
What are Applications in
Multi-surface Environments?

James R. Eagan
Télécom ParisTech &
CNRS LTCI UMR 5141
46, rue Barrault
75013 Paris, France
james.eagan@telecom-
paristech.fr

Clemens N. Klokmose
Aarhus University
Dept. of Computer Science
Åbogade 34
DK-8200 Aarhus N, Denmark
clemens@klokmose.net

Eric Lecolinet
Télécom ParisTech &
CNRS LTCI UMR 5141
46, rue Barrault
75013 Paris, France
eric.lecolinet@telecom-
paristech.fr

Copyright is held by the author/owner(s). CHI 2013 Extended
Abstracts, April 27–May 2, 2013, Paris, France.
ACM 978-1-4503-1952-2/13/04.

Abstract
Multi-surface environments, which may contain any
combination of large, high-resolution display walls
(powerwalls), interactive tabletops, fixed computing
infrastructure, laptops, tablets, and smartphones all linked
together, offer a rich opportunity for new interactions and
collaboration. Creating applications for these
environments, however, breaks many of the assumptions
of traditional computing environments, and requires a
redefinition of the meaning of what constitutes an
application. Furthermore, they present challenges when
faced with a heterogeneous environment consisting of
both new multi-surface applications and legacy data and
applications.

Author Keywords
multi-surface interaction, applications, wall-sized displays

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e. g.,
HCI)]: Misc.

Introduction
Immersive rooms, such as the WILD Room [2], offer the
exciting prospect of creating rich interactive information
environments. Such a room may contain an ultra-high
resolution wall-sized display (a powerwall), interactive

1



table-top displays, laptop computers, tablets, and
smartphones. Additional interactions may be possible
through active or passive 3D tracking systems, such as
Vicon, which uses markers placed on tracking targets, or
the Microsoft Kinect, which uses a recognition approach
to detect targets. These may be connected through a
high-bandwidth, low-latency wireless network.

A powerwall can have very different roles in an interactive
environment. On one extreme is the powerwall as a
synoptic display, e. g. displaying flight data in a flight
control room or displaying stock trends in a stock
exchange. Here, there might be little or no direct user
interaction with the powerwall. At the other extreme, the
powerwall is treated as a large electronic whiteboard for
heterogeneous digital content (as exemplified in [5]). In
the latter case, multiple people may interact with the wall
at the same time, bringing content to and modifying
content on the wall. This, in effect, results in a device
that simultaneously hosts multiple types of content used
by multiple people simultaneously—an approach that is
very different from our traditional interactive devices that
tend to be one user, one application at a time (figure 1).

Figure 1: Substance Canvas [5]
running on a 16-computer
wall-sized display and a tabletop
surface. An application running
on the laptop (bottom, right) is
synchronized to the wall. A user
(left) scales up a vector-based
view of the application using a
motion-tracked pointer.

Regardless of which devices are available in a particular
interactive environment, our goal is to enable all of these
devices to work seamlessly together, as if they were all
designed for such an environment. We call these rooms
multi-surface environments. One potential scenario for
such a room, for example, involves a scientist who should
be able to enter with the latest set of telescope imagery
on her smartphone, slide it onto an interactive table using
a pick-n-drop-like technique [6], and collaboratively triage
those images around the table with her colleagues. When
identifying an image for further analysis, she should be
able to easily slide it onto the wall, showing a

higher-resolution, higher-detail image. Furthermore, she
should be able to run her traditional, laptop-based data
analysis tools on the wall, alongside the raw imagery.

The above scenario raises several questions. What should
the interaction look like? How does our brave scientist
exchange her data between devices? Are they copied
between devices? Cloned (i. e. shared between them)?
What should happen if she receives a phone call and
leaves the room? How should the system communicate
these interactions so as to help her and her collaborators
better predict them? Finally, how should applications
present themselves in these kinds of environments? Does
the scientist use the same applications she is used to from
her laptop?

Each of our interactive devices has its strengths and
weaknesses, and a powerwall is no different. If the
interaction at the wall goes much beyond navigation to
actual content production or editing, additional devices
such as a personal computer or a tablet may be necessary.
As a consequence, not only may the powerwall be used by
multiple people, and contain heterogeneous content, but
the “system” or “application” may span multiple devices
in a dynamic fashion.

Not only is it challenging to design appropriate
interactions and mental models for these kinds of
envionments, but also it raises additional challenges for
their implementation. Multi-surface environments are
frequently dynamic: new devices may enter and leave the
environment. They are also inherently distributed:
interaction may span multiple devices. For example,
interaction may use a smartphone and input controlled
through a tracking system, computation may take place
on a computing cluster in the room, and output may be
split across the smartphone and wall. A specific

2



interaction might begin on one device and finish on
another, as in pick-n-drop.

Multi-surface environments challenge the traditional
notion of applications on several levels. Not only does it
dilute the concept itself, but it also challenges how we
actually build interactive software when distribution is the
norm rather than the exception.

