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Adaptive Harmonic Spectral Decomposition
for Multiple Pitch Estimation
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Abstract—Multiple pitch estimation consists of estimating the
fundamental frequencies and saliences of pitched sounds over
short time frames of an audio signal. This task forms the basis of
several applications in the particular context of musical audio. One
approach is to decompose the short-term magnitude spectrum
of the signal into a sum of basis spectra representing individual
pitches scaled by time-varying amplitudes, using algorithms
such as nonnegative matrix factorization (NMF). Prior training
of the basis spectra is often infeasible due to the wide range of
possible musical instruments. Appropriate spectra must then be
adaptively estimated from the data, which may result in limited
performance due to overfitting issues. In this paper, we model
each basis spectrum as a weighted sum of narrowband spectra
representing a few adjacent harmonic partials, thus enforcing
harmonicity and spectral smoothness while adapting the spectral
envelope to each instrument. We derive a NMF-like algorithm to
estimate the model parameters and evaluate it on a database of
piano recordings, considering several choices for the narrowband
spectra. The proposed algorithm performs similarly to super-
vised NMF using pre-trained piano spectra but improves pitch
estimation performance by 6% to 10% compared to alternative
unsupervised NMF algorithms.

Index Terms—Adaptive representation, harmonicity, multiple
pitch estimation, nonnegative matrix factorization, spectral
smoothness.

I. INTRODUCTION

M USIC signals involve a collection of sounds, which may
be either pitched or unpitched. Multiple pitch estimation

consists of estimating the fundamental frequencies of pitched
sounds within short time frames and quantifying confidence in
these estimates by means of a salience measure [1]. The re-
sulting mid-level representation can be exploited as a front-end
for several music information retrieval and signal processing ap-
plications. For instance, automatic music transcription is usually
achieved by tracking frame-by-frame pitch estimates over time
so as to select musical notes with high salience and find their
onset time, duration, pitch, and voice [2]. Multiple pitch esti-
mation has also been used for chord detection [3], instrument
identification [4], and source separation [5].
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A variety of approaches have been proposed to address mul-
tiple pitch estimation in the literature [1], ranging from correlo-
grams [6], spectral peak clustering [7], and harmonic sum [8] to
probabilistic models [9]–[11], neural networks [12], and support
vector machines [13]. One particular approach is to decompose
the short-term magnitude or power spectrum of the signal into
a sum of basis spectra representing individual pitches scaled by
time-varying amplitudes. The basis spectra can be either fixed
by training on annotated recordings [14]–[16] or adaptively es-
timated from the observed spectra [17]–[21]. The parameters of
this model can be estimated by nonnegative matrix factorization
(NMF), sparse decomposition, or sparse dictionary learning.
These algorithms minimize distortion between observed and
model spectra, given some optional temporal priors such as con-
tinuity and sparsity. Fixed basis spectra typically achieve better
performance, provided that test and training data involve the
same instruments in similar recording conditions, which is dif-
ficult to satisfy in practice. Adaptive basis spectra address this
issue, but result in limited performance due to the lack of con-
straints ensuring that each basis spectrum has a clearly iden-
tifiable pitch. Constraints of spectral shift invariance [22] or
source-filter modeling [23] favor more structured spectra. How-
ever, they do not guarantee that the estimated spectra are har-
monic. Experiments in [24] suggest that these constraints are
respectively inappropriate and insufficient: shift invariance does
not account for variations of spectral envelope as a function of
pitch, while source-filter modeling includes a large number of
parameters that are difficult to estimate reliably.

A more principled approach to the estimation of adaptive
pitched basis spectra is to design explicit harmonicity con-
straints. In [25], each basis spectrum is constrained to zero in
all bins but the multiples of a fixed fundamental frequency.
This model relies on a crude approximation of the spectrum of
a sinusoidal partial and is prone to errors since the harmonicity
constraint alone does not allow segregation between a given
fundamental frequency and its submultiples. In [26] and [24],
each basis spectrum is modeled as a weighted sum of spectra
representing individual partials and the weights are constrained
via a source-filter model, where the source weights are either
trained specifically for singing voice [26] or estimated from the
test data [24]. This additional constraint appears efficient in the
context of melody transcription or source separation, provided
each instrument plays a sufficient number of different pitches
and its observed pitch range is known [24]. In [27] and [28], we
introduced a different approach whereby each basis spectrum is
modeled as a weighted sum of narrowband spectra with a smooth
envelope representing a few adjacent harmonic partials. This
approach reduces octave errors without assuming prior depen-
dencies between the spectral envelopes of different pitches. It is
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perhaps closer to low-level auditory processing of pitch, which
relies on the presence of several partials within certain auditory
bands [1]. Inharmonicity and variable tuning constraints were
also explored in [28] but did not bring any improvement.

