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Abstract. QKD networks are of much interest due to their capacityof providing extremely high security keys to network participants. MostQKD network studies so far focus on trusted models where all the net-work nodes are assumed to be perfectly secured. This restricts QKD net-works to be small. In this paper, we �rst develop a novel model dedicatedto large-scale QKD networks, some of whose nodes could be eavesdroppedsecretely. Then, we investigate the key transmission problem in the newmodel by an approach based on percolation theory and stochastic rout-ing. Analyses show that under computable conditions large-scale QKDnetworks could protect secret keys with an extremely high probability.Simulations validate our results.

1 Introduction
The problem of transmitting a secret key from an origin to a destination over thenetwork was considered for a long time. The current solution in most Internetapplications is using Public Key Infrastructure (PKI). PKI relies on plausiblebut unproven assumptions about the computation power of eavesdroppers andthe non-existence of e�ective algorithms for certain mathematical hard problems.As a result, PKI cannot meet the highest security level, also called unconditionalsecurity . Quantum Key Distribution (QKD) technology is a prominent alterna-tive [1]. It was proven that QKD can provide unconditional security [2, 3, 4]. Itis successfully implemented in realistic applications [5, 6, 7, 8]. However, QKDonly supports point-to-point connections and intrinsically causes serious limitson throughput and range [5, 9]. A long-distance QKD transmission needs inter-mediate nodes to relay the key. In realistic scenarios, some of these nodes couldbe eavesdropped without the others knowing it. In consequence, the security ofkey will be compromised. Larger networks are more vulnerable.This paper studies a partially compromised QKD network model that allowsany member pair establishing securely a common key with almost certainty.The contributions are (i) a model of partially compromised QKD networks, (ii)the use of percolation theory techniques to �nd where almost-certainty can beachieved, (iii) stochastic routing proposals capable of achieving a given secrecylevel.The remainder is organized as follows. Section 2 introduces the QKD net-work's context and proposes a novel model of the world-wide QKD network.Section 3 presents related works. Section 4 seeks for the necessary condition to