Distributed Application Models
Various approaches have been taken to designing
applications to run in these kinds of multi-surface
envronments. Among them, the Stanford iRooms
project [3], i-Land [7] and its corresponding BEACH
model [8], and even our own Shared Substance
architecture [5] aim to examine ways of enabling
interaction across multiple devices in the same
environment. These approaches offer different levels of
abstraction on top of the details of network access,
connectivity, and data synchronisation. They further
propose different ways of coupling or de-coupling data and
functionality, such that interacting with the same data on
different devices may offer different styles of interaction
depending on the particular device and on the current
context.

All of these projects struggle with how to resolve the
inherent departures of multi-surface environments from
the traditional role of an application. In a standard,
desktop-based setting, an application is relatively easy to
define: a program process started by the user, such as by
double-clicking an icon or by invoking a single command.
That program may involve many processes, but they are
all started by the same single action, and can logically be
considered to be a part of the same program. We know
how to think about these kinds of applications. If a user

quits the application, its primary process and all of its
associated processes shut down.

Mobile applications change this model some, but not by
much. Quitting an application on a mobile device might
not actually quit the application; it might only freeze its
state but keep the process loaded and ready to go if the
user returns back to it. In any case, the mental model of
what happens is conceptually straight-forward.

In multi-surface applications, however, a logical
application may involve processes running a variety of
devices. For example, the Substance Canvas application
(figure 1) involves a cluster of 16 machines powering a
wall-sized display, a front-end scene graph server to
coordinate them all, a tabletop display also synchronizing
with the scene graph server, a Vicon tracking system
relaying events to an input event server, and a wirelessly
connected iPod Touch. This single logical application,
thus, involves 21 distinct processes running on different
devices. Most of these processes run as independent
services, providing a part of an underlying infrastructure
necessary to support the overall application. If the table
were to shut down, for example, the other services would
continue to operate without degradation. Should the
input event server shut down, the scene graph would
remain intact, with the system continuing to operate in a
pure visualisation mode. The application itself is thus
simultaneously the ensemble of all of these services
running on all of these devices, but whose functionality
depends on which subset of those devices happens to be
running at the time.

In order to handle this ever-changing environment with its
dynamic resources and constraints, the multi-surface
applications we built with Shared Substance did not
dictate interaction per se. Interaction was decoupled from

3



the data model and instead implemented as
instruments [1] with the datastructure of the scene-graph
as the interface. As such, these instruments could reside
on any machine on the local network (figure 2).

Sharer 
facet

Canvas Master

Renderer A1 Renderer D4

CoreGraphics based
rendering facetReplicated

scene graph

Replicator 
facet

The Wall

Picking
facet

Shared
Scenegraph

Mounter
& Replicator 

facets

Instrument environment

Mounted 
Scenegraph

Instrument

Renderer facet

Replicated
VICON

Mounter 
facet

Web provider

Webserver
facet

Mounted
Scenegraph

Figure 2: The architecture of the Substance Canvas (figure 1)
running on a 16-computer wall-sized display, with a web-based
data provider, a Vicon tracking provider, and an iPod Touch
input device.

The Shared Substance project explores an underlying
middleware model for creating multi-surface applications,
but it only provides a starting step. The instrumental
interaction model that we used for interaction, coupled
with Shared Substance’s data-oriented programming
model [5] proves useful for these kinds of environments,
but still requires nuanced interactions with the underlying
framework. Ultimately, it needs to be easier for

programmers to create their own interactive instruments
and for users to find, collect, and use them.

User Data in Multi-surface Environments
One of the real strengths of multi-surface environments is
their rich, heterogeneous display, computational, and
interactive properties. In order to take advantage of the
richness of these environments, we want it to be easy for
a user to bring his own data into the environment and to
manipulate it. Interaction techniques such as
pick-n-drop [6] are one elegant solution, but are
surprisingly tricky to implement. We added different data
providers to the shared environment, each of which could
export data into the shared scene graph. We added data
providers for email, web, anoto pen, and even a printer
interface. As such, a user could email an image, upload
an SVG document, scribble annotations on a piece of
paper, or print a PDF document to the wall. With
interactive instruments, he could then move, organise,
scale, and otherwise manipulate these objects.

One seductive use of such wall-sized displays, however, is
collaboration with applications running on a user’s device.
Beyond importing individual documents into the
environment, one may wish to use a specialized
application in the environment. For example, the
astronomer in the earlier scenario may wish to use an
analysis tool on her laptop to anotate different parts of the
sky revealed in the latest imagery. But simply mirroring
the window on her laptop on the wall is insufficient. On a
high resolution wall, the window may potentially appear at
a smaller physical size than is displayed on the
lower-resolution laptop screen. Stretching that window on
the wall results in “chunky pixels” due to the rasterized
source image. Stretching the window beyond the size of
the laptop’s integrated display is typically not possible

4



with most windowing environments and would further
require extensive memory and graphics resources to drive
an ultra-high resolution wall-sized display.