In this paper, we further investigate the use of harmonicity
and spectral smoothness as explicit constraints for NMF-based
adaptive spectral decomposition, independently of any temporal
prior. We extend our preliminary work in several ways. First, we
study several definitions for the narrowband spectra, including
training from annotated recordings. Second, we consider a range
of distortion measures. Third, we evaluate our algorithm on a
more diverse database, compare it to the alternative approaches
discussed above, and quantify its robustness to the chosen pa-
rameter values. The structure of the rest of the paper is as fol-
lows. In Section II, we describe baseline NMF-based algorithms
and provide example results. We present the proposed adaptive
harmonic model and the associated algorithm in Section III. We
evaluate these algorithms on a database of music recordings in
Section IV and conclude in Section V.

II. BASELINE DECOMPOSITIONS OVER FIXED OR

UNCONSTRAINED BASIS SPECTRA

Baseline NMF-based algorithms for multiple pitch estimation
involve the following steps: computing a time–frequency repre-
sentation of the signal, decomposing it into a scaled sum of fixed
or adaptive basis spectra, identifying the pitch of each spectrum
in the latter case, and deriving a pitch salience measure from
the associated time-varying amplitudes. Each of these steps in-
volves some design choices outlined below.

A. ERB-Scale Time–Frequency Representation

In order to discriminate musical pitches, the time–frequency
representation must have a resolution of at least one semitone
over the whole frequency range. This can be achieved using the
short-time Fourier transform (STFT) with a long window [19], a
constant-Q filterbank [22], or another nonuniform filterbank. In
the following, we consider the auditory-motivated filterbank in
[15]. The input signal is passed through a set of filters
indexed by consisting of sinusoidally modulated Hann win-
dows with frequencies linearly spaced between 5 Hz and 10.8
kHz on the Equivalent Rectangular Bandwidth (ERB) scale [29]
given by . The length of
each filter is set so that the bandwidth of its main frequency lobe
equals four times the difference between its frequency and those
of adjacent filters. Each subband is then partitioned into disjoint
23-ms time frames indexed by and the root-mean-square mag-
nitude is computed within each frame. This yields similar
pitch estimation performance to the STFT at a lower computa-
tion cost due to reduction of the number of frequency bins [27].

B. Magnitude-Domain NMF With -Divergence

NMF refers to a set of algorithms minimizing some distor-
tion measure between the observed spectrum and the model
spectrum defined as

(1)

where and , are a set of basis spectra and
time-varying amplitudes, respectively. This model has been ap-
plied to magnitude spectra [17] or, more rarely, power spectra
[15]. Different parametric distortion measures have been em-
ployed within the family of -divergences [30]

(2)

including the Euclidean distance [17], Kull-
back–Leibler divergence [17] and Itakura–Saito
divergence [18], or within the family of perceptually
weighted Euclidean distances [27]. Both families involve a
parameter that can be chosen so that the distortion
scales with . A small compresses the large dynamic
range of music, hence increasing the modeling accuracy of
quiet sounds. In the following, we use magnitude spectra and
measure distortion via -divergence.

The model parameters can be estimated either by inferring
both adaptive basis spectra and time-varying amplitudes from
the test data or by learning fixed basis spectra from training data
and inferring their time-varying amplitudes only from the test
data. Training and inference are both achieved by minimization
of the chosen distortion measure. After suitable initialization of
the parameters, the -divergence can be minimized by iterative
application of one or both of the following multiplicative up-
dates rules until convergence [30]

(3)

(4)

Initialization is achieved either by randomly drawing and
from a uniform distribution when estimating the spectra or

by setting to 1 when considering fixed spectra. Although it
has been proved that -divergence is nonincreasing under these
updates for only [31], experimental convergence has
been observed for any [30], [21].