achieve a given high secrecy of key transmissions. Section 5 presents our adaptivestochastic routing algorithms and analyzes their performances. We conclude inSection 6. The proofs of the theorems are given in Appendix.
2 A proposal for the world-wide quantum network
Preliminary QKD networks present two types of links: classical and QKD.Classical links are easy to implement, capable of providing high-speed but low-con�dentiality communications. By contrast, QKD links aim at unconditionalsecurity. This causes undesirable limits of rate and range [5, 9]. The ultimategoal of QKD networks is unconditional security. QKD networks rather sustainQKD's restrictions to reach this goal. As such, there is no need to considerclassical links in studying QKD network prototypes. In the following we willsimply write links instead of QKD links.The feasibly-implemented model of QKD networks so far is the trusted net-work model. Its representers are SECOQC and DARPA networks [10, 6, 11, 12].This model assumes that all the network nodes are perfectly secured. This as-sumption is too strong in large-scale scenarios. Actually, eavesdroppers can in-geniously attack a proportion of nodes without leaving any trace in large-scalenetworks. Consequently, security may be compromised.Restricted by a modest length of link, QKD networks don't present manychoices of topology. Meshed topology would suit QKD networks [12]. Besides,distributed architecture is considered to be good. This paper follows these ideas.However we focus on the world-wide quantum network that is very di�erentfrom small-scale quantum networks like DARPA and SECOQC. For simplicity,we choose the 4-connected grid topology. Nodes are represented by squares.Links have no representation because they have no e�ect on security analysis(see Fig. 1).In QKD networks, intermediate nodes are vulnerable. Attacks are either de-tectable or undetectable. In principle, if an attack is detectable then we can �ndsolutions to �x it. Undetectable attacks are very dangerous. We cannot detectthem until great damage has been done. We take into account such attacks.Assume that each node sustains a probability pe being eavesdropped withoutknowledge of the others. For simplicity, we focus only on cases where pe is thesame for all the nodes. Note that pe should be small unless eavesdropper re-sources are much larger than those of legitimate users.
Modeling the world-wide QKD network problem Consider a 4-connectedgrid lattice network (see Fig. 1). The network is large enough so that we canignore its borders. Nodes are represented by squares. Each node is connectedwith its four neighbors. Links however are not represented since they do nota�ect the security analysis. In graph theory our network is described as follows.Network is the set of vertices V = Z2. A vertex is safe if it is not eavesdropped.Otherwise, it is called unsafe. Each vertex is eavesdropped without any tracewith probability pe 2 [0; 1]. As mentioned above, we focus only on the cases
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Fig. 1. Two dimensional lattice network.
where pe is the same for all the vertices. The probability that a vertex is safe isps = 1� pe.Alice and Bob are represented by vertices vA and vB . Alice wants to convey asecret key K to Bob. We study the secrecy probability � that K is not revealedto the eavesdropper Eve. If vA and vB are adjacent then K certainly is safe, i.e.� = 1. Otherwise, K must pass over l intermediate vertices v1; v2; ::; vl whosetask is to relay K. The sequence � = vA; v1; v2; ::; vl; vB is a path from vA to vB .A path is safe if all its nodes are safe.We de�ne the length of path as the number of intermediate vertices. Since Kis transmitted in �, we have �(K) = pls. This implies that � is dramatically de-creased with respect to (w.r.t) the length l. We focus on a simple way to improve�: sending a number of sub-keys K1;K2; ::;KN by di�erent paths �1; �2; ::; �N .K is computed by a bitwise XOR operation over K1;K2; ::;KN . As such, K issafe unless Eve intercepts all �1; �2; ::; �N . If the graph presents safe paths thenwith a larger N , K is more likley to be safe. The following questions are basic:
1. When are all the safe vertices almost certainly connected? In other words,�nd the condition on ps such that 8� 2 [0; 1] : �1 = limN!1(�) � 1��.2. Assume that �1 � 1 ��. Given a pair of vertices (vA; vB), consider a setof N paths �1; �2; ::; �N from vA to vB generated by a proposed routingalgorithm. Let �(N) be the secrecy probability of the �nal key if N sub-keysare sent by �1; �2; ::; �N . Find N0 such that for any small � � �, � 2 [0; 1],we have: 8N � N0 : �(N) � 1� �.
3 Related work
Percolation theory This theory investigates the transition phase from thenon-existence to the existence of the giant wetted cluster when we pour water at
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Fig. 2. The percolation probability �(po).
the center of a graph [13,14,15]. The 2-dimensional site percolation model can beroughly described as follows. Let G = (V;E) be a graph with vertices set V andedges set E. Vertices and edges are either open or closed . In the open status, theyallow water to pass through and water make them become wetted. Otherwise,they do not allow the passage of water. All the edges are open. Each vertex isopen with open probability po 2 [0; 1]. Let �(p) be the percolation probabilitythat measures the proportion of wetted vertices to open vertices. Fig. 2 roughlyshows the behavior of � w.r.t po. The value pc, the critical probability , is theminimum po such that �(po) > 0.The 2-dimensional site percolation's framework is similar to our networkmodel's one. The open probability po and the safe probability ps play an equiv-alent role. If we set ps = po and assume that vA sends to vB an in�nite set ofsub-keys K1;K2; :: by an in�nite set of di�erent paths �1; �2; ::, then the secrecyprobability � of the �nal key K is identical to the probability existing a safepath between vA and vB . However this probability is equivalent to the probabil-ity � that almost open vertices belong to the in�nite open cluster. We can applyto � two important properties of � [15]:
1. � is a non-decreasing and continuous function in the right of pc (see Fig. 2).2. The number of in�nite open clusters is either 0 or 1 for � = 0 or � > 0,respectively.
Stochastic routing algorithms Traditional routing algorithms, such as thoseused on the Internet, are mostly deterministic. Tailored to be e�cient, they areguessable, which is not a good property for our purpose. By contrast, stochasticrouting algorithms seem to be better. The basic idea is sending randomly a packetto one of possible routes, not necessarily the \best" one. When the messageholder forwards a packet, the choice of next-hop is random, following a next-hop probability distribution. The main challenge is how to determine the bestnext-hop probabilities that optimize a given speci�c goal. Previous works onstochastic routing [16,17,18] focus on performance metrics (latency, throughput,acceptance rate, etc.) which are not of major importance to QKD networks whosepriority is security. Besides, the 4-connected grid topology also makes previous