We’ve experimented with this using the Scotty [4] toolkit,
which provides deep hooks into Apple’s Cocoa framework,
thus allowing access to a vector graphics representation of
an application window. We used this in conjunction with
Substance Canvas to “beam” a live window from a laptop
to the wall (figure 1). Because Scotty has access to the
underlying window drawing operations, it can reconstruct
a vector-based PDF of the window on the wall. Thus,
vector-based content, such as text, shapes, and paths,
scales up smoothly. Raster-based content, such as images,
still scales up as chunky pixels, but at the backing
resolution, which may be higher than the screen
resolution. As the application updates its display on the
laptop, so too does its image on the wall. We can further
map pointing events back to the source application,
allowing a two-way interaction between the laptop and
wall. A yet unsolved challenge is how to enable
interaction with the window on the wall using the
interaction techniques for the wall in a sensible manner.

Ultimately, Scotty is a hack. It works because we were
able to integrate deep inside the Cocoa framework to tap
low-level drawing operations. While this approach is able
to sustain drawing at interactive or near-interactive
speeds, it is slow and fragile. A longer-term goal is
examine how we can re-design desktop-based applications
to better co-exist and appropriate such environments. We
are beginning to see some tools for this kind of capability
with audio and video files in Apple’s AirPlay system to a
dedicated hardware device (Apple TV) or from Samsung’s
smartphones and tablets to their latest TVs. These tools
provide a rudimentary capability that does not allow for

two-way interaction, let alone adapting the interaction to
the particular configuration.

Some (grand) challenges
The role of applications
We posit that powerwalls rarely make sense as isolated
devices. They will most likely be part of a multi-surface
environment where devices may dynamically come and go.
The grand challenge is thus to rethink the notion of
applications as something outwards rather than inwards
pointing. Historically, it has been straight-forward to
delimit the boundaries of an application. While office
suites, for example, start to press upon these limits, it is
still relatively easy to argue where an application begins
and ends. A multi-surface application involves a collection
of independent but autonomous processes all working
together to provide a what a user might call an
application. But how do we conceptualize the extent and
boundaries for the user? And for the developer?

Integrating with traditional software
Powerwalls and multi-surface environments should not
force us to reinvent the wheel. The software for our
personal devices has matured and gained a foothold over
the decades. However a powerwall is not a personal
device. It is a part of a typically shared environment,
hence a challenge is how to adapt this wall as a
collaborative artifact that operates in conjunction with
existing data and applications. Furthermore, how can we
incorporate traditional applications that were designed
with one user in mind. A näıve approach might be to
abandon traditional applications as legacy, but even so,
moving forward there will continue to be a divide between
the use of applications in a multi-surface,
powerwall-enabled setting and in a single-user,
single-device context. For example, how can we bridge

5



between novel interaction techniques with touch or
motion capture to applications designed for a mouse and
keyboard?

Acknowledgements
This work is funded in part by the Région
Île-de-France/Digitéo and the Carlsberg Foundation. We
thank our collaborators on the WILD and DigiScope
projects, especially Michel Beaudouin-Lafon and Wendy
Mackay.

References
[1] M. Beaudouin-Lafon. Instrumental interaction: an

interaction model for designing post-wimp user
interfaces. In CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems,
446–453, New York, NY, USA, 2000. ACM.

[2] M. Beaudouin-Lafon, S. Huot, M. Nancel, W. Mackay,
E. Pietriga, R. Primet, J. Wagner, O. Chapuis,
C. Pillias, J. R. Eagan, T. Gjerlufsen, and
C. Klokmose. Multisurface interaction in the wild
room. Computer, 45(4):48 –56, april 2012.

[3] J. Borchers, M. Ringel, J. Tyler, and A. Fox. Stanford
interactive workspaces: a framework for physical and
graphical user interface prototyping. Wireless
Communications, IEEE, 9(6):64–69, dec. 2002.

[4] J. R. Eagan, M. Beaudouin-Lafon, and W. E. Mackay.
Cracking the cocoa nut: user interface programming

at runtime. In Proceedings of the 24th annual ACM
symposium on User interface software and technology,
UIST ’11, 225–234, New York, NY, USA, 2011. ACM.

[5] T. Gjerlufsen, C. N. Klokmose, J. Eagan, C. Pillias,
and M. Beaudouin-Lafon. Shared substance:
developing flexible multi-surface applications. In
Proceedings of the 2011 annual conference on Human
factors in computing systems, CHI ’11, 3383–3392,
New York, NY, USA, 2011. ACM.

[6] J. Rekimoto. Pick-and-drop: a direct manipulation
technique for multiple computer environments. In
Proceedings of the 10th annual ACM symposium on
User interface software and technology, UIST ’97,
31–39, New York, NY, USA, 1997. ACM.

[7] N. A. Streitz, J. Geißler, T. Holmer, S. Konomi,
C. Müller-Tomfelde, W. Reischl, P. Rexroth, P. Seitz,
and R. Steinmetz. i-land: an interactive landscape for
creativity and innovation. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems, CHI ’99, 120–127, New York, NY, USA,
1999. ACM.

[8] P. Tandler. The beach application model and software
framework for synchronous collaboration in ubiquitous
computing environments. J. Syst. Softw.,
69(3):267–296, Jan. 2004.

6


	Introduction
	Distributed Application Models
	User Data in Multi-surface Environments
	Some (grand) challenges
	The role of applications
	Integrating with traditional software

	Acknowledgements
	References