C. Harmonic Comb-Based Pitch Identification

We measure the pitch of a given basis spectrum on
the Musical Instrument Digital Interface (MIDI) semitone scale
related to its fundamental frequency via

(5)

When training the basis spectra on annotated data, each basis
spectrum is associated a priori with a fixed integer pitch and
accurate training is ensured by setting to zero the amplitudes of
the basis spectra corresponding to inactive pitches. By contrast,
basis spectra estimated from the test data may be either pitched
or unpitched and their pitches must be found a posteriori. In the
following, we use the sinusoidal comb estimator [27]

(6)
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Fig. 1. Comparison of several NMF-based algorithms for multiple pitch estimation of the first 30 s of Borodin’s Little Suite—Serenade for piano. Top row:
magnitude spectrum and ground-truth pitch activity. Second row: basis spectra estimated via unconstrained NMF, sorted in order of increasing pitch, and resulting
pitch activity. Third row: basis spectra trained on the MIS database and resulting pitch activity. Bottom row: basis spectra estimated via NMF under harmonicity
and spectral smoothness constraints (implemented with gammatone windows of order � � �� � � ���� ERB, � � �) and resulting pitch activity. In the
three lower rows, the estimated active pitches are indicated in black over the ground truth pitches in gray.

The pitch range is chosen as the interval between
(27.5 Hz) and (4.19 kHz), which is the range of
the piano. The basis spectra whose estimated pitch is outside
this range are classified as unpitched. We found that, despite its
simplicity, this estimator was surprisingly efficient for the post-
processing of basis spectra estimated via NMF, whose charac-
teristics differ significantly from those of clean musical instru-
ment notes.

D. Amplitude-Based Pitch Salience Measure

Given the time-varying amplitudes of all basis spectra, we
measure the salience of an integer pitch by the square root
of the total power of the scaled basis spectra whose pitch is
within one quarter-tone of

(7)

This measure scales as an amplitude and is hence comparable to
other amplitude-based measures, such as the harmonic sum in

[8]. Due to their real-valued output, such measures cannot be di-
rectly compared to ground truth annotations which characterize
a given pitch as either active or inactive. Instead, we derive pitch
estimates on a frame-by-frame basis by classifying a given pitch

as active whenever

(8)

where is a detection threshold in decibels (dB) that can be
either set manually or learned from training data. We found that
this decision strategy was more efficient than the one in [8] for
the estimation of the number of active pitches per frame.

E. Example Results

The second and third rows of Fig. 1 illustrate the multiple
pitch estimation results derived from NMF with adaptive
or fixed basis spectra over an excerpt of Borodin’s Little
Suite—Serenade, recorded from an acoustic piano and taken
from the MIDI-Aligned Piano Sounds (MAPS) database [32].
The number of basis spectra was set to
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and was set to its optimal value determined in Section IV.
Training was conducted on the University of Iowa’s musical
instrument samples (MIS) [33], which include isolated note
sounds from a single piano at all pitches and at three loudness
levels. The detection threshold was set to 25 dB.

We observe that many basis spectra estimated via adaptive
NMF are neither clearly pitched nor unpitched. Most spectra
involve spurious spectral peaks besides the predominant har-
monic series or missing peaks in that series. Some spectra even
represent several pitches at a time. The resulting pitch activity
representation exhibits short-duration errors that could be easily
addressed in a postprocessing stage involving a temporal model,
but also longer-duration errors, such as pitches below or above
the restricted pitch range of the excerpt, that would be less easily
handled. The pitch activity representation estimated from the
fixed spectra involves even more errors. Although the trained
basis spectra are clearly pitched, their spectral envelopes do not
match those of the piano spectra in the test excerpt. Several
pitches at integer fundamental frequency ratios are then com-
bined to represent a single note.

III. ADAPTIVE HARMONIC DECOMPOSITION

In order to avoid the above pitch estimation errors, it ap-
pears sensible to constrain each basis spectrum to represent a
single note but to adapt its spectral envelope to the test data. We
achieve these goals by adding constraints over the fine structure
of the basis spectra within the model, but leaving some degrees
of freedom over their spectral envelope.