optimizations on stochastic routing useless. We need to build our own stochasticrouting algorithms.
4 Condition on ps for � � 1��
Safe connectivity function Two vertices vA and vB are safely connected ifthere exists a safe path between them. In the percolation literature, �1(vA; vB)can be interpreted as the connectivity function �(vA; vB). We can use the fol-lowing approximation from [13]:

�1(vA; vB) = �(vA; vB) � �2 (1)
Given a non-negative small value �, we must �nd out the critical pc suchthat 8ps : pc � ps � 1, we have �1 � 1 � �. Here, we propose a heuristicmethod and use simulations to validate our method.It is well known that the critical probability for the 2-dimensional latticepercolation is about 0:6. From this value to 1, the percolation probability � isgreater than zero, non-decreasingly and continuously tends to 1. Let � be theprobability that a given vertex is encircled by unsafe vertices, we have � = 1� �.From Approximation 1 we can derive the condition on � w.r.t a given � asfollows: � � 1�p1��Our task now turns into studying � in the region close to 0. The trivial casewhere the given vertex is encircled by its four unsafe neighbors gives the lowerbound of �, or: � � (1� ps)4 (equality i.i.f ps = 1) (2)If we set ps = 0:8 then from (2) we have � > 1:6 � 10�3. It is small enoughto temporarily set pc = 0:8 in order to incrementally study � in its low-valueregion.We �rst study � in the one-dimensional case. To distinguish � in the one-dimensional and two-dimensional cases we denote by �(1) and �(2), respectively.We measure �(1) for a given radius r (see Fig. 3.A).

�(1) = �Pr(At least one unsafe vertex in the left)���Pr(At least one unsafe vertex in the right)� = (1� prs)2 (3)
We now extend to �(2) from �(1). Assume that we are focusing on the vertexO in the two-dimensional lattice. Let R(r) be the set of vertices of distance rfrom O. We study unsafe circuits inside R(r). Denote by (see Fig. 3.C and Fig.3.B):{ G(r): the event that there are unsafe circuits that encircle the vertex O anddo not exceed R(r).{ GLR(r): the event that there are unsafe vertices at both the left and theright of the vertex O. These unsafe vertices are inside the radius r from O.
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Fig. 3. Unsafe circuits in the one-dimensional and two-dimensional cases.
{ GUD(r): the event that are unsafe vertices both above and below the vertexO. These unsafe vertices are inside the radius r from O.Obviously, Pr �G(r)� � Pr �GLR(r)�� Pr �GUD(r)�. That means

�(r) = �(2)(r) � ��(1)(r)�2 (4)
By applying (3) to (4), we have:

�(r) � (1� prs)4 (5)
Based on G(r) we de�ne the event G(r1; r2) is an event that there is nounsafe circuit inside the inferior R(r1) but there is an unsafe circuit inside theexterior R(r2). Let �(r1; r2) be the probability that the event G(r1; r2) appears.We have: �(r2) = �(r1; r2) + �(r1)Let r2 tend to in�nity and set r1 = r, we have:

� = �(1) = �(r) + �(r;1) (6)
The upper bound of � is estimated by applying (5) to (6):

� = �(1) � (1� prs)4 + �(r;1) (7)
If a circuit belongs to the set G(r;1) then its length must be equal orgreater than 2r. As such, the minimum degree of pe in the function �(r;1) is2r or �(r;1) = O�p2re � = O�(1� ps)2r�.We consider the ratio between � and (1� ps)2r. From (2),

limr!1 �(1� ps)2r � limr!1 (1� ps)4(1� ps)2r =1
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This is to say � >> (1� ps)2r � �(r;1), or � >> �(r;1) as r ! 1. Fig. 4shows the ratio between two quantities (1 � ps)4 and (1 � ps)2r with values ofps in [0:8 : 1]. We realize that in order to get a great ratio about 108, we canchoose r = 8 for ps 2 [0:8 : 0:9] and r = 6 for ps 2 [0:9 : 1]. With these choicesof r, we can ignore �(r;1) in the formula of the upper bound of �. We derivefrom (7) to the following approximation:

