CE: accessing web-
based applications on consumer devices. In Proceedings of
the 16th international Conference on World Wide Web
(Banff, Alberta, Canada, May 08 - 12, 2007). WWW '07.
ACM, New York, NY, 1303-1304. DOI=
http://doi.acm.org/10.1145/1242572.1242820

[4] CEA, ANSI/CEA-2014 Web-based Protocol and Framework
for Remote User Interfaces on UPnP Networks and the
Internet (Web4CE), June 2006,
http://www.ce.org/standards/StandardDetails.aspx?Id=2865
&number=CEA-2014

[5] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC:
open source multimedia framework. In Proceedings of the
15th international Conference on Multimedia (Augsburg,
Germany, September 25 - 29, 2007). MULTIMEDIA '07.
ACM, New York, NY, 1009-1012. DOI=
http://doi.acm.org/10.1145/1291233.1291452