A. General Framework for Spectral Fine Structure Constraints

We associate each basis spectrum with an integer pitch
and index by the basis spectra having the same
pitch but different spectral envelopes. The model spectrum (1)
is then equivalently written as

(9)

In order to ensure that each spectrum actually models the
expected pitch , we constrain it as

(10)

where are fixed narrowband spectra en-
forcing the spectral fine structure associated with that pitch and
the coefficients parametrize the spectral envelope. The es-
timation of the model parameters now consists of inferring the
spectral envelope and the time-varying amplitude of each basis
spectrum from the test data, given its prior fine structure. Due to
the linearity of constraint (10), the estimation of each of these
two quantities can be recast into the standard NMF framework.
The -divergence can be minimized using the following multi-
plicative updates rules

(11)

(12)

whose convergence can be proved under the same conditions
as above. In the following, we initialize the parameters prior
to application of these rules by setting to 1 and choosing

so that the basis spectra have a constant initial slope of
dB/octave over the whole frequency range regardless of

their pitch.

B. Harmonicity and Spectral Smoothness Constraints

The constraint (10) can represent a range of spectral fine
structures associated with different instrument classes, in-
cluding, e.g., harmonic partials for woodwinds, slightly
inharmonic partials for plucked strings, or very inharmonic
partials for bells. Given the frequencies of the partials, each
fine structure spectrum can be defined as a weighted sum
of the spectra of individual partials

(13)

where is the magnitude spectrum of the th overtone
partial, is the number of partials, and the weights
parametrize the spectral shape of band .

The spectrum of each partial can be analytically derived from
the frequency responses of the bandpass filters associated with
the frequency bins of the time–frequency transform. For the fil-
terbank in Section II-A, we get

(14)

where is the frequency of the th partial in Hz, sinc is
the sine cardinal function, and is the length in seconds of the
filter associated with bin . We previously showed that the mod-
eling of inharmonicity or variable tuning in this context does
not significantly affect multiple pitch transcription performance
on piano data compared to a harmonic model with fixed tuning
[28]. Therefore, we assume that the frequencies of the partials
follow the exact harmonic model

(15)

where the fundamental corresponding to pitch is defined
in (5). All harmonics may be observed, hence the number of
partials is set to where denotes the floor
function and the frequency of the topmost frequency bin.

The choice of the weights in (13) affects pitch esti-
mation performance. When each fine structure spectrum
represents a single partial, the basis spectra may encode
multiples of the expected fundamental frequency, resulting in
substitution errors. When it contains too many partials, the basis
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spectra may not adapt well to the spectral envelope of the instru-
ments, leading to insertion or deletion errors. In order to avoid
such errors, each fine structure spectrum should span a narrow
frequency band containing a few partials. The relative ampli-
tudes of these partials may be chosen under the additional con-
straint of spectral smoothness, exploited by some other pitch
estimation algorithms [8], enforcing similar amplitudes for ad-
jacent partials. Practical implementations of this constraint typ-
ically rely either on the properties of auditory pitch perception
or those of musical instrument sounds.

We investigate a range of implementations by exploring dif-
ferent choices for the center frequencies, the bandwidths and the
shapes of the fine structure spectra. The weights are de-
fined as

(16)

where is a chosen window function, and denote the
frequency of the fundamental and that of the th partial on a
chosen frequency scale, is the spacing between successive fre-
quency bands, and their bandwidth on that scale. The shape
of the frequency bands is governed by and their center fre-
quencies are uniformly spaced on the chosen frequency scale,
starting from the fundamental. The choice of a larger bandwidth

than the minimum bandwidth needed for full coverage in-
creases the smoothness of the resulting basis spectra. Similarly
to the above, all frequency bands are assumed to be observed
up to a maximum index so that the number of frequency
bands is set to with

the frequency of the topmost frequency bin expressed on the
chosen scale. The maximum total bandwidth is then equal to

.
In the following, we consider three particular frequency

scales: the pitch-synchronous linear scale indicating the partial
index

(17)

the logarithmic octave scale

(18)

and the ERB scale

(19)

In parallel, we consider four symmetric window functions of
unitary bandwidth: the rectangular window

if
otherwise

(20)

the triangular window

if
otherwise

(21)

Fig. 2. Basis spectrum � estimated for the piano excerpt in Fig. 1 given
fixed harmonic fine structure spectra � (� � ��, gammatone windows of
order � � �� � � ���� ERB, � � �).

the Hann window

if
otherwise

(22)

and the “gammatone” window of order [34]

with

(23)

with denoting the gamma function. By contrast with other
windows, the latter has infinite support and allows control of the
roll-off slope via its parameter .