� � � (1� p8s)4; if 0:8 � ps < 0:9(1� p6s)4; if 0:9 � ps � 1
Simulations We �rst determined the possible size of the world-wide quantumnetwork according to our proposed model. The Earth's surface is 510,065,600square kilometers. The optimal length of QKD links so far is believed to beapproximately 40 km long [11]. Thus, the network size is approximatively of600� 600.Simulation was done in the 2-dimensional grid lattice 600 � 600. For eachexperiment, we randomly generated an untrusted network w.r.t a given ps. Then,we used the spreading algorithm to �nd the greatest connected safe cluster. Wecalculate the probability �si that a safe vertex does not belong to the greatestsafe cluster as follows:

�si = 1� The number of nodes belonging to the greatest safe cluster.The number of all the safe nodes.We executed 104 experiments for each ps. Table 4 shows theoretic values andsimulation results. We realize that as ps increases the mean of �si gets closer toits lower bound, and both tends to 0. For ps 2 [0:8 : 0:9], the upper bound of �is important in comparison with pe = 1 � ps. This implies that the probabilitythat the �nal key is eavesdropped in its transmission is greater than that of the



ps �lb E(�si) �ub0.8 1:6� 10�3 2:14� 10�3 4:79� 10�10.83 8:35� 10�4 1:03� 10�3 3:6� 10�10.86 3:84� 10�4 4:47� 10�4 2:4� 10�10.9 1� 10�4 1:12� 10�4 4:82� 10�20.93 2:4� 10�5 2:7� 10�5 1:55� 10�20.95 6:25� 10�6 7� 10�6 4:92� 10�30.97 8:1� 10�7 1� 10�6 7:78� 10�4Table 1. Lower bound �lb, mean of simulations E(�si) and upper bound �ub.
�nal key being eavesdropped at the transmitter. This is out of our interest. Bycontrast, for ps 2 [0:93 : 1] the upper probability of � is approximate or less thanthe probability of this vertex itself being unsafe. This seems more interesting.Table 4 also suggests that � � �lb = (1� ps)4 for ps 2 [0:93 : 1].
5 Applying stochastic routing algorithms
5.1 Some proposed routing algorithms
An adaptive drunkard's routing algorithm (ADRA) In the classic drunk-ard's walk problem, the next-hop probability distribution is unbiased. We pro-pose an adaptive drunkard's routing algorithm, named ADRA, that is biased.The idea is to give a bigger chance for the vertex that is closer to the destinationvertex. Assume that the vertex vA wants to send a message to the vertex vB .The vertex vA computes next-hop probabilities for its neighbors. This compu-tation is based on the coordinate correlations between neighbors and vB . Thehigher probability is given to the vertex that is closer to vB . Then the vertex vArandomly chooses one of its neighbors to forward the message, but according tothe probability distribution that has been computed. Anyone that subsequentlyreceives the message would do the same thing and the chain of communicationwould continue to reach to vB .
A constant-length stochastic routing algorithm (l-SRA) The length of apath is the number of the vertices belonging to the path. A vertex may be countedas many times as the path runs through this vertex. The distance between twovertices is the length of the shortest path between these vertices.Our constant-length stochastic routing algorithm, called l-SRA(l) or l-SRAfor short, is a stochastic routing algorithm that takes a value l as input and triesto transmit a message by a random path of length l.Assume that there are some di�erent paths �1; : : : ; �m that hold l(�1) = : : : =l(�m) = l. Note that in the 4-connected grid lattice, it must l = d+ 2� k; k � 0.When sending a message l-SRA will choose randomly a path �i among �1; : : : ; �maccording to a probability distribution that holds two following conditions:



1. 8i; 1 � i � m : 0 � Pr(l-SRA(l) takes �i) � 12. mX
i=1 Pr(l-SRA(l) takes �i) = 1 (8)