The ERB scale and the gammatone window are both percep-
tually motivated [34]. The spectral envelope coefficients
corresponding to these choices are hence closely related to the
frequency-warped cepstral coefficients routinely used as timbre
features for audio classification [35]. Example spectra corre-
sponding to these choices are shown in Fig. 2. Although audio-
logical measurements suggest that the shape of auditory bands is
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asymmetric on the ERB scale, we observed that the use of sym-
metric windows did not significantly affect pitch estimation per-
formance. A similar model involving triangular windows with a
spacing and a bandwidth of 2/3 octave was employed in [36] for
the estimation of the amplitudes of overlapping partials given
estimated pitches.

C. Example Results

The bottom row of Fig. 1 depicts the pitch estimates ob-
tained via NMF under harmonicity and spectral smoothness
constraints on the piano excerpt considered above given a pitch
activity detection threshold of dB. Comparison with
the second and third rows of that figure indicates that these esti-
mates are more accurate than with unconstrained NMF or NMF
with basis spectra trained on MIS. In particular, the number of
short-duration errors is decreased and the estimated pitches lie
mostly within the true pitch range of the excerpt. Some basis
spectra, e.g., around , are inaccurately estimated due
to the lack of observed data corresponding to these pitches.
However, this does not reflect in the estimated pitches.

D. Learning the Fine Structure

An alternative approach to the definition of the fine structure
spectra not relying on harmonicity and spectral smooth-
ness assumptions is to train them on annotated samples of sev-
eral instruments sharing similar spectral fine structures. In order
to ensure that the learned spectra exhibit a narrow bandwidth,
their frequency support can be constrained similarly to above
via

if (24)

where and are the frequency of bin and the fundamental
frequency measured over one of the frequency scales in (17),
(18), and (19), is the spacing between successive frequency
bands, and their bandwidth on that scale. The training ob-
jective can again be recast into the standard NMF framework,
leading to the multiplicative update rule

(25)

to be applied alternatingly with (11) and (12). By property of
multiplicative updates, the constraint (24) remains true at each
iteration provided it is initially satisfied.

IV. EVALUATION

A. Algorithms and Evaluation Metrics

We evaluated the algorithms in Sections II and III on two dis-
tinct datasets: a subset of the MAPS piano database [32] and
the woodwind training dataset for the Multiple Fundamental
Frequency Estimation task of the Third Music Information Re-
trieval Evaluation eXchange1 (MIREX 2007). Algorithms based
on fixed spectra were trained on isolated piano sounds from
the MIS database [33] and the RWC Musical Instrument Sound
Database [37], which cover the full pitch range at three loudness
levels of one and three pianos, respectively.

1http://www.music-ir.org/mirex2007/

Two additional NMF algorithms were tested for comparison:
NMF under harmonicity and source-filter constraints [24] and
NMF under a single harmonicity constraint identical to that in
[25] except for the improved modeling of the partial spectra
in (14). The distortion measure used in the original algorithms
was replaced by the more general -divergence and optimized
via multiplicative updates initialized in the same way as other
NMF algorithms, i.e., with a 6 dB/octave slope for the har-
monic spectra and a flat slope for the filter. Four reference mul-
tiple pitch estimation algorithms were also evaluated: the correl-
ogram-based algorithm in [6] implemented in the MIR Toolbox
1.2.1 [38], the spectral peak clustering algorithm in [7] imple-
mented using the optimal parameter settings therein, the har-
monic sum algorithm in [8] provided by its author, and the
piano-specific AR model-based algorithm in [11], also provided
by its author. The SONIC automatic piano music transcription
algorithm [12]2 was also considered. In order to allow fair com-
parison regardless of the input time–frequency representation,
the frame size of the algorithms in [7], [8], and [11] was set to
46 ms, which is close to the effective time resolution of the ERB
filterbank at the fundamental frequency corresponding to the av-
erage observed pitch.

The algorithms in [6], [7], and [11] produced frame-by-frame
pitch estimates every 10 ms. All NMF algorithms as well as the
algorithm in [8] provided amplitude-based pitch salience mea-
sures, which were interpolated over a 10-ms grid and used to
derive pitch estimates as explained in Section II-D. Frame-by-
frame pitch estimates were also derived for SONIC from the on-
sets and durations of the estimated musical notes.