Theorem 1. The probability that l-SRA(l) chooses successfully a safe path tosend one message depends only on the safe probability p and the length l, not onthe distance d between Alice and Bob:
Pr(1; p; d; l-SRA(l)) = pl

A parameterized-length stochastic routing algorithm (k-SRA) Thisalgorithm takes an input parameter k > 1, and tries to transmit the message bya path of length l � k� d. We call this algorithm k-SRA(k) or k-SRA for short.It is built based on l-SRA. The idea is as follows. When k-SRA(k) receives theinput k > 1, it considers the paths of length l � k � d. Note that the di�erencebetween the length and the distance cannot be an odd number. Therefore, thepossible lengths are d; (d+2); : : : ; (d+2�b (k�1)�d2 c). When sending a messagek-SRA(k) chooses randomly for l a value among d; (d+2); : : : ; (d+2�b (k�1)�d2 c)according to the uniform distribution, i.e:
8i; 0 � i � u = b (k � 1)� d2 c : Pr�(d+ 2� i) is taken for l� = 1(k + 1)� dOnce l was chosen, k-SRA uses l-SRA to send the message. This implies thatthe message will take a random path that has the length l.Theorem 2. The probability that k-SRA(k) chooses successfully a safe path tosend one message depends on the safe probability p, the input parameter k, andalso the distance d between Alice and Bob:

� = Pr(1; p; d; k-SRA(k)) = pd � (1� p2�(u+1))(u+ 1)� (1� p2) (9)
5.2 Our proposed routing algorithms in some attack strategiesWe consider two attack strategies of Eve:1. Dynamic attack: To catch a set of N messages Eve frequently re-choosesnodes being attacked.2. Static attack: Eve keeps her choice of the nodes being attacked until all Nmessages have been sent.Because the algorithm ADRA is based on random walk, it does not giverigorous mathematical results. Its performance is estimated by experimentalstatistics. The algorithm l-SRA is not a real routing solution. This algorithm onlyexecutes one sub-task of the algorithm k-SRA. The algorithm k-SRA presentssome rigorous bounds.



Theorem 3. If Eve executes a dynamic attack, then the probability that thereis at least one safe path in N routings of k-SRA(k) depends on N , the safeprobability p, the input parameter k, and the distance d between Alice and Bob:Pr(N; p; d; k-SRA(k)) = 1� (1� �)NWhere � is evaluated in (9).We have a lemma derived directly from the theorem 3.Lemma 1. If Eve executes a dynamic attack, given � and k-SRA(k), then wehave the threshold N0 responding to the second question stated in Section 2:
N0 = lg(�)1� lg(�)Where � is evaluated in (9).Theorem 4. If Eve executes a static attack, then the upper bound of the prob-ability that there is at least one safe path in N routings of k-SRA(k) dependson N , the safe probability p, the input parameter k, and the distance d betweenAlice and Bob: Pr(N; p; d; k-SRA(k)) � 1� (1� �)NWhere � is evaluated in (9). The equality is possible when N � 4.We have a lemma derived directly from the theorem 4.Lemma 2. If Eve executes a static attack, given � and k-SRA(k), we have thethreshold N0 responding to the second question stated in Section 2:
N0 � lg(�)1� lg(�)Where � is evaluated in (9). The equality is possible when N0 � 4.

5.3 SimulationsADRA's simulations The next-hop probabilities computation can vary to re-sult in many ADRA's variants. Here we reused the next-hop probabilities com-putation presented in [19]. Then, we ran simulations in the lattice 600� 600, invarying the safety probability ps 2 [0:93 : 1] and the distance dAB between Aliceand Bob [19, 20]. For each ps, we generated a network with randomly spreadeave-droppers. For each distance dAB , we generated 400 (Alice, Bob) pairs. Foreach such pair, we ran 400 experiments. In each one we generated stochasticroutes from Alice to Bob until we �nd a safe one (i.e., a route with no Eve).For each 400 experiments we gathered the largest number of messages that wereneeded. To avoid sending an in�nite number of messages, we set the maximume�ort to 104 messages.Table 5.3 presents simulation results. This suggests that there exists a thresh-old of the number of sending messages above which we can be almost certainthat there exists at least one safe message.



ps ps
d 0.99 0.98 0.97 0.96 0.95 0.94 0.93 d 0.99 0.98 0.97 0.96 0.95 0.94 0.931 8 12 12 22 14 12 14 10 149 169 340 1267 3731 1267 28542 44 105 122 68 82 425 106 20 127 338 829 9300 � � �3 87 51 273 99 122 233 439 30 315 1987 2908 � � � �4 95 171 160 408 244 1125 476 40 386 4111 � � � � �5 66 61 186 917 286 967 2149 50 437 � � � � � �6 34 397 356 377 644 583 921 60 656 � � � � � �7 43 194 155 395 625 420 2102 70 1911 � � � � � �8 72 1645 224 414 936 773 1663 80 3117 � � � � � �9 53 185 477 386 585 717 2794 90 7039 � � � � � �10 149 169 340 1267 3731 1267 2854 100 4117 � � � � � �110 � � � � � � �Table 2. Worst cases's experiment results. Symbol � stands for more than10,000.

k-SRA's simulations Simulations were implemented in the lattice 600� 600.We ran 104 experiments. The table 5.3 shows the lower bounds, the simulationvalues, and the upper bounds for the case of k = 2 and d = 10 with ps =0; 93; 0:95; 0:97; 0:99. Note that the lower bound holds if N messages have takenthe only possible path. The convergence of the experimental results to theirupper bound is signi�cant. We realize that the secrecy probability of the �nalkey is a non-decreasing function. As the number of sent messages increases, thisprobability converges to its upper bound. Moreover, both tend to 1 as N !1.
6 Conclusions
We investigated constraints of quantum networks, in particularly, the ineluctableprobability that some nodes are compromised. Given the distance between sourceand destination, we proposed routing algorithms and estimated the number ofpieces that the message must be divided into with respect to the distance and thecompromising probability distribution imposed over nodes. The principle resultof our work is that it opens another door allowing to investigate QKD networksusing percolation theory and stochastic routing.A lot of work remains to be done in the future. For example, we need totake into account key authentication to complete our key exchange scheme. Theeavesdropping distribution was uniform in this paper. More complex probabilitydistributions seem more interesting. Studying other topologies will be of signif-icance, grids are only the �rst step. We also aim at �nding rigorous and tightformulas. Besides, we must improve our stochastic routing proposals, e.g. hidingrouting information as onion routing. We attach importance to throughput andcomputational overhead in practice. We plan to carry out a cost estimation withrespect to today's QKD technology.



ps = 0:93 ps = 0:97
N �lb(%) �si(%) �ub(%) N �lb(%) �si(%) �ub(%)1 34:71 42:54 34:71 1 63:66 69:99 63:6610 34:71 80:57 98:59 10 63:66 93:84 98:59100 34:71 95:36 100 100 63:66 98:94 1001000 34:71 99:52 100 1000 63:66 99:94 10010000 34:71 99:96 100 10000 63:66 100 100

ps = 0:95 ps = 0:99
N �lb(%) �si(%) �ub(%) N �lb(%) �si(%) �ub(%)1 47:04 54:31 47:04 1 86:05 88:75 86:0510 47:04 87:96 98:59 10 86:05 98:40 100100 47:04 97:59 100 100 86:05 99:81 1001000 47:04 99:84 100 1000 86:05 99:99 10010000 47:04 100 100 10000 86:05 100 100Table 3. Lower bound, experimental results, upper bound of the key secrecy forps = 0:93; 0:95; 0:97; 0:99. �si is the percentage in 104 experiments done.