On each 10-ms frame, each of the estimated MIDI pitches was
considered to be correct if it is equal to one of the ground truth
MIDI pitches. Denoting by and the respective number
of ground truth, estimated and correct pitches on frame , perfor-
mance was quantified for each test recording in terms of recall

, precision and F-measure defined as [39]

(26)

(27)

(28)

and averaged over each dataset. These measures were also used
within past Music Information Retrieval Evaluation eXchanges
(MIREX).

B. Results on Piano Data

The first dataset consists of the initial 30 s of 50 piano pieces
from the MAPS database, recorded from a Disklavier acoustic
piano using either close or ambiance microphones, and having a
polyphony level of 3.9 on average and 9 at most. Due to the lack
of sufficient annotated data from different pianos, the optimal
parameter values for each algorithm were not learned a priori.
Instead, we considered a range of values and analyzed the im-
pact on performance of each parameter, other parameters being

2http://lgm.fri.uni-lj.si/sonic.html.
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TABLE I
AVERAGE PITCH ESTIMATION PERFORMANCE OVER PIANO DATA USING

OPTIMAL PARAMETER VALUES FOR EACH ALGORITHM

fixed to their optimal values. Although the optimal a posteriori
performance figures are presumably larger than with prior pa-
rameter settings, we believe that this allows fair comparison of
algorithms in terms of relative performance, as well as deeper
understanding of the sensitivity to each parameter.

Preliminary experiments were conducted to validate the de-
sign choices made in Section II. The proposed harmonic comb-
based pitch estimator was compared to the spectral product es-
timator in [19] and found to improve F-measure by 10% on
average when applied to unconstrained adaptive basis spectra.
The chosen NMF framework based on magnitude spectra and

-divergence was also compared to NMF frameworks based
on power spectra or perceptually weighted Euclidean distance.
Similar results were obtained for all frameworks with adaptive
basis spectra. However, with fixed spectra trained on MIS and
RWC, the average F-measure decreased by 8% with power-do-
main modeling instead of magnitude-domain modeling and by
11% with perceptually weighted Euclidean distance instead of

-divergence.
For all NMF algorithms, various numbers of basis spectra

were tested among multiples of 88, the distortion measure pa-
rameter was varied between 0 and 2 in steps of 0.1 and the
detection threshold between 40 and 15 dB in steps of
1 dB. For the proposed NMF algorithm, additional preliminary
experiments showed that, although the effect on performance of
the maximum number of frequency bands and their band-
width are related, that of and the maximum total band-
width are roughly independent. The latter was varied in
steps of 1 partial, 1/3 octave or 2 ERB, depending on the chosen
frequency scale, and was derived as .

The results with the optimal parameter values are given
in Table I. The proposed algorithm with fixed fine structure
spectra resulted in an average F-measure of 67%, that is 7% to
37% better than reference multiple pitch estimation algorithms
not based on NMF and 3% better than SONIC which includes
temporal tracking. This level of performance is comparable to
that of NMF with fixed spectra trained on both MIS and RWC,
but about 9% better than unconstrained NMF, 6% better than

Fig. 3. Variation of the average pitch estimation performance over piano data
as a function of the divergence parameter � and the detection threshold � .

NMF under harmonicity constraint alone and 10% better than
NMF under harmonicity and source-filter constraints. This
confirms that harmonicity is an appropriate but insufficient
constraint in the context of pitch estimation and suggests that
spectral smoothness is more useful than source-filter modeling
as an additional constraint. Fine structure spectra learned on
piano data did not further improve performance compared to
fixed fine structure spectra.

For all NMF algorithms, the F-measure was maximum with
basis spectra and decreased by 1 to 5% with

and 2 to 7% with . Performance variation as a function
of and is depicted in Fig. 3. As explained in [21], a small
value of appears preferable for unconstrained NMF in order to
infer wideband spectral structures despite the wide differences
in dynamics between low and high frequencies. For other al-
gorithms, the optimal is equal to 0.5. The resulting distor-
tion measure scales similarly to perceptual loudness for audible
sounds and was also shown to be optimal in the context of audio
source separation in [30]. Doubling or halving decreases the
F-measure by 0 to 5%. Unconstrained NMF also exhibits a dis-
tinct behavior from other NMF algorithms when considering the
choice of , with an optimal value of 32 dB instead of a
more conservative 27 dB. A deviation of 3 dB from the op-
timal decreases the F-measure by 1 to 2%. The harmonic
sum algorithm in [8] is more sensitive to the choice of ,
with a decrease up to 7% for the same deviation.