Appendix
Proof of theorem 1 Pr �1; p; d; l-SRA(l)�
= kX

i=1
�Pr �l-SRA(l) takes �i�� Pr(�i is safe)� = kX

i=1
�Pr �l-SRA(l) takes �i�� pl�

= � kX
i=1 Pr �l-SRA(l) takes �i�

�� pl = pl ( from (8))

Proof of theorem 2 � = Pr �1; p; d; k-SRA(k)�
= X

l=d;::;d+2u
�Pr �k-SRA(k) takes l�� Pr �l-SRA(l) takes a safe path��

= X
l=d;::;d+2u

� 1(u+ 1) � �Pr �1; p; d; l-SRA(l)��
�

= 1(u+ 1) �
� X

l=d;::;d+2u
�Pr �1; p; d; l-SRA(l)���

= 1(u+ 1) � � X
l=d;::;d+2u p(l)� = pd � (1� p2(u+1))(u+ 1)� (1� p2)



Proof of theorem 3 It is a memoryless system. From (9),
Pr(All the N trials are failed) = �1� Pr(A trial is successful)�N = (1� �)N! Pr(N; p; d; k-SRA(k)) = Pr(At least one of N trials is successful)= 1� Pr(All the N trials are failed) = 1� (1� �)N

Proof of theorem 4 We must take into account the path dependence of Npaths taken by N messages sent. The probability that k-SRA(k) takes an unsafepath for each trial is:
Pr(1; p; d; k-SRA(k)) = X

d�l�k�d
�Pr �k-SRA(k) takes l��

Pr �l-SRA(l) takes an unsafe path�� = 1� � (10)
The probability of N messages being intercepted is:

Pr(N; p; d; k-SRA(k)) = X
d�l1�k�d:::d�lN�k�d)

 Pr �k-SRA(k) takes (l1; : : : ; lN )� �
� X

l�1=l1;:::l�N=lN
�Pr(l-SRA takes �1 : : : �N )� �Pr(�1 : : : �N are failed)���! (11)

For a given path set (�1; : : : ; �N ), we can prove the following inequality:
Pr(�1; : : : ; �N are failed) � NY

i=1Pr(�i is failed) (12)
Where the equality holds i.i.f �1; : : : ; �N are independent.We �rst prove with N = 2. Assume that �1; �2 have the length l1; l2 respec-tively, and have l common nodes (0 � l � min(l1; l2)). We have:

Pr(�1; �2 are failed) = pl � (1� p(l1�l))� (1� p(l2�l)) + (1� pl)= (1� p(l1))� (1� p(l2)) + (p(l1+l2�l) � p(l1+l2))� (1� p(l1))� (1� p(l2)) = Pr(�1 is failed)� Pr(�2 is failed)
Inequality (12) was proven with N = 2. We iterate this to obtain (12) for8N . Note that the equality holds i� �1 : : : �N are separated. In the square 4-connected lattice there are maximum 4 separated paths between Alice and Bob.Thus, if N > 4, the equality for (12) cannot appear. By applying (12) to (11),we have:



Pr(N; p; d; k-SRA(k)) > X
d�l1�k�d:::d�lN�k�d)

�� NY
i=1Pr �k-SRA(k) takes li�

� �
� X

l�1=l1;:::l�N=lN
� NY
i=1Pr(l-SRA takes �i)�� � NY

i=1Pr(�i is failed)�
��

= X
d�l1�k�d:::d�lN�k�d)

 � NY
i=1Pr �k-SRA(k) takes li�

� �
� lNY

lj=l1
� X
l�i=lj

�Pr(l-SRA takes �i)� Pr(�i is failed)���!

= X
d�l1�k�d:::d�lN�k�d)

� NY
i=1Pr �k-SRA(k) takes li��

lNY
lj=l1 Pr

�l-SRA(lj) takes an unsafe path��

= X
d�l1�k�d:::d�lN�k�d)

�� NY
i=1Pr �k-SRA(k) takes li�� Pr �l-SRA(lj) takes an unsafe path���

= NY
i=1
�� X

d�li�k�dPr
�k-SRA(k) takes li�� Pr �l-SRA(li) takes an unsafe path���

= NY
i=1

�Pr �k-SRA(k) takes an unsafe path�� = (1� �)N (from (10))
Thus,

Pr(N; p; d; k-SRA(k)) = 1� Pr(N; p; d; k-SRA(k)) = 1� (1� �)N
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