The best results for the proposed algorithm were obtained
when building fine structure spectra from gammatone windows
of order spaced on the ERB scale, with a maximum
number of frequency bands and a maximum total
bandwidth ERB. The effect of these parameters
is analyzed in Tables II and III and in Fig. 4. The frequency
scale has little influence, provided other parameters are adapted

Authorized licensed use limited to: Telecom ParisTech. Downloaded on March 01,2010 at 04:53:33 EST from IEEE Xplore.  Restrictions apply. 



VINCENT et al.: ADAPTIVE HARMONIC SPECTRAL DECOMPOSITION FOR MULTIPLE PITCH ESTIMATION 535

TABLE II
VARIATION OF THE AVERAGE PITCH ESTIMATION PERFORMANCE OVER

PIANO DATA OF NMF UNDER HARMONICITY AND SPECTRAL SMOOTHNESS

CONSTRAINTS FOR DIFFERENT FREQUENCY SCALES

TABLE III
VARIATION OF THE AVERAGE PITCH ESTIMATION PERFORMANCE OVER

PIANO DATA OF NMF UNDER HARMONICITY AND SPECTRAL SMOOTHNESS

CONSTRAINTS FOR DIFFERENT BAND SHAPES

Fig. 4. Variation of the average pitch estimation performance over piano data of
NMF under harmonicity and spectral smoothness constraints as a function of the
maximum number of frequency bands� and the maximum total bandwidth
� .

to the chosen scale. The bandwidth of each spectrum also has
little influence, since any value of between 4 and 11 or
any value of larger than 18 ERB results in an average
F-measure within 2% of the optimum. Small values of
and should be avoided, since they result in insufficient
adaptation capabilities or incomplete coverage of the frequency
axis, respectively. Finally, gammatone windows perform about
3% better than smooth windows with finite support, but the
window order is not critical. Only rectangular windows should
be avoided. Overall, this suggests that, even if it is not optimally

TABLE IV
F-MEASURE (%) FOR PITCH ESTIMATION OVER WOODWIND DATA

implemented, the spectral smoothness constraint still improves
performance compared to the harmonicity constraint alone, pro-
vided the window is smooth and and are large
enough.

C. Results on Woodwind Data

Using the optimal parameter values determined in
Section IV-B, we applied the algorithms not restricted to
piano data to a second dataset. From the recordings of indi-
vidual instrument parts of a woodwind quintet by Beethoven
made available at MIREX 2007, we generated four test ex-
cerpts with two to five instruments by successively summing
together the initial 30 s of the parts of flute, clarinet, bassoon,
horn, and oboe. Pitch estimation results are listed in Table IV.
NMF under harmonicity and spectral smoothness constraints
performed best for most polyphonies, while NMF under har-
monicity constraint alone sometimes performed worse than
unconstrained NMF. Despite the fact that some pitches were
played by up to three instruments, performance did not improve
when employing more than one basis spectrum per pitch.
Further experiments suggest that this is due both to the use
of a constant number of basis spectra per pitch and to the
difficulty of initializing these spectra so that each converges to
a particular instrument.

V. CONCLUSION

We proposed an adaptive spectral decomposition model for
music signals based on harmonicity and spectral smoothness
constraints. This model ensures that the estimated basis spectra
have a known fine structure, while their spectral envelope is
adapted to the observed data. Multiple pitch estimation exper-
iments conducted on piano and woodwind data indicate that,
independently of any temporal prior, the resulting constrained
NMF algorithm is potentially competitive with NMF based on
fixed instrument-specific spectra and superior to unconstrained
NMF or NMF under harmonicity constraint alone. As a side re-
sult, we provided a benchmark of classical NMF algorithms in
the context of multiple pitch estimation and showed that the op-
timal value of the -divergence parameter is often different from
the integer values commonly used in the literature.

In the future, we plan to exploit the estimated amplitude-
based pitch salience measure for music-to-score transcription
via a probabilistic model involving additional temporal priors.
Given their relationship to frequency-warped cepstral coeffi-
cients, the estimated spectral envelope coefficients could then
be used to cluster the notes into instrument parts. We also aim to
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extend our model to represent percussive as well as pitched in-
struments and to improve its performance over mixtures of sev-
eral instruments by using an adaptive number of basis spectra
per pitch, based on recent findings regarding the estimation of
the number of basis spectra [40] and their initialization [41].
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